summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/arm/code-stubs-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/arm/code-stubs-arm.cc')
-rw-r--r--src/3rdparty/v8/src/arm/code-stubs-arm.cc6917
1 files changed, 6917 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/arm/code-stubs-arm.cc b/src/3rdparty/v8/src/arm/code-stubs-arm.cc
new file mode 100644
index 0000000..328b519
--- /dev/null
+++ b/src/3rdparty/v8/src/arm/code-stubs-arm.cc
@@ -0,0 +1,6917 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_ARM)
+
+#include "bootstrapper.h"
+#include "code-stubs.h"
+#include "regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#define __ ACCESS_MASM(masm)
+
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cond,
+ bool never_nan_nan);
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* lhs_not_nan,
+ Label* slow,
+ bool strict);
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
+ Register lhs,
+ Register rhs);
+
+
+void ToNumberStub::Generate(MacroAssembler* masm) {
+ // The ToNumber stub takes one argument in eax.
+ Label check_heap_number, call_builtin;
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(ne, &check_heap_number);
+ __ Ret();
+
+ __ bind(&check_heap_number);
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r1, ip);
+ __ b(ne, &call_builtin);
+ __ Ret();
+
+ __ bind(&call_builtin);
+ __ push(r0);
+ __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS);
+}
+
+
+void FastNewClosureStub::Generate(MacroAssembler* masm) {
+ // Create a new closure from the given function info in new
+ // space. Set the context to the current context in cp.
+ Label gc;
+
+ // Pop the function info from the stack.
+ __ pop(r3);
+
+ // Attempt to allocate new JSFunction in new space.
+ __ AllocateInNewSpace(JSFunction::kSize,
+ r0,
+ r1,
+ r2,
+ &gc,
+ TAG_OBJECT);
+
+ int map_index = strict_mode_ == kStrictMode
+ ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
+ : Context::FUNCTION_MAP_INDEX;
+
+ // Compute the function map in the current global context and set that
+ // as the map of the allocated object.
+ __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
+ __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
+ __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
+
+ // Initialize the rest of the function. We don't have to update the
+ // write barrier because the allocated object is in new space.
+ __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
+ __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
+ __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
+ __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
+ __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
+ __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
+ __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
+ __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
+ __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
+ __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
+
+
+ // Initialize the code pointer in the function to be the one
+ // found in the shared function info object.
+ __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
+ __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
+
+ // Return result. The argument function info has been popped already.
+ __ Ret();
+
+ // Create a new closure through the slower runtime call.
+ __ bind(&gc);
+ __ LoadRoot(r4, Heap::kFalseValueRootIndex);
+ __ Push(cp, r3, r4);
+ __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
+}
+
+
+void FastNewContextStub::Generate(MacroAssembler* masm) {
+ // Try to allocate the context in new space.
+ Label gc;
+ int length = slots_ + Context::MIN_CONTEXT_SLOTS;
+
+ // Attempt to allocate the context in new space.
+ __ AllocateInNewSpace(FixedArray::SizeFor(length),
+ r0,
+ r1,
+ r2,
+ &gc,
+ TAG_OBJECT);
+
+ // Load the function from the stack.
+ __ ldr(r3, MemOperand(sp, 0));
+
+ // Setup the object header.
+ __ LoadRoot(r2, Heap::kContextMapRootIndex);
+ __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ mov(r2, Operand(Smi::FromInt(length)));
+ __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
+
+ // Setup the fixed slots.
+ __ mov(r1, Operand(Smi::FromInt(0)));
+ __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
+ __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
+ __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
+
+ // Copy the global object from the surrounding context.
+ __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
+
+ // Initialize the rest of the slots to undefined.
+ __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
+ for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
+ __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
+ }
+
+ // Remove the on-stack argument and return.
+ __ mov(cp, r0);
+ __ pop();
+ __ Ret();
+
+ // Need to collect. Call into runtime system.
+ __ bind(&gc);
+ __ TailCallRuntime(Runtime::kNewContext, 1, 1);
+}
+
+
+void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
+ // Stack layout on entry:
+ //
+ // [sp]: constant elements.
+ // [sp + kPointerSize]: literal index.
+ // [sp + (2 * kPointerSize)]: literals array.
+
+ // All sizes here are multiples of kPointerSize.
+ int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
+ int size = JSArray::kSize + elements_size;
+
+ // Load boilerplate object into r3 and check if we need to create a
+ // boilerplate.
+ Label slow_case;
+ __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
+ __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
+ __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(r3, ip);
+ __ b(eq, &slow_case);
+
+ if (FLAG_debug_code) {
+ const char* message;
+ Heap::RootListIndex expected_map_index;
+ if (mode_ == CLONE_ELEMENTS) {
+ message = "Expected (writable) fixed array";
+ expected_map_index = Heap::kFixedArrayMapRootIndex;
+ } else {
+ ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
+ message = "Expected copy-on-write fixed array";
+ expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
+ }
+ __ push(r3);
+ __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
+ __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ LoadRoot(ip, expected_map_index);
+ __ cmp(r3, ip);
+ __ Assert(eq, message);
+ __ pop(r3);
+ }
+
+ // Allocate both the JS array and the elements array in one big
+ // allocation. This avoids multiple limit checks.
+ __ AllocateInNewSpace(size,
+ r0,
+ r1,
+ r2,
+ &slow_case,
+ TAG_OBJECT);
+
+ // Copy the JS array part.
+ for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
+ if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
+ __ ldr(r1, FieldMemOperand(r3, i));
+ __ str(r1, FieldMemOperand(r0, i));
+ }
+ }
+
+ if (length_ > 0) {
+ // Get hold of the elements array of the boilerplate and setup the
+ // elements pointer in the resulting object.
+ __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
+ __ add(r2, r0, Operand(JSArray::kSize));
+ __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
+
+ // Copy the elements array.
+ __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
+ }
+
+ // Return and remove the on-stack parameters.
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&slow_case);
+ __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
+}
+
+
+// Takes a Smi and converts to an IEEE 64 bit floating point value in two
+// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
+// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
+// scratch register. Destroys the source register. No GC occurs during this
+// stub so you don't have to set up the frame.
+class ConvertToDoubleStub : public CodeStub {
+ public:
+ ConvertToDoubleStub(Register result_reg_1,
+ Register result_reg_2,
+ Register source_reg,
+ Register scratch_reg)
+ : result1_(result_reg_1),
+ result2_(result_reg_2),
+ source_(source_reg),
+ zeros_(scratch_reg) { }
+
+ private:
+ Register result1_;
+ Register result2_;
+ Register source_;
+ Register zeros_;
+
+ // Minor key encoding in 16 bits.
+ class ModeBits: public BitField<OverwriteMode, 0, 2> {};
+ class OpBits: public BitField<Token::Value, 2, 14> {};
+
+ Major MajorKey() { return ConvertToDouble; }
+ int MinorKey() {
+ // Encode the parameters in a unique 16 bit value.
+ return result1_.code() +
+ (result2_.code() << 4) +
+ (source_.code() << 8) +
+ (zeros_.code() << 12);
+ }
+
+ void Generate(MacroAssembler* masm);
+
+ const char* GetName() { return "ConvertToDoubleStub"; }
+
+#ifdef DEBUG
+ void Print() { PrintF("ConvertToDoubleStub\n"); }
+#endif
+};
+
+
+void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
+#ifndef BIG_ENDIAN_FLOATING_POINT
+ Register exponent = result1_;
+ Register mantissa = result2_;
+#else
+ Register exponent = result2_;
+ Register mantissa = result1_;
+#endif
+ Label not_special;
+ // Convert from Smi to integer.
+ __ mov(source_, Operand(source_, ASR, kSmiTagSize));
+ // Move sign bit from source to destination. This works because the sign bit
+ // in the exponent word of the double has the same position and polarity as
+ // the 2's complement sign bit in a Smi.
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
+ __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
+ // Subtract from 0 if source was negative.
+ __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
+
+ // We have -1, 0 or 1, which we treat specially. Register source_ contains
+ // absolute value: it is either equal to 1 (special case of -1 and 1),
+ // greater than 1 (not a special case) or less than 1 (special case of 0).
+ __ cmp(source_, Operand(1));
+ __ b(gt, &not_special);
+
+ // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
+ static const uint32_t exponent_word_for_1 =
+ HeapNumber::kExponentBias << HeapNumber::kExponentShift;
+ __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
+ // 1, 0 and -1 all have 0 for the second word.
+ __ mov(mantissa, Operand(0, RelocInfo::NONE));
+ __ Ret();
+
+ __ bind(&not_special);
+ // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
+ // Gets the wrong answer for 0, but we already checked for that case above.
+ __ CountLeadingZeros(zeros_, source_, mantissa);
+ // Compute exponent and or it into the exponent register.
+ // We use mantissa as a scratch register here. Use a fudge factor to
+ // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
+ // that fit in the ARM's constant field.
+ int fudge = 0x400;
+ __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
+ __ add(mantissa, mantissa, Operand(fudge));
+ __ orr(exponent,
+ exponent,
+ Operand(mantissa, LSL, HeapNumber::kExponentShift));
+ // Shift up the source chopping the top bit off.
+ __ add(zeros_, zeros_, Operand(1));
+ // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
+ __ mov(source_, Operand(source_, LSL, zeros_));
+ // Compute lower part of fraction (last 12 bits).
+ __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
+ // And the top (top 20 bits).
+ __ orr(exponent,
+ exponent,
+ Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
+ __ Ret();
+}
+
+
+class FloatingPointHelper : public AllStatic {
+ public:
+
+ enum Destination {
+ kVFPRegisters,
+ kCoreRegisters
+ };
+
+
+ // Loads smis from r0 and r1 (right and left in binary operations) into
+ // floating point registers. Depending on the destination the values ends up
+ // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
+ // floating point registers VFP3 must be supported. If core registers are
+ // requested when VFP3 is supported d6 and d7 will be scratched.
+ static void LoadSmis(MacroAssembler* masm,
+ Destination destination,
+ Register scratch1,
+ Register scratch2);
+
+ // Loads objects from r0 and r1 (right and left in binary operations) into
+ // floating point registers. Depending on the destination the values ends up
+ // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
+ // floating point registers VFP3 must be supported. If core registers are
+ // requested when VFP3 is supported d6 and d7 will still be scratched. If
+ // either r0 or r1 is not a number (not smi and not heap number object) the
+ // not_number label is jumped to with r0 and r1 intact.
+ static void LoadOperands(MacroAssembler* masm,
+ FloatingPointHelper::Destination destination,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Label* not_number);
+
+ // Convert the smi or heap number in object to an int32 using the rules
+ // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
+ // and brought into the range -2^31 .. +2^31 - 1.
+ static void ConvertNumberToInt32(MacroAssembler* masm,
+ Register object,
+ Register dst,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ DwVfpRegister double_scratch,
+ Label* not_int32);
+
+ // Load the number from object into double_dst in the double format.
+ // Control will jump to not_int32 if the value cannot be exactly represented
+ // by a 32-bit integer.
+ // Floating point value in the 32-bit integer range that are not exact integer
+ // won't be loaded.
+ static void LoadNumberAsInt32Double(MacroAssembler* masm,
+ Register object,
+ Destination destination,
+ DwVfpRegister double_dst,
+ Register dst1,
+ Register dst2,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ SwVfpRegister single_scratch,
+ Label* not_int32);
+
+ // Loads the number from object into dst as a 32-bit integer.
+ // Control will jump to not_int32 if the object cannot be exactly represented
+ // by a 32-bit integer.
+ // Floating point value in the 32-bit integer range that are not exact integer
+ // won't be converted.
+ // scratch3 is not used when VFP3 is supported.
+ static void LoadNumberAsInt32(MacroAssembler* masm,
+ Register object,
+ Register dst,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ DwVfpRegister double_scratch,
+ Label* not_int32);
+
+ // Generate non VFP3 code to check if a double can be exactly represented by a
+ // 32-bit integer. This does not check for 0 or -0, which need
+ // to be checked for separately.
+ // Control jumps to not_int32 if the value is not a 32-bit integer, and falls
+ // through otherwise.
+ // src1 and src2 will be cloberred.
+ //
+ // Expected input:
+ // - src1: higher (exponent) part of the double value.
+ // - src2: lower (mantissa) part of the double value.
+ // Output status:
+ // - dst: 32 higher bits of the mantissa. (mantissa[51:20])
+ // - src2: contains 1.
+ // - other registers are clobbered.
+ static void DoubleIs32BitInteger(MacroAssembler* masm,
+ Register src1,
+ Register src2,
+ Register dst,
+ Register scratch,
+ Label* not_int32);
+
+ // Generates code to call a C function to do a double operation using core
+ // registers. (Used when VFP3 is not supported.)
+ // This code never falls through, but returns with a heap number containing
+ // the result in r0.
+ // Register heapnumber_result must be a heap number in which the
+ // result of the operation will be stored.
+ // Requires the following layout on entry:
+ // r0: Left value (least significant part of mantissa).
+ // r1: Left value (sign, exponent, top of mantissa).
+ // r2: Right value (least significant part of mantissa).
+ // r3: Right value (sign, exponent, top of mantissa).
+ static void CallCCodeForDoubleOperation(MacroAssembler* masm,
+ Token::Value op,
+ Register heap_number_result,
+ Register scratch);
+
+ private:
+ static void LoadNumber(MacroAssembler* masm,
+ FloatingPointHelper::Destination destination,
+ Register object,
+ DwVfpRegister dst,
+ Register dst1,
+ Register dst2,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Label* not_number);
+};
+
+
+void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
+ FloatingPointHelper::Destination destination,
+ Register scratch1,
+ Register scratch2) {
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
+ __ vmov(d7.high(), scratch1);
+ __ vcvt_f64_s32(d7, d7.high());
+ __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
+ __ vmov(d6.high(), scratch1);
+ __ vcvt_f64_s32(d6, d6.high());
+ if (destination == kCoreRegisters) {
+ __ vmov(r2, r3, d7);
+ __ vmov(r0, r1, d6);
+ }
+ } else {
+ ASSERT(destination == kCoreRegisters);
+ // Write Smi from r0 to r3 and r2 in double format.
+ __ mov(scratch1, Operand(r0));
+ ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
+ __ push(lr);
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
+ // Write Smi from r1 to r1 and r0 in double format. r9 is scratch.
+ __ mov(scratch1, Operand(r1));
+ ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+}
+
+
+void FloatingPointHelper::LoadOperands(
+ MacroAssembler* masm,
+ FloatingPointHelper::Destination destination,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Label* slow) {
+
+ // Load right operand (r0) to d6 or r2/r3.
+ LoadNumber(masm, destination,
+ r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
+
+ // Load left operand (r1) to d7 or r0/r1.
+ LoadNumber(masm, destination,
+ r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
+}
+
+
+void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
+ Destination destination,
+ Register object,
+ DwVfpRegister dst,
+ Register dst1,
+ Register dst2,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Label* not_number) {
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+
+ Label is_smi, done;
+
+ __ JumpIfSmi(object, &is_smi);
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
+
+ // Handle loading a double from a heap number.
+ if (CpuFeatures::IsSupported(VFP3) &&
+ destination == kVFPRegisters) {
+ CpuFeatures::Scope scope(VFP3);
+ // Load the double from tagged HeapNumber to double register.
+ __ sub(scratch1, object, Operand(kHeapObjectTag));
+ __ vldr(dst, scratch1, HeapNumber::kValueOffset);
+ } else {
+ ASSERT(destination == kCoreRegisters);
+ // Load the double from heap number to dst1 and dst2 in double format.
+ __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
+ }
+ __ jmp(&done);
+
+ // Handle loading a double from a smi.
+ __ bind(&is_smi);
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Convert smi to double using VFP instructions.
+ __ SmiUntag(scratch1, object);
+ __ vmov(dst.high(), scratch1);
+ __ vcvt_f64_s32(dst, dst.high());
+ if (destination == kCoreRegisters) {
+ // Load the converted smi to dst1 and dst2 in double format.
+ __ vmov(dst1, dst2, dst);
+ }
+ } else {
+ ASSERT(destination == kCoreRegisters);
+ // Write smi to dst1 and dst2 double format.
+ __ mov(scratch1, Operand(object));
+ ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
+ __ push(lr);
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
+ Register object,
+ Register dst,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ DwVfpRegister double_scratch,
+ Label* not_number) {
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ Label is_smi;
+ Label done;
+ Label not_in_int32_range;
+
+ __ JumpIfSmi(object, &is_smi);
+ __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
+ __ cmp(scratch1, heap_number_map);
+ __ b(ne, not_number);
+ __ ConvertToInt32(object,
+ dst,
+ scratch1,
+ scratch2,
+ double_scratch,
+ &not_in_int32_range);
+ __ jmp(&done);
+
+ __ bind(&not_in_int32_range);
+ __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+
+ __ EmitOutOfInt32RangeTruncate(dst,
+ scratch1,
+ scratch2,
+ scratch3);
+ __ jmp(&done);
+
+ __ bind(&is_smi);
+ __ SmiUntag(dst, object);
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
+ Register object,
+ Destination destination,
+ DwVfpRegister double_dst,
+ Register dst1,
+ Register dst2,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ SwVfpRegister single_scratch,
+ Label* not_int32) {
+ ASSERT(!scratch1.is(object) && !scratch2.is(object));
+ ASSERT(!scratch1.is(scratch2));
+ ASSERT(!heap_number_map.is(object) &&
+ !heap_number_map.is(scratch1) &&
+ !heap_number_map.is(scratch2));
+
+ Label done, obj_is_not_smi;
+
+ __ JumpIfNotSmi(object, &obj_is_not_smi);
+ __ SmiUntag(scratch1, object);
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ vmov(single_scratch, scratch1);
+ __ vcvt_f64_s32(double_dst, single_scratch);
+ if (destination == kCoreRegisters) {
+ __ vmov(dst1, dst2, double_dst);
+ }
+ } else {
+ Label fewer_than_20_useful_bits;
+ // Expected output:
+ // | dst1 | dst2 |
+ // | s | exp | mantissa |
+
+ // Check for zero.
+ __ cmp(scratch1, Operand(0));
+ __ mov(dst1, scratch1);
+ __ mov(dst2, scratch1);
+ __ b(eq, &done);
+
+ // Preload the sign of the value.
+ __ and_(dst1, scratch1, Operand(HeapNumber::kSignMask), SetCC);
+ // Get the absolute value of the object (as an unsigned integer).
+ __ rsb(scratch1, scratch1, Operand(0), SetCC, mi);
+
+ // Get mantisssa[51:20].
+
+ // Get the position of the first set bit.
+ __ CountLeadingZeros(dst2, scratch1, scratch2);
+ __ rsb(dst2, dst2, Operand(31));
+
+ // Set the exponent.
+ __ add(scratch2, dst2, Operand(HeapNumber::kExponentBias));
+ __ Bfi(dst1, scratch2, scratch2,
+ HeapNumber::kExponentShift, HeapNumber::kExponentBits);
+
+ // Clear the first non null bit.
+ __ mov(scratch2, Operand(1));
+ __ bic(scratch1, scratch1, Operand(scratch2, LSL, dst2));
+
+ __ cmp(dst2, Operand(HeapNumber::kMantissaBitsInTopWord));
+ // Get the number of bits to set in the lower part of the mantissa.
+ __ sub(scratch2, dst2, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
+ __ b(mi, &fewer_than_20_useful_bits);
+ // Set the higher 20 bits of the mantissa.
+ __ orr(dst1, dst1, Operand(scratch1, LSR, scratch2));
+ __ rsb(scratch2, scratch2, Operand(32));
+ __ mov(dst2, Operand(scratch1, LSL, scratch2));
+ __ b(&done);
+
+ __ bind(&fewer_than_20_useful_bits);
+ __ rsb(scratch2, dst2, Operand(HeapNumber::kMantissaBitsInTopWord));
+ __ mov(scratch2, Operand(scratch1, LSL, scratch2));
+ __ orr(dst1, dst1, scratch2);
+ // Set dst2 to 0.
+ __ mov(dst2, Operand(0));
+ }
+
+ __ b(&done);
+
+ __ bind(&obj_is_not_smi);
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
+
+ // Load the number.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Load the double value.
+ __ sub(scratch1, object, Operand(kHeapObjectTag));
+ __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
+
+ __ EmitVFPTruncate(kRoundToZero,
+ single_scratch,
+ double_dst,
+ scratch1,
+ scratch2,
+ kCheckForInexactConversion);
+
+ // Jump to not_int32 if the operation did not succeed.
+ __ b(ne, not_int32);
+
+ if (destination == kCoreRegisters) {
+ __ vmov(dst1, dst2, double_dst);
+ }
+
+ } else {
+ ASSERT(!scratch1.is(object) && !scratch2.is(object));
+ // Load the double value in the destination registers..
+ __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
+
+ // Check for 0 and -0.
+ __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
+ __ orr(scratch1, scratch1, Operand(dst2));
+ __ cmp(scratch1, Operand(0));
+ __ b(eq, &done);
+
+ // Check that the value can be exactly represented by a 32-bit integer.
+ // Jump to not_int32 if that's not the case.
+ DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
+
+ // dst1 and dst2 were trashed. Reload the double value.
+ __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
+ }
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
+ Register object,
+ Register dst,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ DwVfpRegister double_scratch,
+ Label* not_int32) {
+ ASSERT(!dst.is(object));
+ ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
+ ASSERT(!scratch1.is(scratch2) &&
+ !scratch1.is(scratch3) &&
+ !scratch2.is(scratch3));
+
+ Label done;
+
+ // Untag the object into the destination register.
+ __ SmiUntag(dst, object);
+ // Just return if the object is a smi.
+ __ JumpIfSmi(object, &done);
+
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
+
+ // Object is a heap number.
+ // Convert the floating point value to a 32-bit integer.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ SwVfpRegister single_scratch = double_scratch.low();
+ // Load the double value.
+ __ sub(scratch1, object, Operand(kHeapObjectTag));
+ __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
+
+ __ EmitVFPTruncate(kRoundToZero,
+ single_scratch,
+ double_scratch,
+ scratch1,
+ scratch2,
+ kCheckForInexactConversion);
+
+ // Jump to not_int32 if the operation did not succeed.
+ __ b(ne, not_int32);
+ // Get the result in the destination register.
+ __ vmov(dst, single_scratch);
+
+ } else {
+ // Load the double value in the destination registers.
+ __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+
+ // Check for 0 and -0.
+ __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
+ __ orr(dst, scratch2, Operand(dst));
+ __ cmp(dst, Operand(0));
+ __ b(eq, &done);
+
+ DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
+
+ // Registers state after DoubleIs32BitInteger.
+ // dst: mantissa[51:20].
+ // scratch2: 1
+
+ // Shift back the higher bits of the mantissa.
+ __ mov(dst, Operand(dst, LSR, scratch3));
+ // Set the implicit first bit.
+ __ rsb(scratch3, scratch3, Operand(32));
+ __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
+ // Set the sign.
+ __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ tst(scratch1, Operand(HeapNumber::kSignMask));
+ __ rsb(dst, dst, Operand(0), LeaveCC, mi);
+ }
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
+ Register src1,
+ Register src2,
+ Register dst,
+ Register scratch,
+ Label* not_int32) {
+ // Get exponent alone in scratch.
+ __ Ubfx(scratch,
+ src1,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+
+ // Substract the bias from the exponent.
+ __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
+
+ // src1: higher (exponent) part of the double value.
+ // src2: lower (mantissa) part of the double value.
+ // scratch: unbiased exponent.
+
+ // Fast cases. Check for obvious non 32-bit integer values.
+ // Negative exponent cannot yield 32-bit integers.
+ __ b(mi, not_int32);
+ // Exponent greater than 31 cannot yield 32-bit integers.
+ // Also, a positive value with an exponent equal to 31 is outside of the
+ // signed 32-bit integer range.
+ // Another way to put it is that if (exponent - signbit) > 30 then the
+ // number cannot be represented as an int32.
+ Register tmp = dst;
+ __ sub(tmp, scratch, Operand(src1, LSR, 31));
+ __ cmp(tmp, Operand(30));
+ __ b(gt, not_int32);
+ // - Bits [21:0] in the mantissa are not null.
+ __ tst(src2, Operand(0x3fffff));
+ __ b(ne, not_int32);
+
+ // Otherwise the exponent needs to be big enough to shift left all the
+ // non zero bits left. So we need the (30 - exponent) last bits of the
+ // 31 higher bits of the mantissa to be null.
+ // Because bits [21:0] are null, we can check instead that the
+ // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
+
+ // Get the 32 higher bits of the mantissa in dst.
+ __ Ubfx(dst,
+ src2,
+ HeapNumber::kMantissaBitsInTopWord,
+ 32 - HeapNumber::kMantissaBitsInTopWord);
+ __ orr(dst,
+ dst,
+ Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
+
+ // Create the mask and test the lower bits (of the higher bits).
+ __ rsb(scratch, scratch, Operand(32));
+ __ mov(src2, Operand(1));
+ __ mov(src1, Operand(src2, LSL, scratch));
+ __ sub(src1, src1, Operand(1));
+ __ tst(dst, src1);
+ __ b(ne, not_int32);
+}
+
+
+void FloatingPointHelper::CallCCodeForDoubleOperation(
+ MacroAssembler* masm,
+ Token::Value op,
+ Register heap_number_result,
+ Register scratch) {
+ // Using core registers:
+ // r0: Left value (least significant part of mantissa).
+ // r1: Left value (sign, exponent, top of mantissa).
+ // r2: Right value (least significant part of mantissa).
+ // r3: Right value (sign, exponent, top of mantissa).
+
+ // Assert that heap_number_result is callee-saved.
+ // We currently always use r5 to pass it.
+ ASSERT(heap_number_result.is(r5));
+
+ // Push the current return address before the C call. Return will be
+ // through pop(pc) below.
+ __ push(lr);
+ __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
+ // Call C routine that may not cause GC or other trouble.
+ __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()),
+ 4);
+ // Store answer in the overwritable heap number.
+#if !defined(USE_ARM_EABI)
+ // Double returned in fp coprocessor register 0 and 1, encoded as
+ // register cr8. Offsets must be divisible by 4 for coprocessor so we
+ // need to substract the tag from heap_number_result.
+ __ sub(scratch, heap_number_result, Operand(kHeapObjectTag));
+ __ stc(p1, cr8, MemOperand(scratch, HeapNumber::kValueOffset));
+#else
+ // Double returned in registers 0 and 1.
+ __ Strd(r0, r1, FieldMemOperand(heap_number_result,
+ HeapNumber::kValueOffset));
+#endif
+ // Place heap_number_result in r0 and return to the pushed return address.
+ __ mov(r0, Operand(heap_number_result));
+ __ pop(pc);
+}
+
+
+// See comment for class.
+void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
+ Label max_negative_int;
+ // the_int_ has the answer which is a signed int32 but not a Smi.
+ // We test for the special value that has a different exponent. This test
+ // has the neat side effect of setting the flags according to the sign.
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
+ __ cmp(the_int_, Operand(0x80000000u));
+ __ b(eq, &max_negative_int);
+ // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
+ // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
+ uint32_t non_smi_exponent =
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
+ __ mov(scratch_, Operand(non_smi_exponent));
+ // Set the sign bit in scratch_ if the value was negative.
+ __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
+ // Subtract from 0 if the value was negative.
+ __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
+ // We should be masking the implict first digit of the mantissa away here,
+ // but it just ends up combining harmlessly with the last digit of the
+ // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
+ // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
+ ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
+ __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
+ __ str(scratch_, FieldMemOperand(the_heap_number_,
+ HeapNumber::kExponentOffset));
+ __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
+ __ str(scratch_, FieldMemOperand(the_heap_number_,
+ HeapNumber::kMantissaOffset));
+ __ Ret();
+
+ __ bind(&max_negative_int);
+ // The max negative int32 is stored as a positive number in the mantissa of
+ // a double because it uses a sign bit instead of using two's complement.
+ // The actual mantissa bits stored are all 0 because the implicit most
+ // significant 1 bit is not stored.
+ non_smi_exponent += 1 << HeapNumber::kExponentShift;
+ __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
+ __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
+ __ mov(ip, Operand(0, RelocInfo::NONE));
+ __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
+ __ Ret();
+}
+
+
+// Handle the case where the lhs and rhs are the same object.
+// Equality is almost reflexive (everything but NaN), so this is a test
+// for "identity and not NaN".
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cond,
+ bool never_nan_nan) {
+ Label not_identical;
+ Label heap_number, return_equal;
+ __ cmp(r0, r1);
+ __ b(ne, &not_identical);
+
+ // The two objects are identical. If we know that one of them isn't NaN then
+ // we now know they test equal.
+ if (cond != eq || !never_nan_nan) {
+ // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
+ // so we do the second best thing - test it ourselves.
+ // They are both equal and they are not both Smis so both of them are not
+ // Smis. If it's not a heap number, then return equal.
+ if (cond == lt || cond == gt) {
+ __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
+ __ b(ge, slow);
+ } else {
+ __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
+ __ b(eq, &heap_number);
+ // Comparing JS objects with <=, >= is complicated.
+ if (cond != eq) {
+ __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
+ __ b(ge, slow);
+ // Normally here we fall through to return_equal, but undefined is
+ // special: (undefined == undefined) == true, but
+ // (undefined <= undefined) == false! See ECMAScript 11.8.5.
+ if (cond == le || cond == ge) {
+ __ cmp(r4, Operand(ODDBALL_TYPE));
+ __ b(ne, &return_equal);
+ __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
+ __ cmp(r0, r2);
+ __ b(ne, &return_equal);
+ if (cond == le) {
+ // undefined <= undefined should fail.
+ __ mov(r0, Operand(GREATER));
+ } else {
+ // undefined >= undefined should fail.
+ __ mov(r0, Operand(LESS));
+ }
+ __ Ret();
+ }
+ }
+ }
+ }
+
+ __ bind(&return_equal);
+ if (cond == lt) {
+ __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
+ } else if (cond == gt) {
+ __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
+ } else {
+ __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
+ }
+ __ Ret();
+
+ if (cond != eq || !never_nan_nan) {
+ // For less and greater we don't have to check for NaN since the result of
+ // x < x is false regardless. For the others here is some code to check
+ // for NaN.
+ if (cond != lt && cond != gt) {
+ __ bind(&heap_number);
+ // It is a heap number, so return non-equal if it's NaN and equal if it's
+ // not NaN.
+
+ // The representation of NaN values has all exponent bits (52..62) set,
+ // and not all mantissa bits (0..51) clear.
+ // Read top bits of double representation (second word of value).
+ __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
+ // Test that exponent bits are all set.
+ __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
+ // NaNs have all-one exponents so they sign extend to -1.
+ __ cmp(r3, Operand(-1));
+ __ b(ne, &return_equal);
+
+ // Shift out flag and all exponent bits, retaining only mantissa.
+ __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
+ // Or with all low-bits of mantissa.
+ __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
+ __ orr(r0, r3, Operand(r2), SetCC);
+ // For equal we already have the right value in r0: Return zero (equal)
+ // if all bits in mantissa are zero (it's an Infinity) and non-zero if
+ // not (it's a NaN). For <= and >= we need to load r0 with the failing
+ // value if it's a NaN.
+ if (cond != eq) {
+ // All-zero means Infinity means equal.
+ __ Ret(eq);
+ if (cond == le) {
+ __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
+ } else {
+ __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
+ }
+ }
+ __ Ret();
+ }
+ // No fall through here.
+ }
+
+ __ bind(&not_identical);
+}
+
+
+// See comment at call site.
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* lhs_not_nan,
+ Label* slow,
+ bool strict) {
+ ASSERT((lhs.is(r0) && rhs.is(r1)) ||
+ (lhs.is(r1) && rhs.is(r0)));
+
+ Label rhs_is_smi;
+ __ tst(rhs, Operand(kSmiTagMask));
+ __ b(eq, &rhs_is_smi);
+
+ // Lhs is a Smi. Check whether the rhs is a heap number.
+ __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
+ if (strict) {
+ // If rhs is not a number and lhs is a Smi then strict equality cannot
+ // succeed. Return non-equal
+ // If rhs is r0 then there is already a non zero value in it.
+ if (!rhs.is(r0)) {
+ __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
+ }
+ __ Ret(ne);
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ b(ne, slow);
+ }
+
+ // Lhs is a smi, rhs is a number.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ // Convert lhs to a double in d7.
+ CpuFeatures::Scope scope(VFP3);
+ __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
+ // Load the double from rhs, tagged HeapNumber r0, to d6.
+ __ sub(r7, rhs, Operand(kHeapObjectTag));
+ __ vldr(d6, r7, HeapNumber::kValueOffset);
+ } else {
+ __ push(lr);
+ // Convert lhs to a double in r2, r3.
+ __ mov(r7, Operand(lhs));
+ ConvertToDoubleStub stub1(r3, r2, r7, r6);
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
+ // Load rhs to a double in r0, r1.
+ __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ __ pop(lr);
+ }
+
+ // We now have both loaded as doubles but we can skip the lhs nan check
+ // since it's a smi.
+ __ jmp(lhs_not_nan);
+
+ __ bind(&rhs_is_smi);
+ // Rhs is a smi. Check whether the non-smi lhs is a heap number.
+ __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
+ if (strict) {
+ // If lhs is not a number and rhs is a smi then strict equality cannot
+ // succeed. Return non-equal.
+ // If lhs is r0 then there is already a non zero value in it.
+ if (!lhs.is(r0)) {
+ __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
+ }
+ __ Ret(ne);
+ } else {
+ // Smi compared non-strictly with a non-smi non-heap-number. Call
+ // the runtime.
+ __ b(ne, slow);
+ }
+
+ // Rhs is a smi, lhs is a heap number.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Load the double from lhs, tagged HeapNumber r1, to d7.
+ __ sub(r7, lhs, Operand(kHeapObjectTag));
+ __ vldr(d7, r7, HeapNumber::kValueOffset);
+ // Convert rhs to a double in d6 .
+ __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
+ } else {
+ __ push(lr);
+ // Load lhs to a double in r2, r3.
+ __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ // Convert rhs to a double in r0, r1.
+ __ mov(r7, Operand(rhs));
+ ConvertToDoubleStub stub2(r1, r0, r7, r6);
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+ // Fall through to both_loaded_as_doubles.
+}
+
+
+void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
+ Register rhs_exponent = exp_first ? r0 : r1;
+ Register lhs_exponent = exp_first ? r2 : r3;
+ Register rhs_mantissa = exp_first ? r1 : r0;
+ Register lhs_mantissa = exp_first ? r3 : r2;
+ Label one_is_nan, neither_is_nan;
+
+ __ Sbfx(r4,
+ lhs_exponent,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+ // NaNs have all-one exponents so they sign extend to -1.
+ __ cmp(r4, Operand(-1));
+ __ b(ne, lhs_not_nan);
+ __ mov(r4,
+ Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
+ SetCC);
+ __ b(ne, &one_is_nan);
+ __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
+ __ b(ne, &one_is_nan);
+
+ __ bind(lhs_not_nan);
+ __ Sbfx(r4,
+ rhs_exponent,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+ // NaNs have all-one exponents so they sign extend to -1.
+ __ cmp(r4, Operand(-1));
+ __ b(ne, &neither_is_nan);
+ __ mov(r4,
+ Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
+ SetCC);
+ __ b(ne, &one_is_nan);
+ __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
+ __ b(eq, &neither_is_nan);
+
+ __ bind(&one_is_nan);
+ // NaN comparisons always fail.
+ // Load whatever we need in r0 to make the comparison fail.
+ if (cond == lt || cond == le) {
+ __ mov(r0, Operand(GREATER));
+ } else {
+ __ mov(r0, Operand(LESS));
+ }
+ __ Ret();
+
+ __ bind(&neither_is_nan);
+}
+
+
+// See comment at call site.
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
+ Condition cond) {
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
+ Register rhs_exponent = exp_first ? r0 : r1;
+ Register lhs_exponent = exp_first ? r2 : r3;
+ Register rhs_mantissa = exp_first ? r1 : r0;
+ Register lhs_mantissa = exp_first ? r3 : r2;
+
+ // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
+ if (cond == eq) {
+ // Doubles are not equal unless they have the same bit pattern.
+ // Exception: 0 and -0.
+ __ cmp(rhs_mantissa, Operand(lhs_mantissa));
+ __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
+ // Return non-zero if the numbers are unequal.
+ __ Ret(ne);
+
+ __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
+ // If exponents are equal then return 0.
+ __ Ret(eq);
+
+ // Exponents are unequal. The only way we can return that the numbers
+ // are equal is if one is -0 and the other is 0. We already dealt
+ // with the case where both are -0 or both are 0.
+ // We start by seeing if the mantissas (that are equal) or the bottom
+ // 31 bits of the rhs exponent are non-zero. If so we return not
+ // equal.
+ __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
+ __ mov(r0, Operand(r4), LeaveCC, ne);
+ __ Ret(ne);
+ // Now they are equal if and only if the lhs exponent is zero in its
+ // low 31 bits.
+ __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
+ __ Ret();
+ } else {
+ // Call a native function to do a comparison between two non-NaNs.
+ // Call C routine that may not cause GC or other trouble.
+ __ push(lr);
+ __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments.
+ __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4);
+ __ pop(pc); // Return.
+ }
+}
+
+
+// See comment at call site.
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
+ Register lhs,
+ Register rhs) {
+ ASSERT((lhs.is(r0) && rhs.is(r1)) ||
+ (lhs.is(r1) && rhs.is(r0)));
+
+ // If either operand is a JSObject or an oddball value, then they are
+ // not equal since their pointers are different.
+ // There is no test for undetectability in strict equality.
+ STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ Label first_non_object;
+ // Get the type of the first operand into r2 and compare it with
+ // FIRST_JS_OBJECT_TYPE.
+ __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE);
+ __ b(lt, &first_non_object);
+
+ // Return non-zero (r0 is not zero)
+ Label return_not_equal;
+ __ bind(&return_not_equal);
+ __ Ret();
+
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ cmp(r2, Operand(ODDBALL_TYPE));
+ __ b(eq, &return_not_equal);
+
+ __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE);
+ __ b(ge, &return_not_equal);
+
+ // Check for oddballs: true, false, null, undefined.
+ __ cmp(r3, Operand(ODDBALL_TYPE));
+ __ b(eq, &return_not_equal);
+
+ // Now that we have the types we might as well check for symbol-symbol.
+ // Ensure that no non-strings have the symbol bit set.
+ STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
+ STATIC_ASSERT(kSymbolTag != 0);
+ __ and_(r2, r2, Operand(r3));
+ __ tst(r2, Operand(kIsSymbolMask));
+ __ b(ne, &return_not_equal);
+}
+
+
+// See comment at call site.
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* both_loaded_as_doubles,
+ Label* not_heap_numbers,
+ Label* slow) {
+ ASSERT((lhs.is(r0) && rhs.is(r1)) ||
+ (lhs.is(r1) && rhs.is(r0)));
+
+ __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
+ __ b(ne, not_heap_numbers);
+ __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
+ __ cmp(r2, r3);
+ __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
+
+ // Both are heap numbers. Load them up then jump to the code we have
+ // for that.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ sub(r7, rhs, Operand(kHeapObjectTag));
+ __ vldr(d6, r7, HeapNumber::kValueOffset);
+ __ sub(r7, lhs, Operand(kHeapObjectTag));
+ __ vldr(d7, r7, HeapNumber::kValueOffset);
+ } else {
+ __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ }
+ __ jmp(both_loaded_as_doubles);
+}
+
+
+// Fast negative check for symbol-to-symbol equality.
+static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* possible_strings,
+ Label* not_both_strings) {
+ ASSERT((lhs.is(r0) && rhs.is(r1)) ||
+ (lhs.is(r1) && rhs.is(r0)));
+
+ // r2 is object type of rhs.
+ // Ensure that no non-strings have the symbol bit set.
+ Label object_test;
+ STATIC_ASSERT(kSymbolTag != 0);
+ __ tst(r2, Operand(kIsNotStringMask));
+ __ b(ne, &object_test);
+ __ tst(r2, Operand(kIsSymbolMask));
+ __ b(eq, possible_strings);
+ __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
+ __ b(ge, not_both_strings);
+ __ tst(r3, Operand(kIsSymbolMask));
+ __ b(eq, possible_strings);
+
+ // Both are symbols. We already checked they weren't the same pointer
+ // so they are not equal.
+ __ mov(r0, Operand(NOT_EQUAL));
+ __ Ret();
+
+ __ bind(&object_test);
+ __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
+ __ b(lt, not_both_strings);
+ __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE);
+ __ b(lt, not_both_strings);
+ // If both objects are undetectable, they are equal. Otherwise, they
+ // are not equal, since they are different objects and an object is not
+ // equal to undefined.
+ __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
+ __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
+ __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
+ __ and_(r0, r2, Operand(r3));
+ __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
+ __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
+ __ Ret();
+}
+
+
+void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
+ Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ bool object_is_smi,
+ Label* not_found) {
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch3;
+
+ // Load the number string cache.
+ __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
+ // Divide length by two (length is a smi).
+ __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
+ __ sub(mask, mask, Operand(1)); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ Isolate* isolate = masm->isolate();
+ Label is_smi;
+ Label load_result_from_cache;
+ if (!object_is_smi) {
+ __ JumpIfSmi(object, &is_smi);
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ CheckMap(object,
+ scratch1,
+ Heap::kHeapNumberMapRootIndex,
+ not_found,
+ true);
+
+ STATIC_ASSERT(8 == kDoubleSize);
+ __ add(scratch1,
+ object,
+ Operand(HeapNumber::kValueOffset - kHeapObjectTag));
+ __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
+ __ eor(scratch1, scratch1, Operand(scratch2));
+ __ and_(scratch1, scratch1, Operand(mask));
+
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ __ add(scratch1,
+ number_string_cache,
+ Operand(scratch1, LSL, kPointerSizeLog2 + 1));
+
+ Register probe = mask;
+ __ ldr(probe,
+ FieldMemOperand(scratch1, FixedArray::kHeaderSize));
+ __ JumpIfSmi(probe, not_found);
+ __ sub(scratch2, object, Operand(kHeapObjectTag));
+ __ vldr(d0, scratch2, HeapNumber::kValueOffset);
+ __ sub(probe, probe, Operand(kHeapObjectTag));
+ __ vldr(d1, probe, HeapNumber::kValueOffset);
+ __ VFPCompareAndSetFlags(d0, d1);
+ __ b(ne, not_found); // The cache did not contain this value.
+ __ b(&load_result_from_cache);
+ } else {
+ __ b(not_found);
+ }
+ }
+
+ __ bind(&is_smi);
+ Register scratch = scratch1;
+ __ and_(scratch, mask, Operand(object, ASR, 1));
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ __ add(scratch,
+ number_string_cache,
+ Operand(scratch, LSL, kPointerSizeLog2 + 1));
+
+ // Check if the entry is the smi we are looking for.
+ Register probe = mask;
+ __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+ __ cmp(object, probe);
+ __ b(ne, not_found);
+
+ // Get the result from the cache.
+ __ bind(&load_result_from_cache);
+ __ ldr(result,
+ FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
+ __ IncrementCounter(isolate->counters()->number_to_string_native(),
+ 1,
+ scratch1,
+ scratch2);
+}
+
+
+void NumberToStringStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ __ ldr(r1, MemOperand(sp, 0));
+
+ // Generate code to lookup number in the number string cache.
+ GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
+ __ add(sp, sp, Operand(1 * kPointerSize));
+ __ Ret();
+
+ __ bind(&runtime);
+ // Handle number to string in the runtime system if not found in the cache.
+ __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
+}
+
+
+// On entry lhs_ and rhs_ are the values to be compared.
+// On exit r0 is 0, positive or negative to indicate the result of
+// the comparison.
+void CompareStub::Generate(MacroAssembler* masm) {
+ ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
+ (lhs_.is(r1) && rhs_.is(r0)));
+
+ Label slow; // Call builtin.
+ Label not_smis, both_loaded_as_doubles, lhs_not_nan;
+
+ if (include_smi_compare_) {
+ Label not_two_smis, smi_done;
+ __ orr(r2, r1, r0);
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &not_two_smis);
+ __ mov(r1, Operand(r1, ASR, 1));
+ __ sub(r0, r1, Operand(r0, ASR, 1));
+ __ Ret();
+ __ bind(&not_two_smis);
+ } else if (FLAG_debug_code) {
+ __ orr(r2, r1, r0);
+ __ tst(r2, Operand(kSmiTagMask));
+ __ Assert(ne, "CompareStub: unexpected smi operands.");
+ }
+
+ // NOTICE! This code is only reached after a smi-fast-case check, so
+ // it is certain that at least one operand isn't a smi.
+
+ // Handle the case where the objects are identical. Either returns the answer
+ // or goes to slow. Only falls through if the objects were not identical.
+ EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
+
+ // If either is a Smi (we know that not both are), then they can only
+ // be strictly equal if the other is a HeapNumber.
+ STATIC_ASSERT(kSmiTag == 0);
+ ASSERT_EQ(0, Smi::FromInt(0));
+ __ and_(r2, lhs_, Operand(rhs_));
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &not_smis);
+ // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
+ // 1) Return the answer.
+ // 2) Go to slow.
+ // 3) Fall through to both_loaded_as_doubles.
+ // 4) Jump to lhs_not_nan.
+ // In cases 3 and 4 we have found out we were dealing with a number-number
+ // comparison. If VFP3 is supported the double values of the numbers have
+ // been loaded into d7 and d6. Otherwise, the double values have been loaded
+ // into r0, r1, r2, and r3.
+ EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
+
+ __ bind(&both_loaded_as_doubles);
+ // The arguments have been converted to doubles and stored in d6 and d7, if
+ // VFP3 is supported, or in r0, r1, r2, and r3.
+ Isolate* isolate = masm->isolate();
+ if (CpuFeatures::IsSupported(VFP3)) {
+ __ bind(&lhs_not_nan);
+ CpuFeatures::Scope scope(VFP3);
+ Label no_nan;
+ // ARMv7 VFP3 instructions to implement double precision comparison.
+ __ VFPCompareAndSetFlags(d7, d6);
+ Label nan;
+ __ b(vs, &nan);
+ __ mov(r0, Operand(EQUAL), LeaveCC, eq);
+ __ mov(r0, Operand(LESS), LeaveCC, lt);
+ __ mov(r0, Operand(GREATER), LeaveCC, gt);
+ __ Ret();
+
+ __ bind(&nan);
+ // If one of the sides was a NaN then the v flag is set. Load r0 with
+ // whatever it takes to make the comparison fail, since comparisons with NaN
+ // always fail.
+ if (cc_ == lt || cc_ == le) {
+ __ mov(r0, Operand(GREATER));
+ } else {
+ __ mov(r0, Operand(LESS));
+ }
+ __ Ret();
+ } else {
+ // Checks for NaN in the doubles we have loaded. Can return the answer or
+ // fall through if neither is a NaN. Also binds lhs_not_nan.
+ EmitNanCheck(masm, &lhs_not_nan, cc_);
+ // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
+ // answer. Never falls through.
+ EmitTwoNonNanDoubleComparison(masm, cc_);
+ }
+
+ __ bind(&not_smis);
+ // At this point we know we are dealing with two different objects,
+ // and neither of them is a Smi. The objects are in rhs_ and lhs_.
+ if (strict_) {
+ // This returns non-equal for some object types, or falls through if it
+ // was not lucky.
+ EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
+ }
+
+ Label check_for_symbols;
+ Label flat_string_check;
+ // Check for heap-number-heap-number comparison. Can jump to slow case,
+ // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
+ // that case. If the inputs are not doubles then jumps to check_for_symbols.
+ // In this case r2 will contain the type of rhs_. Never falls through.
+ EmitCheckForTwoHeapNumbers(masm,
+ lhs_,
+ rhs_,
+ &both_loaded_as_doubles,
+ &check_for_symbols,
+ &flat_string_check);
+
+ __ bind(&check_for_symbols);
+ // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
+ // symbols.
+ if (cc_ == eq && !strict_) {
+ // Returns an answer for two symbols or two detectable objects.
+ // Otherwise jumps to string case or not both strings case.
+ // Assumes that r2 is the type of rhs_ on entry.
+ EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
+ }
+
+ // Check for both being sequential ASCII strings, and inline if that is the
+ // case.
+ __ bind(&flat_string_check);
+
+ __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
+
+ __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
+ lhs_,
+ rhs_,
+ r2,
+ r3,
+ r4,
+ r5);
+ // Never falls through to here.
+
+ __ bind(&slow);
+
+ __ Push(lhs_, rhs_);
+ // Figure out which native to call and setup the arguments.
+ Builtins::JavaScript native;
+ if (cc_ == eq) {
+ native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+ } else {
+ native = Builtins::COMPARE;
+ int ncr; // NaN compare result
+ if (cc_ == lt || cc_ == le) {
+ ncr = GREATER;
+ } else {
+ ASSERT(cc_ == gt || cc_ == ge); // remaining cases
+ ncr = LESS;
+ }
+ __ mov(r0, Operand(Smi::FromInt(ncr)));
+ __ push(r0);
+ }
+
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ InvokeBuiltin(native, JUMP_JS);
+}
+
+
+// This stub does not handle the inlined cases (Smis, Booleans, undefined).
+// The stub returns zero for false, and a non-zero value for true.
+void ToBooleanStub::Generate(MacroAssembler* masm) {
+ // This stub uses VFP3 instructions.
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+
+ Label false_result;
+ Label not_heap_number;
+ Register scratch = r9.is(tos_) ? r7 : r9;
+
+ __ LoadRoot(ip, Heap::kNullValueRootIndex);
+ __ cmp(tos_, ip);
+ __ b(eq, &false_result);
+
+ // HeapNumber => false iff +0, -0, or NaN.
+ __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+ __ cmp(scratch, ip);
+ __ b(&not_heap_number, ne);
+
+ __ sub(ip, tos_, Operand(kHeapObjectTag));
+ __ vldr(d1, ip, HeapNumber::kValueOffset);
+ __ VFPCompareAndSetFlags(d1, 0.0);
+ // "tos_" is a register, and contains a non zero value by default.
+ // Hence we only need to overwrite "tos_" with zero to return false for
+ // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
+ __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO
+ __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN
+ __ Ret();
+
+ __ bind(&not_heap_number);
+
+ // Check if the value is 'null'.
+ // 'null' => false.
+ __ LoadRoot(ip, Heap::kNullValueRootIndex);
+ __ cmp(tos_, ip);
+ __ b(&false_result, eq);
+
+ // It can be an undetectable object.
+ // Undetectable => false.
+ __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset));
+ __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable));
+ __ cmp(scratch, Operand(1 << Map::kIsUndetectable));
+ __ b(&false_result, eq);
+
+ // JavaScript object => true.
+ __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE));
+ // "tos_" is a register and contains a non-zero value.
+ // Hence we implicitly return true if the greater than
+ // condition is satisfied.
+ __ Ret(gt);
+
+ // Check for string
+ __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE));
+ // "tos_" is a register and contains a non-zero value.
+ // Hence we implicitly return true if the greater than
+ // condition is satisfied.
+ __ Ret(gt);
+
+ // String value => false iff empty, i.e., length is zero
+ __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset));
+ // If length is zero, "tos_" contains zero ==> false.
+ // If length is not zero, "tos_" contains a non-zero value ==> true.
+ __ Ret();
+
+ // Return 0 in "tos_" for false .
+ __ bind(&false_result);
+ __ mov(tos_, Operand(0, RelocInfo::NONE));
+ __ Ret();
+}
+
+
+// We fall into this code if the operands were Smis, but the result was
+// not (eg. overflow). We branch into this code (to the not_smi label) if
+// the operands were not both Smi. The operands are in r0 and r1. In order
+// to call the C-implemented binary fp operation routines we need to end up
+// with the double precision floating point operands in r0 and r1 (for the
+// value in r1) and r2 and r3 (for the value in r0).
+void GenericBinaryOpStub::HandleBinaryOpSlowCases(
+ MacroAssembler* masm,
+ Label* not_smi,
+ Register lhs,
+ Register rhs,
+ const Builtins::JavaScript& builtin) {
+ Label slow, slow_reverse, do_the_call;
+ bool use_fp_registers =
+ CpuFeatures::IsSupported(VFP3) &&
+ Token::MOD != op_;
+
+ ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)));
+ Register heap_number_map = r6;
+
+ if (ShouldGenerateSmiCode()) {
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ // Smi-smi case (overflow).
+ // Since both are Smis there is no heap number to overwrite, so allocate.
+ // The new heap number is in r5. r3 and r7 are scratch.
+ __ AllocateHeapNumber(
+ r5, r3, r7, heap_number_map, lhs.is(r0) ? &slow_reverse : &slow);
+
+ // If we have floating point hardware, inline ADD, SUB, MUL, and DIV,
+ // using registers d7 and d6 for the double values.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ mov(r7, Operand(rhs, ASR, kSmiTagSize));
+ __ vmov(s15, r7);
+ __ vcvt_f64_s32(d7, s15);
+ __ mov(r7, Operand(lhs, ASR, kSmiTagSize));
+ __ vmov(s13, r7);
+ __ vcvt_f64_s32(d6, s13);
+ if (!use_fp_registers) {
+ __ vmov(r2, r3, d7);
+ __ vmov(r0, r1, d6);
+ }
+ } else {
+ // Write Smi from rhs to r3 and r2 in double format. r9 is scratch.
+ __ mov(r7, Operand(rhs));
+ ConvertToDoubleStub stub1(r3, r2, r7, r9);
+ __ push(lr);
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
+ // Write Smi from lhs to r1 and r0 in double format. r9 is scratch.
+ __ mov(r7, Operand(lhs));
+ ConvertToDoubleStub stub2(r1, r0, r7, r9);
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+ __ jmp(&do_the_call); // Tail call. No return.
+ }
+
+ // We branch here if at least one of r0 and r1 is not a Smi.
+ __ bind(not_smi);
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ // After this point we have the left hand side in r1 and the right hand side
+ // in r0.
+ if (lhs.is(r0)) {
+ __ Swap(r0, r1, ip);
+ }
+
+ // The type transition also calculates the answer.
+ bool generate_code_to_calculate_answer = true;
+
+ if (ShouldGenerateFPCode()) {
+ // DIV has neither SmiSmi fast code nor specialized slow code.
+ // So don't try to patch a DIV Stub.
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT) {
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ GenerateTypeTransition(masm); // Tail call.
+ generate_code_to_calculate_answer = false;
+ break;
+
+ case Token::DIV:
+ // DIV has neither SmiSmi fast code nor specialized slow code.
+ // So don't try to patch a DIV Stub.
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (generate_code_to_calculate_answer) {
+ Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
+ if (mode_ == NO_OVERWRITE) {
+ // In the case where there is no chance of an overwritable float we may
+ // as well do the allocation immediately while r0 and r1 are untouched.
+ __ AllocateHeapNumber(r5, r3, r7, heap_number_map, &slow);
+ }
+
+ // Move r0 to a double in r2-r3.
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
+ __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r4, heap_number_map);
+ __ b(ne, &slow);
+ if (mode_ == OVERWRITE_RIGHT) {
+ __ mov(r5, Operand(r0)); // Overwrite this heap number.
+ }
+ if (use_fp_registers) {
+ CpuFeatures::Scope scope(VFP3);
+ // Load the double from tagged HeapNumber r0 to d7.
+ __ sub(r7, r0, Operand(kHeapObjectTag));
+ __ vldr(d7, r7, HeapNumber::kValueOffset);
+ } else {
+ // Calling convention says that second double is in r2 and r3.
+ __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ }
+ __ jmp(&finished_loading_r0);
+ __ bind(&r0_is_smi);
+ if (mode_ == OVERWRITE_RIGHT) {
+ // We can't overwrite a Smi so get address of new heap number into r5.
+ __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
+ }
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Convert smi in r0 to double in d7.
+ __ mov(r7, Operand(r0, ASR, kSmiTagSize));
+ __ vmov(s15, r7);
+ __ vcvt_f64_s32(d7, s15);
+ if (!use_fp_registers) {
+ __ vmov(r2, r3, d7);
+ }
+ } else {
+ // Write Smi from r0 to r3 and r2 in double format.
+ __ mov(r7, Operand(r0));
+ ConvertToDoubleStub stub3(r3, r2, r7, r4);
+ __ push(lr);
+ __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+
+ // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis.
+ // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC.
+ Label r1_is_not_smi;
+ if ((runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) &&
+ HasSmiSmiFastPath()) {
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(ne, &r1_is_not_smi);
+ GenerateTypeTransition(masm); // Tail call.
+ }
+
+ __ bind(&finished_loading_r0);
+
+ // Move r1 to a double in r0-r1.
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
+ __ bind(&r1_is_not_smi);
+ __ ldr(r4, FieldMemOperand(r1, HeapNumber::kMapOffset));
+ __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r4, heap_number_map);
+ __ b(ne, &slow);
+ if (mode_ == OVERWRITE_LEFT) {
+ __ mov(r5, Operand(r1)); // Overwrite this heap number.
+ }
+ if (use_fp_registers) {
+ CpuFeatures::Scope scope(VFP3);
+ // Load the double from tagged HeapNumber r1 to d6.
+ __ sub(r7, r1, Operand(kHeapObjectTag));
+ __ vldr(d6, r7, HeapNumber::kValueOffset);
+ } else {
+ // Calling convention says that first double is in r0 and r1.
+ __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset));
+ }
+ __ jmp(&finished_loading_r1);
+ __ bind(&r1_is_smi);
+ if (mode_ == OVERWRITE_LEFT) {
+ // We can't overwrite a Smi so get address of new heap number into r5.
+ __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
+ }
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Convert smi in r1 to double in d6.
+ __ mov(r7, Operand(r1, ASR, kSmiTagSize));
+ __ vmov(s13, r7);
+ __ vcvt_f64_s32(d6, s13);
+ if (!use_fp_registers) {
+ __ vmov(r0, r1, d6);
+ }
+ } else {
+ // Write Smi from r1 to r1 and r0 in double format.
+ __ mov(r7, Operand(r1));
+ ConvertToDoubleStub stub4(r1, r0, r7, r9);
+ __ push(lr);
+ __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+
+ __ bind(&finished_loading_r1);
+ }
+
+ if (generate_code_to_calculate_answer || do_the_call.is_linked()) {
+ __ bind(&do_the_call);
+ // If we are inlining the operation using VFP3 instructions for
+ // add, subtract, multiply, or divide, the arguments are in d6 and d7.
+ if (use_fp_registers) {
+ CpuFeatures::Scope scope(VFP3);
+ // ARMv7 VFP3 instructions to implement
+ // double precision, add, subtract, multiply, divide.
+
+ if (Token::MUL == op_) {
+ __ vmul(d5, d6, d7);
+ } else if (Token::DIV == op_) {
+ __ vdiv(d5, d6, d7);
+ } else if (Token::ADD == op_) {
+ __ vadd(d5, d6, d7);
+ } else if (Token::SUB == op_) {
+ __ vsub(d5, d6, d7);
+ } else {
+ UNREACHABLE();
+ }
+ __ sub(r0, r5, Operand(kHeapObjectTag));
+ __ vstr(d5, r0, HeapNumber::kValueOffset);
+ __ add(r0, r0, Operand(kHeapObjectTag));
+ __ Ret();
+ } else {
+ // If we did not inline the operation, then the arguments are in:
+ // r0: Left value (least significant part of mantissa).
+ // r1: Left value (sign, exponent, top of mantissa).
+ // r2: Right value (least significant part of mantissa).
+ // r3: Right value (sign, exponent, top of mantissa).
+ // r5: Address of heap number for result.
+
+ __ push(lr); // For later.
+ __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments.
+ // Call C routine that may not cause GC or other trouble. r5 is callee
+ // save.
+ __ CallCFunction(
+ ExternalReference::double_fp_operation(op_, masm->isolate()), 4);
+ // Store answer in the overwritable heap number.
+ #if !defined(USE_ARM_EABI)
+ // Double returned in fp coprocessor register 0 and 1, encoded as
+ // register cr8. Offsets must be divisible by 4 for coprocessor so we
+ // need to substract the tag from r5.
+ __ sub(r4, r5, Operand(kHeapObjectTag));
+ __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset));
+ #else
+ // Double returned in registers 0 and 1.
+ __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset));
+ #endif
+ __ mov(r0, Operand(r5));
+ // And we are done.
+ __ pop(pc);
+ }
+ }
+ }
+
+ if (!generate_code_to_calculate_answer &&
+ !slow_reverse.is_linked() &&
+ !slow.is_linked()) {
+ return;
+ }
+
+ if (lhs.is(r0)) {
+ __ b(&slow);
+ __ bind(&slow_reverse);
+ __ Swap(r0, r1, ip);
+ }
+
+ heap_number_map = no_reg; // Don't use this any more from here on.
+
+ // We jump to here if something goes wrong (one param is not a number of any
+ // sort or new-space allocation fails).
+ __ bind(&slow);
+
+ // Push arguments to the stack
+ __ Push(r1, r0);
+
+ if (Token::ADD == op_) {
+ // Test for string arguments before calling runtime.
+ // r1 : first argument
+ // r0 : second argument
+ // sp[0] : second argument
+ // sp[4] : first argument
+
+ Label not_strings, not_string1, string1, string1_smi2;
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(eq, &not_string1);
+ __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
+ __ b(ge, &not_string1);
+
+ // First argument is a a string, test second.
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &string1_smi2);
+ __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
+ __ b(ge, &string1);
+
+ // First and second argument are strings.
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
+ __ TailCallStub(&string_add_stub);
+
+ __ bind(&string1_smi2);
+ // First argument is a string, second is a smi. Try to lookup the number
+ // string for the smi in the number string cache.
+ NumberToStringStub::GenerateLookupNumberStringCache(
+ masm, r0, r2, r4, r5, r6, true, &string1);
+
+ // Replace second argument on stack and tailcall string add stub to make
+ // the result.
+ __ str(r2, MemOperand(sp, 0));
+ __ TailCallStub(&string_add_stub);
+
+ // Only first argument is a string.
+ __ bind(&string1);
+ __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS);
+
+ // First argument was not a string, test second.
+ __ bind(&not_string1);
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &not_strings);
+ __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
+ __ b(ge, &not_strings);
+
+ // Only second argument is a string.
+ __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS);
+
+ __ bind(&not_strings);
+ }
+
+ __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
+}
+
+
+// For bitwise ops where the inputs are not both Smis we here try to determine
+// whether both inputs are either Smis or at least heap numbers that can be
+// represented by a 32 bit signed value. We truncate towards zero as required
+// by the ES spec. If this is the case we do the bitwise op and see if the
+// result is a Smi. If so, great, otherwise we try to find a heap number to
+// write the answer into (either by allocating or by overwriting).
+// On entry the operands are in lhs and rhs. On exit the answer is in r0.
+void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm,
+ Register lhs,
+ Register rhs) {
+ Label slow, result_not_a_smi;
+ Label rhs_is_smi, lhs_is_smi;
+ Label done_checking_rhs, done_checking_lhs;
+
+ Register heap_number_map = r6;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ __ tst(lhs, Operand(kSmiTagMask));
+ __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number.
+ __ ldr(r4, FieldMemOperand(lhs, HeapNumber::kMapOffset));
+ __ cmp(r4, heap_number_map);
+ __ b(ne, &slow);
+ __ ConvertToInt32(lhs, r3, r5, r4, d0, &slow);
+ __ jmp(&done_checking_lhs);
+ __ bind(&lhs_is_smi);
+ __ mov(r3, Operand(lhs, ASR, 1));
+ __ bind(&done_checking_lhs);
+
+ __ tst(rhs, Operand(kSmiTagMask));
+ __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number.
+ __ ldr(r4, FieldMemOperand(rhs, HeapNumber::kMapOffset));
+ __ cmp(r4, heap_number_map);
+ __ b(ne, &slow);
+ __ ConvertToInt32(rhs, r2, r5, r4, d0, &slow);
+ __ jmp(&done_checking_rhs);
+ __ bind(&rhs_is_smi);
+ __ mov(r2, Operand(rhs, ASR, 1));
+ __ bind(&done_checking_rhs);
+
+ ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))));
+
+ // r0 and r1: Original operands (Smi or heap numbers).
+ // r2 and r3: Signed int32 operands.
+ switch (op_) {
+ case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
+ case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
+ case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
+ case Token::SAR:
+ // Use only the 5 least significant bits of the shift count.
+ __ and_(r2, r2, Operand(0x1f));
+ __ mov(r2, Operand(r3, ASR, r2));
+ break;
+ case Token::SHR:
+ // Use only the 5 least significant bits of the shift count.
+ __ and_(r2, r2, Operand(0x1f));
+ __ mov(r2, Operand(r3, LSR, r2), SetCC);
+ // SHR is special because it is required to produce a positive answer.
+ // The code below for writing into heap numbers isn't capable of writing
+ // the register as an unsigned int so we go to slow case if we hit this
+ // case.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ __ b(mi, &result_not_a_smi);
+ } else {
+ __ b(mi, &slow);
+ }
+ break;
+ case Token::SHL:
+ // Use only the 5 least significant bits of the shift count.
+ __ and_(r2, r2, Operand(0x1f));
+ __ mov(r2, Operand(r3, LSL, r2));
+ break;
+ default: UNREACHABLE();
+ }
+ // check that the *signed* result fits in a smi
+ __ add(r3, r2, Operand(0x40000000), SetCC);
+ __ b(mi, &result_not_a_smi);
+ __ mov(r0, Operand(r2, LSL, kSmiTagSize));
+ __ Ret();
+
+ Label have_to_allocate, got_a_heap_number;
+ __ bind(&result_not_a_smi);
+ switch (mode_) {
+ case OVERWRITE_RIGHT: {
+ __ tst(rhs, Operand(kSmiTagMask));
+ __ b(eq, &have_to_allocate);
+ __ mov(r5, Operand(rhs));
+ break;
+ }
+ case OVERWRITE_LEFT: {
+ __ tst(lhs, Operand(kSmiTagMask));
+ __ b(eq, &have_to_allocate);
+ __ mov(r5, Operand(lhs));
+ break;
+ }
+ case NO_OVERWRITE: {
+ // Get a new heap number in r5. r4 and r7 are scratch.
+ __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
+ }
+ default: break;
+ }
+ __ bind(&got_a_heap_number);
+ // r2: Answer as signed int32.
+ // r5: Heap number to write answer into.
+
+ // Nothing can go wrong now, so move the heap number to r0, which is the
+ // result.
+ __ mov(r0, Operand(r5));
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ // Convert the int32 in r2 to the heap number in r0. r3 is corrupted.
+ CpuFeatures::Scope scope(VFP3);
+ __ vmov(s0, r2);
+ if (op_ == Token::SHR) {
+ __ vcvt_f64_u32(d0, s0);
+ } else {
+ __ vcvt_f64_s32(d0, s0);
+ }
+ __ sub(r3, r0, Operand(kHeapObjectTag));
+ __ vstr(d0, r3, HeapNumber::kValueOffset);
+ __ Ret();
+ } else {
+ // Tail call that writes the int32 in r2 to the heap number in r0, using
+ // r3 as scratch. r0 is preserved and returned.
+ WriteInt32ToHeapNumberStub stub(r2, r0, r3);
+ __ TailCallStub(&stub);
+ }
+
+ if (mode_ != NO_OVERWRITE) {
+ __ bind(&have_to_allocate);
+ // Get a new heap number in r5. r4 and r7 are scratch.
+ __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
+ __ jmp(&got_a_heap_number);
+ }
+
+ // If all else failed then we go to the runtime system.
+ __ bind(&slow);
+ __ Push(lhs, rhs); // Restore stack.
+ switch (op_) {
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+
+
+// This function takes the known int in a register for the cases
+// where it doesn't know a good trick, and may deliver
+// a result that needs shifting.
+static void MultiplyByKnownIntInStub(
+ MacroAssembler* masm,
+ Register result,
+ Register source,
+ Register known_int_register, // Smi tagged.
+ int known_int,
+ int* required_shift) { // Including Smi tag shift
+ switch (known_int) {
+ case 3:
+ __ add(result, source, Operand(source, LSL, 1));
+ *required_shift = 1;
+ break;
+ case 5:
+ __ add(result, source, Operand(source, LSL, 2));
+ *required_shift = 1;
+ break;
+ case 6:
+ __ add(result, source, Operand(source, LSL, 1));
+ *required_shift = 2;
+ break;
+ case 7:
+ __ rsb(result, source, Operand(source, LSL, 3));
+ *required_shift = 1;
+ break;
+ case 9:
+ __ add(result, source, Operand(source, LSL, 3));
+ *required_shift = 1;
+ break;
+ case 10:
+ __ add(result, source, Operand(source, LSL, 2));
+ *required_shift = 2;
+ break;
+ default:
+ ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
+ __ mul(result, source, known_int_register);
+ *required_shift = 0;
+ }
+}
+
+
+// This uses versions of the sum-of-digits-to-see-if-a-number-is-divisible-by-3
+// trick. See http://en.wikipedia.org/wiki/Divisibility_rule
+// Takes the sum of the digits base (mask + 1) repeatedly until we have a
+// number from 0 to mask. On exit the 'eq' condition flags are set if the
+// answer is exactly the mask.
+void IntegerModStub::DigitSum(MacroAssembler* masm,
+ Register lhs,
+ int mask,
+ int shift,
+ Label* entry) {
+ ASSERT(mask > 0);
+ ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
+ Label loop;
+ __ bind(&loop);
+ __ and_(ip, lhs, Operand(mask));
+ __ add(lhs, ip, Operand(lhs, LSR, shift));
+ __ bind(entry);
+ __ cmp(lhs, Operand(mask));
+ __ b(gt, &loop);
+}
+
+
+void IntegerModStub::DigitSum(MacroAssembler* masm,
+ Register lhs,
+ Register scratch,
+ int mask,
+ int shift1,
+ int shift2,
+ Label* entry) {
+ ASSERT(mask > 0);
+ ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
+ Label loop;
+ __ bind(&loop);
+ __ bic(scratch, lhs, Operand(mask));
+ __ and_(ip, lhs, Operand(mask));
+ __ add(lhs, ip, Operand(lhs, LSR, shift1));
+ __ add(lhs, lhs, Operand(scratch, LSR, shift2));
+ __ bind(entry);
+ __ cmp(lhs, Operand(mask));
+ __ b(gt, &loop);
+}
+
+
+// Splits the number into two halves (bottom half has shift bits). The top
+// half is subtracted from the bottom half. If the result is negative then
+// rhs is added.
+void IntegerModStub::ModGetInRangeBySubtraction(MacroAssembler* masm,
+ Register lhs,
+ int shift,
+ int rhs) {
+ int mask = (1 << shift) - 1;
+ __ and_(ip, lhs, Operand(mask));
+ __ sub(lhs, ip, Operand(lhs, LSR, shift), SetCC);
+ __ add(lhs, lhs, Operand(rhs), LeaveCC, mi);
+}
+
+
+void IntegerModStub::ModReduce(MacroAssembler* masm,
+ Register lhs,
+ int max,
+ int denominator) {
+ int limit = denominator;
+ while (limit * 2 <= max) limit *= 2;
+ while (limit >= denominator) {
+ __ cmp(lhs, Operand(limit));
+ __ sub(lhs, lhs, Operand(limit), LeaveCC, ge);
+ limit >>= 1;
+ }
+}
+
+
+void IntegerModStub::ModAnswer(MacroAssembler* masm,
+ Register result,
+ Register shift_distance,
+ Register mask_bits,
+ Register sum_of_digits) {
+ __ add(result, mask_bits, Operand(sum_of_digits, LSL, shift_distance));
+ __ Ret();
+}
+
+
+// See comment for class.
+void IntegerModStub::Generate(MacroAssembler* masm) {
+ __ mov(lhs_, Operand(lhs_, LSR, shift_distance_));
+ __ bic(odd_number_, odd_number_, Operand(1));
+ __ mov(odd_number_, Operand(odd_number_, LSL, 1));
+ // We now have (odd_number_ - 1) * 2 in the register.
+ // Build a switch out of branches instead of data because it avoids
+ // having to teach the assembler about intra-code-object pointers
+ // that are not in relative branch instructions.
+ Label mod3, mod5, mod7, mod9, mod11, mod13, mod15, mod17, mod19;
+ Label mod21, mod23, mod25;
+ { Assembler::BlockConstPoolScope block_const_pool(masm);
+ __ add(pc, pc, Operand(odd_number_));
+ // When you read pc it is always 8 ahead, but when you write it you always
+ // write the actual value. So we put in two nops to take up the slack.
+ __ nop();
+ __ nop();
+ __ b(&mod3);
+ __ b(&mod5);
+ __ b(&mod7);
+ __ b(&mod9);
+ __ b(&mod11);
+ __ b(&mod13);
+ __ b(&mod15);
+ __ b(&mod17);
+ __ b(&mod19);
+ __ b(&mod21);
+ __ b(&mod23);
+ __ b(&mod25);
+ }
+
+ // For each denominator we find a multiple that is almost only ones
+ // when expressed in binary. Then we do the sum-of-digits trick for
+ // that number. If the multiple is not 1 then we have to do a little
+ // more work afterwards to get the answer into the 0-denominator-1
+ // range.
+ DigitSum(masm, lhs_, 3, 2, &mod3); // 3 = b11.
+ __ sub(lhs_, lhs_, Operand(3), LeaveCC, eq);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, 0xf, 4, &mod5); // 5 * 3 = b1111.
+ ModGetInRangeBySubtraction(masm, lhs_, 2, 5);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, 7, 3, &mod7); // 7 = b111.
+ __ sub(lhs_, lhs_, Operand(7), LeaveCC, eq);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, 0x3f, 6, &mod9); // 7 * 9 = b111111.
+ ModGetInRangeBySubtraction(masm, lhs_, 3, 9);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, r5, 0x3f, 6, 3, &mod11); // 5 * 11 = b110111.
+ ModReduce(masm, lhs_, 0x3f, 11);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod13); // 19 * 13 = b11110111.
+ ModReduce(masm, lhs_, 0xff, 13);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, 0xf, 4, &mod15); // 15 = b1111.
+ __ sub(lhs_, lhs_, Operand(15), LeaveCC, eq);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, 0xff, 8, &mod17); // 15 * 17 = b11111111.
+ ModGetInRangeBySubtraction(masm, lhs_, 4, 17);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod19); // 13 * 19 = b11110111.
+ ModReduce(masm, lhs_, 0xff, 19);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, 0x3f, 6, &mod21); // 3 * 21 = b111111.
+ ModReduce(masm, lhs_, 0x3f, 21);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, r5, 0xff, 8, 7, &mod23); // 11 * 23 = b11111101.
+ ModReduce(masm, lhs_, 0xff, 23);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+
+ DigitSum(masm, lhs_, r5, 0x7f, 7, 6, &mod25); // 5 * 25 = b1111101.
+ ModReduce(masm, lhs_, 0x7f, 25);
+ ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
+}
+
+
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
+ // lhs_ : x
+ // rhs_ : y
+ // r0 : result
+
+ Register result = r0;
+ Register lhs = lhs_;
+ Register rhs = rhs_;
+
+ // This code can't cope with other register allocations yet.
+ ASSERT(result.is(r0) &&
+ ((lhs.is(r0) && rhs.is(r1)) ||
+ (lhs.is(r1) && rhs.is(r0))));
+
+ Register smi_test_reg = r7;
+ Register scratch = r9;
+
+ // All ops need to know whether we are dealing with two Smis. Set up
+ // smi_test_reg to tell us that.
+ if (ShouldGenerateSmiCode()) {
+ __ orr(smi_test_reg, lhs, Operand(rhs));
+ }
+
+ switch (op_) {
+ case Token::ADD: {
+ Label not_smi;
+ // Fast path.
+ if (ShouldGenerateSmiCode()) {
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
+ __ tst(smi_test_reg, Operand(kSmiTagMask));
+ __ b(ne, &not_smi);
+ __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
+ // Return if no overflow.
+ __ Ret(vc);
+ __ sub(r0, r0, Operand(r1)); // Revert optimistic add.
+ }
+ HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::ADD);
+ break;
+ }
+
+ case Token::SUB: {
+ Label not_smi;
+ // Fast path.
+ if (ShouldGenerateSmiCode()) {
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
+ __ tst(smi_test_reg, Operand(kSmiTagMask));
+ __ b(ne, &not_smi);
+ if (lhs.is(r1)) {
+ __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
+ // Return if no overflow.
+ __ Ret(vc);
+ __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
+ } else {
+ __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically.
+ // Return if no overflow.
+ __ Ret(vc);
+ __ add(r0, r0, Operand(r1)); // Revert optimistic subtract.
+ }
+ }
+ HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::SUB);
+ break;
+ }
+
+ case Token::MUL: {
+ Label not_smi, slow;
+ if (ShouldGenerateSmiCode()) {
+ STATIC_ASSERT(kSmiTag == 0); // adjust code below
+ __ tst(smi_test_reg, Operand(kSmiTagMask));
+ Register scratch2 = smi_test_reg;
+ smi_test_reg = no_reg;
+ __ b(ne, &not_smi);
+ // Remove tag from one operand (but keep sign), so that result is Smi.
+ __ mov(ip, Operand(rhs, ASR, kSmiTagSize));
+ // Do multiplication
+ // scratch = lower 32 bits of ip * lhs.
+ __ smull(scratch, scratch2, lhs, ip);
+ // Go slow on overflows (overflow bit is not set).
+ __ mov(ip, Operand(scratch, ASR, 31));
+ // No overflow if higher 33 bits are identical.
+ __ cmp(ip, Operand(scratch2));
+ __ b(ne, &slow);
+ // Go slow on zero result to handle -0.
+ __ tst(scratch, Operand(scratch));
+ __ mov(result, Operand(scratch), LeaveCC, ne);
+ __ Ret(ne);
+ // We need -0 if we were multiplying a negative number with 0 to get 0.
+ // We know one of them was zero.
+ __ add(scratch2, rhs, Operand(lhs), SetCC);
+ __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl);
+ __ Ret(pl); // Return Smi 0 if the non-zero one was positive.
+ // Slow case. We fall through here if we multiplied a negative number
+ // with 0, because that would mean we should produce -0.
+ __ bind(&slow);
+ }
+ HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::MUL);
+ break;
+ }
+
+ case Token::DIV:
+ case Token::MOD: {
+ Label not_smi;
+ if (ShouldGenerateSmiCode() && specialized_on_rhs_) {
+ Label lhs_is_unsuitable;
+ __ JumpIfNotSmi(lhs, &not_smi);
+ if (IsPowerOf2(constant_rhs_)) {
+ if (op_ == Token::MOD) {
+ __ and_(rhs,
+ lhs,
+ Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
+ SetCC);
+ // We now have the answer, but if the input was negative we also
+ // have the sign bit. Our work is done if the result is
+ // positive or zero:
+ if (!rhs.is(r0)) {
+ __ mov(r0, rhs, LeaveCC, pl);
+ }
+ __ Ret(pl);
+ // A mod of a negative left hand side must return a negative number.
+ // Unfortunately if the answer is 0 then we must return -0. And we
+ // already optimistically trashed rhs so we may need to restore it.
+ __ eor(rhs, rhs, Operand(0x80000000u), SetCC);
+ // Next two instructions are conditional on the answer being -0.
+ __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
+ __ b(eq, &lhs_is_unsuitable);
+ // We need to subtract the dividend. Eg. -3 % 4 == -3.
+ __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_)));
+ } else {
+ ASSERT(op_ == Token::DIV);
+ __ tst(lhs,
+ Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
+ __ b(ne, &lhs_is_unsuitable); // Go slow on negative or remainder.
+ int shift = 0;
+ int d = constant_rhs_;
+ while ((d & 1) == 0) {
+ d >>= 1;
+ shift++;
+ }
+ __ mov(r0, Operand(lhs, LSR, shift));
+ __ bic(r0, r0, Operand(kSmiTagMask));
+ }
+ } else {
+ // Not a power of 2.
+ __ tst(lhs, Operand(0x80000000u));
+ __ b(ne, &lhs_is_unsuitable);
+ // Find a fixed point reciprocal of the divisor so we can divide by
+ // multiplying.
+ double divisor = 1.0 / constant_rhs_;
+ int shift = 32;
+ double scale = 4294967296.0; // 1 << 32.
+ uint32_t mul;
+ // Maximise the precision of the fixed point reciprocal.
+ while (true) {
+ mul = static_cast<uint32_t>(scale * divisor);
+ if (mul >= 0x7fffffff) break;
+ scale *= 2.0;
+ shift++;
+ }
+ mul++;
+ Register scratch2 = smi_test_reg;
+ smi_test_reg = no_reg;
+ __ mov(scratch2, Operand(mul));
+ __ umull(scratch, scratch2, scratch2, lhs);
+ __ mov(scratch2, Operand(scratch2, LSR, shift - 31));
+ // scratch2 is lhs / rhs. scratch2 is not Smi tagged.
+ // rhs is still the known rhs. rhs is Smi tagged.
+ // lhs is still the unkown lhs. lhs is Smi tagged.
+ int required_scratch_shift = 0; // Including the Smi tag shift of 1.
+ // scratch = scratch2 * rhs.
+ MultiplyByKnownIntInStub(masm,
+ scratch,
+ scratch2,
+ rhs,
+ constant_rhs_,
+ &required_scratch_shift);
+ // scratch << required_scratch_shift is now the Smi tagged rhs *
+ // (lhs / rhs) where / indicates integer division.
+ if (op_ == Token::DIV) {
+ __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift));
+ __ b(ne, &lhs_is_unsuitable); // There was a remainder.
+ __ mov(result, Operand(scratch2, LSL, kSmiTagSize));
+ } else {
+ ASSERT(op_ == Token::MOD);
+ __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift));
+ }
+ }
+ __ Ret();
+ __ bind(&lhs_is_unsuitable);
+ } else if (op_ == Token::MOD &&
+ runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
+ runtime_operands_type_ != BinaryOpIC::STRINGS) {
+ // Do generate a bit of smi code for modulus even though the default for
+ // modulus is not to do it, but as the ARM processor has no coprocessor
+ // support for modulus checking for smis makes sense. We can handle
+ // 1 to 25 times any power of 2. This covers over half the numbers from
+ // 1 to 100 including all of the first 25. (Actually the constants < 10
+ // are handled above by reciprocal multiplication. We only get here for
+ // those cases if the right hand side is not a constant or for cases
+ // like 192 which is 3*2^6 and ends up in the 3 case in the integer mod
+ // stub.)
+ Label slow;
+ Label not_power_of_2;
+ ASSERT(!ShouldGenerateSmiCode());
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
+ // Check for two positive smis.
+ __ orr(smi_test_reg, lhs, Operand(rhs));
+ __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask));
+ __ b(ne, &slow);
+ // Check that rhs is a power of two and not zero.
+ Register mask_bits = r3;
+ __ sub(scratch, rhs, Operand(1), SetCC);
+ __ b(mi, &slow);
+ __ and_(mask_bits, rhs, Operand(scratch), SetCC);
+ __ b(ne, &not_power_of_2);
+ // Calculate power of two modulus.
+ __ and_(result, lhs, Operand(scratch));
+ __ Ret();
+
+ __ bind(&not_power_of_2);
+ __ eor(scratch, scratch, Operand(mask_bits));
+ // At least two bits are set in the modulus. The high one(s) are in
+ // mask_bits and the low one is scratch + 1.
+ __ and_(mask_bits, scratch, Operand(lhs));
+ Register shift_distance = scratch;
+ scratch = no_reg;
+
+ // The rhs consists of a power of 2 multiplied by some odd number.
+ // The power-of-2 part we handle by putting the corresponding bits
+ // from the lhs in the mask_bits register, and the power in the
+ // shift_distance register. Shift distance is never 0 due to Smi
+ // tagging.
+ __ CountLeadingZeros(r4, shift_distance, shift_distance);
+ __ rsb(shift_distance, r4, Operand(32));
+
+ // Now we need to find out what the odd number is. The last bit is
+ // always 1.
+ Register odd_number = r4;
+ __ mov(odd_number, Operand(rhs, LSR, shift_distance));
+ __ cmp(odd_number, Operand(25));
+ __ b(gt, &slow);
+
+ IntegerModStub stub(
+ result, shift_distance, odd_number, mask_bits, lhs, r5);
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); // Tail call.
+
+ __ bind(&slow);
+ }
+ HandleBinaryOpSlowCases(
+ masm,
+ &not_smi,
+ lhs,
+ rhs,
+ op_ == Token::MOD ? Builtins::MOD : Builtins::DIV);
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHR:
+ case Token::SHL: {
+ Label slow;
+ STATIC_ASSERT(kSmiTag == 0); // adjust code below
+ __ tst(smi_test_reg, Operand(kSmiTagMask));
+ __ b(ne, &slow);
+ Register scratch2 = smi_test_reg;
+ smi_test_reg = no_reg;
+ switch (op_) {
+ case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break;
+ case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break;
+ case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break;
+ case Token::SAR:
+ // Remove tags from right operand.
+ __ GetLeastBitsFromSmi(scratch2, rhs, 5);
+ __ mov(result, Operand(lhs, ASR, scratch2));
+ // Smi tag result.
+ __ bic(result, result, Operand(kSmiTagMask));
+ break;
+ case Token::SHR:
+ // Remove tags from operands. We can't do this on a 31 bit number
+ // because then the 0s get shifted into bit 30 instead of bit 31.
+ __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
+ __ GetLeastBitsFromSmi(scratch2, rhs, 5);
+ __ mov(scratch, Operand(scratch, LSR, scratch2));
+ // Unsigned shift is not allowed to produce a negative number, so
+ // check the sign bit and the sign bit after Smi tagging.
+ __ tst(scratch, Operand(0xc0000000));
+ __ b(ne, &slow);
+ // Smi tag result.
+ __ mov(result, Operand(scratch, LSL, kSmiTagSize));
+ break;
+ case Token::SHL:
+ // Remove tags from operands.
+ __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
+ __ GetLeastBitsFromSmi(scratch2, rhs, 5);
+ __ mov(scratch, Operand(scratch, LSL, scratch2));
+ // Check that the signed result fits in a Smi.
+ __ add(scratch2, scratch, Operand(0x40000000), SetCC);
+ __ b(mi, &slow);
+ __ mov(result, Operand(scratch, LSL, kSmiTagSize));
+ break;
+ default: UNREACHABLE();
+ }
+ __ Ret();
+ __ bind(&slow);
+ HandleNonSmiBitwiseOp(masm, lhs, rhs);
+ break;
+ }
+
+ default: UNREACHABLE();
+ }
+ // This code should be unreachable.
+ __ stop("Unreachable");
+
+ // Generate an unreachable reference to the DEFAULT stub so that it can be
+ // found at the end of this stub when clearing ICs at GC.
+ // TODO(kaznacheev): Check performance impact and get rid of this.
+ if (runtime_operands_type_ != BinaryOpIC::DEFAULT) {
+ GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT);
+ __ CallStub(&uninit);
+ }
+}
+
+
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+ Label get_result;
+
+ __ Push(r1, r0);
+
+ __ mov(r2, Operand(Smi::FromInt(MinorKey())));
+ __ mov(r1, Operand(Smi::FromInt(op_)));
+ __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_)));
+ __ Push(r2, r1, r0);
+
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()),
+ 5,
+ 1);
+}
+
+
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
+ GenericBinaryOpStub stub(key, type_info);
+ return stub.GetCode();
+}
+
+
+Handle<Code> GetTypeRecordingBinaryOpStub(int key,
+ TRBinaryOpIC::TypeInfo type_info,
+ TRBinaryOpIC::TypeInfo result_type_info) {
+ TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
+ return stub.GetCode();
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+ Label get_result;
+
+ __ Push(r1, r0);
+
+ __ mov(r2, Operand(Smi::FromInt(MinorKey())));
+ __ mov(r1, Operand(Smi::FromInt(op_)));
+ __ mov(r0, Operand(Smi::FromInt(operands_type_)));
+ __ Push(r2, r1, r0);
+
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
+ masm->isolate()),
+ 5,
+ 1);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
+ MacroAssembler* masm) {
+ UNIMPLEMENTED();
+}
+
+
+void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
+ switch (operands_type_) {
+ case TRBinaryOpIC::UNINITIALIZED:
+ GenerateTypeTransition(masm);
+ break;
+ case TRBinaryOpIC::SMI:
+ GenerateSmiStub(masm);
+ break;
+ case TRBinaryOpIC::INT32:
+ GenerateInt32Stub(masm);
+ break;
+ case TRBinaryOpIC::HEAP_NUMBER:
+ GenerateHeapNumberStub(masm);
+ break;
+ case TRBinaryOpIC::ODDBALL:
+ GenerateOddballStub(masm);
+ break;
+ case TRBinaryOpIC::STRING:
+ GenerateStringStub(masm);
+ break;
+ case TRBinaryOpIC::GENERIC:
+ GenerateGeneric(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+const char* TypeRecordingBinaryOpStub::GetName() {
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+ const char* op_name = Token::Name(op_);
+ const char* overwrite_name;
+ switch (mode_) {
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break;
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
+ default: overwrite_name = "UnknownOverwrite"; break;
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "TypeRecordingBinaryOpStub_%s_%s_%s",
+ op_name,
+ overwrite_name,
+ TRBinaryOpIC::GetName(operands_type_));
+ return name_;
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation(
+ MacroAssembler* masm) {
+ Register left = r1;
+ Register right = r0;
+ Register scratch1 = r7;
+ Register scratch2 = r9;
+
+ ASSERT(right.is(r0));
+ STATIC_ASSERT(kSmiTag == 0);
+
+ Label not_smi_result;
+ switch (op_) {
+ case Token::ADD:
+ __ add(right, left, Operand(right), SetCC); // Add optimistically.
+ __ Ret(vc);
+ __ sub(right, right, Operand(left)); // Revert optimistic add.
+ break;
+ case Token::SUB:
+ __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
+ __ Ret(vc);
+ __ sub(right, left, Operand(right)); // Revert optimistic subtract.
+ break;
+ case Token::MUL:
+ // Remove tag from one of the operands. This way the multiplication result
+ // will be a smi if it fits the smi range.
+ __ SmiUntag(ip, right);
+ // Do multiplication
+ // scratch1 = lower 32 bits of ip * left.
+ // scratch2 = higher 32 bits of ip * left.
+ __ smull(scratch1, scratch2, left, ip);
+ // Check for overflowing the smi range - no overflow if higher 33 bits of
+ // the result are identical.
+ __ mov(ip, Operand(scratch1, ASR, 31));
+ __ cmp(ip, Operand(scratch2));
+ __ b(ne, &not_smi_result);
+ // Go slow on zero result to handle -0.
+ __ tst(scratch1, Operand(scratch1));
+ __ mov(right, Operand(scratch1), LeaveCC, ne);
+ __ Ret(ne);
+ // We need -0 if we were multiplying a negative number with 0 to get 0.
+ // We know one of them was zero.
+ __ add(scratch2, right, Operand(left), SetCC);
+ __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
+ __ Ret(pl); // Return smi 0 if the non-zero one was positive.
+ // We fall through here if we multiplied a negative number with 0, because
+ // that would mean we should produce -0.
+ break;
+ case Token::DIV:
+ // Check for power of two on the right hand side.
+ __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
+ // Check for positive and no remainder (scratch1 contains right - 1).
+ __ orr(scratch2, scratch1, Operand(0x80000000u));
+ __ tst(left, scratch2);
+ __ b(ne, &not_smi_result);
+
+ // Perform division by shifting.
+ __ CountLeadingZeros(scratch1, scratch1, scratch2);
+ __ rsb(scratch1, scratch1, Operand(31));
+ __ mov(right, Operand(left, LSR, scratch1));
+ __ Ret();
+ break;
+ case Token::MOD:
+ // Check for two positive smis.
+ __ orr(scratch1, left, Operand(right));
+ __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
+ __ b(ne, &not_smi_result);
+
+ // Check for power of two on the right hand side.
+ __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
+
+ // Perform modulus by masking.
+ __ and_(right, left, Operand(scratch1));
+ __ Ret();
+ break;
+ case Token::BIT_OR:
+ __ orr(right, left, Operand(right));
+ __ Ret();
+ break;
+ case Token::BIT_AND:
+ __ and_(right, left, Operand(right));
+ __ Ret();
+ break;
+ case Token::BIT_XOR:
+ __ eor(right, left, Operand(right));
+ __ Ret();
+ break;
+ case Token::SAR:
+ // Remove tags from right operand.
+ __ GetLeastBitsFromSmi(scratch1, right, 5);
+ __ mov(right, Operand(left, ASR, scratch1));
+ // Smi tag result.
+ __ bic(right, right, Operand(kSmiTagMask));
+ __ Ret();
+ break;
+ case Token::SHR:
+ // Remove tags from operands. We can't do this on a 31 bit number
+ // because then the 0s get shifted into bit 30 instead of bit 31.
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ mov(scratch1, Operand(scratch1, LSR, scratch2));
+ // Unsigned shift is not allowed to produce a negative number, so
+ // check the sign bit and the sign bit after Smi tagging.
+ __ tst(scratch1, Operand(0xc0000000));
+ __ b(ne, &not_smi_result);
+ // Smi tag result.
+ __ SmiTag(right, scratch1);
+ __ Ret();
+ break;
+ case Token::SHL:
+ // Remove tags from operands.
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ mov(scratch1, Operand(scratch1, LSL, scratch2));
+ // Check that the signed result fits in a Smi.
+ __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
+ __ b(mi, &not_smi_result);
+ __ SmiTag(right, scratch1);
+ __ Ret();
+ break;
+ default:
+ UNREACHABLE();
+ }
+ __ bind(&not_smi_result);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
+ bool smi_operands,
+ Label* not_numbers,
+ Label* gc_required) {
+ Register left = r1;
+ Register right = r0;
+ Register scratch1 = r7;
+ Register scratch2 = r9;
+ Register scratch3 = r4;
+
+ ASSERT(smi_operands || (not_numbers != NULL));
+ if (smi_operands && FLAG_debug_code) {
+ __ AbortIfNotSmi(left);
+ __ AbortIfNotSmi(right);
+ }
+
+ Register heap_number_map = r6;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD: {
+ // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
+ // depending on whether VFP3 is available or not.
+ FloatingPointHelper::Destination destination =
+ CpuFeatures::IsSupported(VFP3) &&
+ op_ != Token::MOD ?
+ FloatingPointHelper::kVFPRegisters :
+ FloatingPointHelper::kCoreRegisters;
+
+ // Allocate new heap number for result.
+ Register result = r5;
+ GenerateHeapResultAllocation(
+ masm, result, heap_number_map, scratch1, scratch2, gc_required);
+
+ // Load the operands.
+ if (smi_operands) {
+ FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
+ } else {
+ FloatingPointHelper::LoadOperands(masm,
+ destination,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ not_numbers);
+ }
+
+ // Calculate the result.
+ if (destination == FloatingPointHelper::kVFPRegisters) {
+ // Using VFP registers:
+ // d6: Left value
+ // d7: Right value
+ CpuFeatures::Scope scope(VFP3);
+ switch (op_) {
+ case Token::ADD:
+ __ vadd(d5, d6, d7);
+ break;
+ case Token::SUB:
+ __ vsub(d5, d6, d7);
+ break;
+ case Token::MUL:
+ __ vmul(d5, d6, d7);
+ break;
+ case Token::DIV:
+ __ vdiv(d5, d6, d7);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ __ sub(r0, result, Operand(kHeapObjectTag));
+ __ vstr(d5, r0, HeapNumber::kValueOffset);
+ __ add(r0, r0, Operand(kHeapObjectTag));
+ __ Ret();
+ } else {
+ // Call the C function to handle the double operation.
+ FloatingPointHelper::CallCCodeForDoubleOperation(masm,
+ op_,
+ result,
+ scratch1);
+ }
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::SAR:
+ case Token::SHR:
+ case Token::SHL: {
+ if (smi_operands) {
+ __ SmiUntag(r3, left);
+ __ SmiUntag(r2, right);
+ } else {
+ // Convert operands to 32-bit integers. Right in r2 and left in r3.
+ FloatingPointHelper::ConvertNumberToInt32(masm,
+ left,
+ r3,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ d0,
+ not_numbers);
+ FloatingPointHelper::ConvertNumberToInt32(masm,
+ right,
+ r2,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ d0,
+ not_numbers);
+ }
+
+ Label result_not_a_smi;
+ switch (op_) {
+ case Token::BIT_OR:
+ __ orr(r2, r3, Operand(r2));
+ break;
+ case Token::BIT_XOR:
+ __ eor(r2, r3, Operand(r2));
+ break;
+ case Token::BIT_AND:
+ __ and_(r2, r3, Operand(r2));
+ break;
+ case Token::SAR:
+ // Use only the 5 least significant bits of the shift count.
+ __ GetLeastBitsFromInt32(r2, r2, 5);
+ __ mov(r2, Operand(r3, ASR, r2));
+ break;
+ case Token::SHR:
+ // Use only the 5 least significant bits of the shift count.
+ __ GetLeastBitsFromInt32(r2, r2, 5);
+ __ mov(r2, Operand(r3, LSR, r2), SetCC);
+ // SHR is special because it is required to produce a positive answer.
+ // The code below for writing into heap numbers isn't capable of
+ // writing the register as an unsigned int so we go to slow case if we
+ // hit this case.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ __ b(mi, &result_not_a_smi);
+ } else {
+ __ b(mi, not_numbers);
+ }
+ break;
+ case Token::SHL:
+ // Use only the 5 least significant bits of the shift count.
+ __ GetLeastBitsFromInt32(r2, r2, 5);
+ __ mov(r2, Operand(r3, LSL, r2));
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ // Check that the *signed* result fits in a smi.
+ __ add(r3, r2, Operand(0x40000000), SetCC);
+ __ b(mi, &result_not_a_smi);
+ __ SmiTag(r0, r2);
+ __ Ret();
+
+ // Allocate new heap number for result.
+ __ bind(&result_not_a_smi);
+ Register result = r5;
+ if (smi_operands) {
+ __ AllocateHeapNumber(
+ result, scratch1, scratch2, heap_number_map, gc_required);
+ } else {
+ GenerateHeapResultAllocation(
+ masm, result, heap_number_map, scratch1, scratch2, gc_required);
+ }
+
+ // r2: Answer as signed int32.
+ // r5: Heap number to write answer into.
+
+ // Nothing can go wrong now, so move the heap number to r0, which is the
+ // result.
+ __ mov(r0, Operand(r5));
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
+ // mentioned above SHR needs to always produce a positive result.
+ CpuFeatures::Scope scope(VFP3);
+ __ vmov(s0, r2);
+ if (op_ == Token::SHR) {
+ __ vcvt_f64_u32(d0, s0);
+ } else {
+ __ vcvt_f64_s32(d0, s0);
+ }
+ __ sub(r3, r0, Operand(kHeapObjectTag));
+ __ vstr(d0, r3, HeapNumber::kValueOffset);
+ __ Ret();
+ } else {
+ // Tail call that writes the int32 in r2 to the heap number in r0, using
+ // r3 as scratch. r0 is preserved and returned.
+ WriteInt32ToHeapNumberStub stub(r2, r0, r3);
+ __ TailCallStub(&stub);
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+// Generate the smi code. If the operation on smis are successful this return is
+// generated. If the result is not a smi and heap number allocation is not
+// requested the code falls through. If number allocation is requested but a
+// heap number cannot be allocated the code jumps to the lable gc_required.
+void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
+ Label* gc_required,
+ SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
+ Label not_smis;
+
+ Register left = r1;
+ Register right = r0;
+ Register scratch1 = r7;
+ Register scratch2 = r9;
+
+ // Perform combined smi check on both operands.
+ __ orr(scratch1, left, Operand(right));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ tst(scratch1, Operand(kSmiTagMask));
+ __ b(ne, &not_smis);
+
+ // If the smi-smi operation results in a smi return is generated.
+ GenerateSmiSmiOperation(masm);
+
+ // If heap number results are possible generate the result in an allocated
+ // heap number.
+ if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
+ GenerateFPOperation(masm, true, NULL, gc_required);
+ }
+ __ bind(&not_smis);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
+ Label not_smis, call_runtime;
+
+ if (result_type_ == TRBinaryOpIC::UNINITIALIZED ||
+ result_type_ == TRBinaryOpIC::SMI) {
+ // Only allow smi results.
+ GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS);
+ } else {
+ // Allow heap number result and don't make a transition if a heap number
+ // cannot be allocated.
+ GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
+ }
+
+ // Code falls through if the result is not returned as either a smi or heap
+ // number.
+ GenerateTypeTransition(masm);
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
+ ASSERT(operands_type_ == TRBinaryOpIC::STRING);
+ ASSERT(op_ == Token::ADD);
+ // Try to add arguments as strings, otherwise, transition to the generic
+ // TRBinaryOpIC type.
+ GenerateAddStrings(masm);
+ GenerateTypeTransition(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
+ ASSERT(operands_type_ == TRBinaryOpIC::INT32);
+
+ Register left = r1;
+ Register right = r0;
+ Register scratch1 = r7;
+ Register scratch2 = r9;
+ DwVfpRegister double_scratch = d0;
+ SwVfpRegister single_scratch = s3;
+
+ Register heap_number_result = no_reg;
+ Register heap_number_map = r6;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ Label call_runtime;
+ // Labels for type transition, used for wrong input or output types.
+ // Both label are currently actually bound to the same position. We use two
+ // different label to differentiate the cause leading to type transition.
+ Label transition;
+
+ // Smi-smi fast case.
+ Label skip;
+ __ orr(scratch1, left, right);
+ __ JumpIfNotSmi(scratch1, &skip);
+ GenerateSmiSmiOperation(masm);
+ // Fall through if the result is not a smi.
+ __ bind(&skip);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD: {
+ // Load both operands and check that they are 32-bit integer.
+ // Jump to type transition if they are not. The registers r0 and r1 (right
+ // and left) are preserved for the runtime call.
+ FloatingPointHelper::Destination destination =
+ CpuFeatures::IsSupported(VFP3) &&
+ op_ != Token::MOD ?
+ FloatingPointHelper::kVFPRegisters :
+ FloatingPointHelper::kCoreRegisters;
+
+ FloatingPointHelper::LoadNumberAsInt32Double(masm,
+ right,
+ destination,
+ d7,
+ r2,
+ r3,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ s0,
+ &transition);
+ FloatingPointHelper::LoadNumberAsInt32Double(masm,
+ left,
+ destination,
+ d6,
+ r4,
+ r5,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ s0,
+ &transition);
+
+ if (destination == FloatingPointHelper::kVFPRegisters) {
+ CpuFeatures::Scope scope(VFP3);
+ Label return_heap_number;
+ switch (op_) {
+ case Token::ADD:
+ __ vadd(d5, d6, d7);
+ break;
+ case Token::SUB:
+ __ vsub(d5, d6, d7);
+ break;
+ case Token::MUL:
+ __ vmul(d5, d6, d7);
+ break;
+ case Token::DIV:
+ __ vdiv(d5, d6, d7);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ if (op_ != Token::DIV) {
+ // These operations produce an integer result.
+ // Try to return a smi if we can.
+ // Otherwise return a heap number if allowed, or jump to type
+ // transition.
+
+ __ EmitVFPTruncate(kRoundToZero,
+ single_scratch,
+ d5,
+ scratch1,
+ scratch2);
+
+ if (result_type_ <= TRBinaryOpIC::INT32) {
+ // If the ne condition is set, result does
+ // not fit in a 32-bit integer.
+ __ b(ne, &transition);
+ }
+
+ // Check if the result fits in a smi.
+ __ vmov(scratch1, single_scratch);
+ __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
+ // If not try to return a heap number.
+ __ b(mi, &return_heap_number);
+ // Check for minus zero. Return heap number for minus zero.
+ Label not_zero;
+ __ cmp(scratch1, Operand(0));
+ __ b(ne, &not_zero);
+ __ vmov(scratch2, d5.high());
+ __ tst(scratch2, Operand(HeapNumber::kSignMask));
+ __ b(ne, &return_heap_number);
+ __ bind(&not_zero);
+
+ // Tag the result and return.
+ __ SmiTag(r0, scratch1);
+ __ Ret();
+ } else {
+ // DIV just falls through to allocating a heap number.
+ }
+
+ if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER
+ : TRBinaryOpIC::INT32) {
+ __ bind(&return_heap_number);
+ // We are using vfp registers so r5 is available.
+ heap_number_result = r5;
+ GenerateHeapResultAllocation(masm,
+ heap_number_result,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ &call_runtime);
+ __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
+ __ vstr(d5, r0, HeapNumber::kValueOffset);
+ __ mov(r0, heap_number_result);
+ __ Ret();
+ }
+
+ // A DIV operation expecting an integer result falls through
+ // to type transition.
+
+ } else {
+ // We preserved r0 and r1 to be able to call runtime.
+ // Save the left value on the stack.
+ __ Push(r5, r4);
+
+ // Allocate a heap number to store the result.
+ heap_number_result = r5;
+ GenerateHeapResultAllocation(masm,
+ heap_number_result,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ &call_runtime);
+
+ // Load the left value from the value saved on the stack.
+ __ Pop(r1, r0);
+
+ // Call the C function to handle the double operation.
+ FloatingPointHelper::CallCCodeForDoubleOperation(
+ masm, op_, heap_number_result, scratch1);
+ }
+
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::SAR:
+ case Token::SHR:
+ case Token::SHL: {
+ Label return_heap_number;
+ Register scratch3 = r5;
+ // Convert operands to 32-bit integers. Right in r2 and left in r3. The
+ // registers r0 and r1 (right and left) are preserved for the runtime
+ // call.
+ FloatingPointHelper::LoadNumberAsInt32(masm,
+ left,
+ r3,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ d0,
+ &transition);
+ FloatingPointHelper::LoadNumberAsInt32(masm,
+ right,
+ r2,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ d0,
+ &transition);
+
+ // The ECMA-262 standard specifies that, for shift operations, only the
+ // 5 least significant bits of the shift value should be used.
+ switch (op_) {
+ case Token::BIT_OR:
+ __ orr(r2, r3, Operand(r2));
+ break;
+ case Token::BIT_XOR:
+ __ eor(r2, r3, Operand(r2));
+ break;
+ case Token::BIT_AND:
+ __ and_(r2, r3, Operand(r2));
+ break;
+ case Token::SAR:
+ __ and_(r2, r2, Operand(0x1f));
+ __ mov(r2, Operand(r3, ASR, r2));
+ break;
+ case Token::SHR:
+ __ and_(r2, r2, Operand(0x1f));
+ __ mov(r2, Operand(r3, LSR, r2), SetCC);
+ // SHR is special because it is required to produce a positive answer.
+ // We only get a negative result if the shift value (r2) is 0.
+ // This result cannot be respresented as a signed 32-bit integer, try
+ // to return a heap number if we can.
+ // The non vfp3 code does not support this special case, so jump to
+ // runtime if we don't support it.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ __ b(mi,
+ (result_type_ <= TRBinaryOpIC::INT32) ? &transition
+ : &return_heap_number);
+ } else {
+ __ b(mi, (result_type_ <= TRBinaryOpIC::INT32) ? &transition
+ : &call_runtime);
+ }
+ break;
+ case Token::SHL:
+ __ and_(r2, r2, Operand(0x1f));
+ __ mov(r2, Operand(r3, LSL, r2));
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ // Check if the result fits in a smi.
+ __ add(scratch1, r2, Operand(0x40000000), SetCC);
+ // If not try to return a heap number. (We know the result is an int32.)
+ __ b(mi, &return_heap_number);
+ // Tag the result and return.
+ __ SmiTag(r0, r2);
+ __ Ret();
+
+ __ bind(&return_heap_number);
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ heap_number_result = r5;
+ GenerateHeapResultAllocation(masm,
+ heap_number_result,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ &call_runtime);
+
+ if (op_ != Token::SHR) {
+ // Convert the result to a floating point value.
+ __ vmov(double_scratch.low(), r2);
+ __ vcvt_f64_s32(double_scratch, double_scratch.low());
+ } else {
+ // The result must be interpreted as an unsigned 32-bit integer.
+ __ vmov(double_scratch.low(), r2);
+ __ vcvt_f64_u32(double_scratch, double_scratch.low());
+ }
+
+ // Store the result.
+ __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
+ __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
+ __ mov(r0, heap_number_result);
+ __ Ret();
+ } else {
+ // Tail call that writes the int32 in r2 to the heap number in r0, using
+ // r3 as scratch. r0 is preserved and returned.
+ WriteInt32ToHeapNumberStub stub(r2, r0, r3);
+ __ TailCallStub(&stub);
+ }
+
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+
+ if (transition.is_linked()) {
+ __ bind(&transition);
+ GenerateTypeTransition(masm);
+ }
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
+ Label call_runtime;
+
+ if (op_ == Token::ADD) {
+ // Handle string addition here, because it is the only operation
+ // that does not do a ToNumber conversion on the operands.
+ GenerateAddStrings(masm);
+ }
+
+ // Convert oddball arguments to numbers.
+ Label check, done;
+ __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
+ __ b(ne, &check);
+ if (Token::IsBitOp(op_)) {
+ __ mov(r1, Operand(Smi::FromInt(0)));
+ } else {
+ __ LoadRoot(r1, Heap::kNanValueRootIndex);
+ }
+ __ jmp(&done);
+ __ bind(&check);
+ __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
+ __ b(ne, &done);
+ if (Token::IsBitOp(op_)) {
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ } else {
+ __ LoadRoot(r0, Heap::kNanValueRootIndex);
+ }
+ __ bind(&done);
+
+ GenerateHeapNumberStub(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
+ Label call_runtime;
+ GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
+ Label call_runtime, call_string_add_or_runtime;
+
+ GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
+
+ GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
+
+ __ bind(&call_string_add_or_runtime);
+ if (op_ == Token::ADD) {
+ GenerateAddStrings(masm);
+ }
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
+ ASSERT(op_ == Token::ADD);
+ Label left_not_string, call_runtime;
+
+ Register left = r1;
+ Register right = r0;
+
+ // Check if left argument is a string.
+ __ JumpIfSmi(left, &left_not_string);
+ __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
+ __ b(ge, &left_not_string);
+
+ StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_left_stub);
+
+ // Left operand is not a string, test right.
+ __ bind(&left_not_string);
+ __ JumpIfSmi(right, &call_runtime);
+ __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
+ __ b(ge, &call_runtime);
+
+ StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_right_stub);
+
+ // At least one argument is not a string.
+ __ bind(&call_runtime);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
+ GenerateRegisterArgsPush(masm);
+ switch (op_) {
+ case Token::ADD:
+ __ InvokeBuiltin(Builtins::ADD, JUMP_JS);
+ break;
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::SUB, JUMP_JS);
+ break;
+ case Token::MUL:
+ __ InvokeBuiltin(Builtins::MUL, JUMP_JS);
+ break;
+ case Token::DIV:
+ __ InvokeBuiltin(Builtins::DIV, JUMP_JS);
+ break;
+ case Token::MOD:
+ __ InvokeBuiltin(Builtins::MOD, JUMP_JS);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
+ MacroAssembler* masm,
+ Register result,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+
+ // Code below will scratch result if allocation fails. To keep both arguments
+ // intact for the runtime call result cannot be one of these.
+ ASSERT(!result.is(r0) && !result.is(r1));
+
+ if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
+ Label skip_allocation, allocated;
+ Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
+ // If the overwritable operand is already an object, we skip the
+ // allocation of a heap number.
+ __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
+ // Allocate a heap number for the result.
+ __ AllocateHeapNumber(
+ result, scratch1, scratch2, heap_number_map, gc_required);
+ __ b(&allocated);
+ __ bind(&skip_allocation);
+ // Use object holding the overwritable operand for result.
+ __ mov(result, Operand(overwritable_operand));
+ __ bind(&allocated);
+ } else {
+ ASSERT(mode_ == NO_OVERWRITE);
+ __ AllocateHeapNumber(
+ result, scratch1, scratch2, heap_number_map, gc_required);
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
+ __ Push(r1, r0);
+}
+
+
+void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
+ // Untagged case: double input in d2, double result goes
+ // into d2.
+ // Tagged case: tagged input on top of stack and in r0,
+ // tagged result (heap number) goes into r0.
+
+ Label input_not_smi;
+ Label loaded;
+ Label calculate;
+ Label invalid_cache;
+ const Register scratch0 = r9;
+ const Register scratch1 = r7;
+ const Register cache_entry = r0;
+ const bool tagged = (argument_type_ == TAGGED);
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ if (tagged) {
+ // Argument is a number and is on stack and in r0.
+ // Load argument and check if it is a smi.
+ __ JumpIfNotSmi(r0, &input_not_smi);
+
+ // Input is a smi. Convert to double and load the low and high words
+ // of the double into r2, r3.
+ __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
+ __ b(&loaded);
+
+ __ bind(&input_not_smi);
+ // Check if input is a HeapNumber.
+ __ CheckMap(r0,
+ r1,
+ Heap::kHeapNumberMapRootIndex,
+ &calculate,
+ true);
+ // Input is a HeapNumber. Load it to a double register and store the
+ // low and high words into r2, r3.
+ __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ __ vmov(r2, r3, d0);
+ } else {
+ // Input is untagged double in d2. Output goes to d2.
+ __ vmov(r2, r3, d2);
+ }
+ __ bind(&loaded);
+ // r2 = low 32 bits of double value
+ // r3 = high 32 bits of double value
+ // Compute hash (the shifts are arithmetic):
+ // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
+ __ eor(r1, r2, Operand(r3));
+ __ eor(r1, r1, Operand(r1, ASR, 16));
+ __ eor(r1, r1, Operand(r1, ASR, 8));
+ ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
+ __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
+
+ // r2 = low 32 bits of double value.
+ // r3 = high 32 bits of double value.
+ // r1 = TranscendentalCache::hash(double value).
+ Isolate* isolate = masm->isolate();
+ ExternalReference cache_array =
+ ExternalReference::transcendental_cache_array_address(isolate);
+ __ mov(cache_entry, Operand(cache_array));
+ // cache_entry points to cache array.
+ int cache_array_index
+ = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
+ __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
+ // r0 points to the cache for the type type_.
+ // If NULL, the cache hasn't been initialized yet, so go through runtime.
+ __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
+ __ b(eq, &invalid_cache);
+
+#ifdef DEBUG
+ // Check that the layout of cache elements match expectations.
+ { TranscendentalCache::SubCache::Element test_elem[2];
+ char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
+ char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
+ char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
+ char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
+ char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
+ CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
+ CHECK_EQ(0, elem_in0 - elem_start);
+ CHECK_EQ(kIntSize, elem_in1 - elem_start);
+ CHECK_EQ(2 * kIntSize, elem_out - elem_start);
+ }
+#endif
+
+ // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
+ __ add(r1, r1, Operand(r1, LSL, 1));
+ __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
+ // Check if cache matches: Double value is stored in uint32_t[2] array.
+ __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
+ __ cmp(r2, r4);
+ __ b(ne, &calculate);
+ __ cmp(r3, r5);
+ __ b(ne, &calculate);
+ // Cache hit. Load result, cleanup and return.
+ if (tagged) {
+ // Pop input value from stack and load result into r0.
+ __ pop();
+ __ mov(r0, Operand(r6));
+ } else {
+ // Load result into d2.
+ __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
+ }
+ __ Ret();
+ } // if (CpuFeatures::IsSupported(VFP3))
+
+ __ bind(&calculate);
+ if (tagged) {
+ __ bind(&invalid_cache);
+ ExternalReference runtime_function =
+ ExternalReference(RuntimeFunction(), masm->isolate());
+ __ TailCallExternalReference(runtime_function, 1, 1);
+ } else {
+ if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
+ CpuFeatures::Scope scope(VFP3);
+
+ Label no_update;
+ Label skip_cache;
+ const Register heap_number_map = r5;
+
+ // Call C function to calculate the result and update the cache.
+ // Register r0 holds precalculated cache entry address; preserve
+ // it on the stack and pop it into register cache_entry after the
+ // call.
+ __ push(cache_entry);
+ GenerateCallCFunction(masm, scratch0);
+ __ GetCFunctionDoubleResult(d2);
+
+ // Try to update the cache. If we cannot allocate a
+ // heap number, we return the result without updating.
+ __ pop(cache_entry);
+ __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
+ __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
+ __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
+ __ Ret();
+
+ __ bind(&invalid_cache);
+ // The cache is invalid. Call runtime which will recreate the
+ // cache.
+ __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
+ __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ __ EnterInternalFrame();
+ __ push(r0);
+ __ CallRuntime(RuntimeFunction(), 1);
+ __ LeaveInternalFrame();
+ __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ __ Ret();
+
+ __ bind(&skip_cache);
+ // Call C function to calculate the result and answer directly
+ // without updating the cache.
+ GenerateCallCFunction(masm, scratch0);
+ __ GetCFunctionDoubleResult(d2);
+ __ bind(&no_update);
+
+ // We return the value in d2 without adding it to the cache, but
+ // we cause a scavenging GC so that future allocations will succeed.
+ __ EnterInternalFrame();
+
+ // Allocate an aligned object larger than a HeapNumber.
+ ASSERT(4 * kPointerSize >= HeapNumber::kSize);
+ __ mov(scratch0, Operand(4 * kPointerSize));
+ __ push(scratch0);
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
+ __ LeaveInternalFrame();
+ __ Ret();
+ }
+}
+
+
+void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
+ Register scratch) {
+ Isolate* isolate = masm->isolate();
+
+ __ push(lr);
+ __ PrepareCallCFunction(2, scratch);
+ __ vmov(r0, r1, d2);
+ switch (type_) {
+ case TranscendentalCache::SIN:
+ __ CallCFunction(ExternalReference::math_sin_double_function(isolate), 2);
+ break;
+ case TranscendentalCache::COS:
+ __ CallCFunction(ExternalReference::math_cos_double_function(isolate), 2);
+ break;
+ case TranscendentalCache::LOG:
+ __ CallCFunction(ExternalReference::math_log_double_function(isolate), 2);
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ __ pop(lr);
+}
+
+
+Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
+ switch (type_) {
+ // Add more cases when necessary.
+ case TranscendentalCache::SIN: return Runtime::kMath_sin;
+ case TranscendentalCache::COS: return Runtime::kMath_cos;
+ case TranscendentalCache::LOG: return Runtime::kMath_log;
+ default:
+ UNIMPLEMENTED();
+ return Runtime::kAbort;
+ }
+}
+
+
+void StackCheckStub::Generate(MacroAssembler* masm) {
+ __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
+}
+
+
+void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
+ Label slow, done;
+
+ Register heap_number_map = r6;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ if (op_ == Token::SUB) {
+ if (include_smi_code_) {
+ // Check whether the value is a smi.
+ Label try_float;
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(ne, &try_float);
+
+ // Go slow case if the value of the expression is zero
+ // to make sure that we switch between 0 and -0.
+ if (negative_zero_ == kStrictNegativeZero) {
+ // If we have to check for zero, then we can check for the max negative
+ // smi while we are at it.
+ __ bic(ip, r0, Operand(0x80000000), SetCC);
+ __ b(eq, &slow);
+ __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
+ __ Ret();
+ } else {
+ // The value of the expression is a smi and 0 is OK for -0. Try
+ // optimistic subtraction '0 - value'.
+ __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC);
+ __ Ret(vc);
+ // We don't have to reverse the optimistic neg since the only case
+ // where we fall through is the minimum negative Smi, which is the case
+ // where the neg leaves the register unchanged.
+ __ jmp(&slow); // Go slow on max negative Smi.
+ }
+ __ bind(&try_float);
+ } else if (FLAG_debug_code) {
+ __ tst(r0, Operand(kSmiTagMask));
+ __ Assert(ne, "Unexpected smi operand.");
+ }
+
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r1, heap_number_map);
+ __ b(ne, &slow);
+ // r0 is a heap number. Get a new heap number in r1.
+ if (overwrite_ == UNARY_OVERWRITE) {
+ __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
+ __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
+ __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
+ } else {
+ __ AllocateHeapNumber(r1, r2, r3, r6, &slow);
+ __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
+ __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
+ __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
+ __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
+ __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
+ __ mov(r0, Operand(r1));
+ }
+ } else if (op_ == Token::BIT_NOT) {
+ if (include_smi_code_) {
+ Label non_smi;
+ __ JumpIfNotSmi(r0, &non_smi);
+ __ mvn(r0, Operand(r0));
+ // Bit-clear inverted smi-tag.
+ __ bic(r0, r0, Operand(kSmiTagMask));
+ __ Ret();
+ __ bind(&non_smi);
+ } else if (FLAG_debug_code) {
+ __ tst(r0, Operand(kSmiTagMask));
+ __ Assert(ne, "Unexpected smi operand.");
+ }
+
+ // Check if the operand is a heap number.
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r1, heap_number_map);
+ __ b(ne, &slow);
+
+ // Convert the heap number is r0 to an untagged integer in r1.
+ __ ConvertToInt32(r0, r1, r2, r3, d0, &slow);
+
+ // Do the bitwise operation (move negated) and check if the result
+ // fits in a smi.
+ Label try_float;
+ __ mvn(r1, Operand(r1));
+ __ add(r2, r1, Operand(0x40000000), SetCC);
+ __ b(mi, &try_float);
+ __ mov(r0, Operand(r1, LSL, kSmiTagSize));
+ __ b(&done);
+
+ __ bind(&try_float);
+ if (!overwrite_ == UNARY_OVERWRITE) {
+ // Allocate a fresh heap number, but don't overwrite r0 until
+ // we're sure we can do it without going through the slow case
+ // that needs the value in r0.
+ __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
+ __ mov(r0, Operand(r2));
+ }
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
+ CpuFeatures::Scope scope(VFP3);
+ __ vmov(s0, r1);
+ __ vcvt_f64_s32(d0, s0);
+ __ sub(r2, r0, Operand(kHeapObjectTag));
+ __ vstr(d0, r2, HeapNumber::kValueOffset);
+ } else {
+ // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
+ // have to set up a frame.
+ WriteInt32ToHeapNumberStub stub(r1, r0, r2);
+ __ push(lr);
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+
+ __ bind(&done);
+ __ Ret();
+
+ // Handle the slow case by jumping to the JavaScript builtin.
+ __ bind(&slow);
+ __ push(r0);
+ switch (op_) {
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
+ break;
+ case Token::BIT_NOT:
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void MathPowStub::Generate(MacroAssembler* masm) {
+ Label call_runtime;
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+
+ Label base_not_smi;
+ Label exponent_not_smi;
+ Label convert_exponent;
+
+ const Register base = r0;
+ const Register exponent = r1;
+ const Register heapnumbermap = r5;
+ const Register heapnumber = r6;
+ const DoubleRegister double_base = d0;
+ const DoubleRegister double_exponent = d1;
+ const DoubleRegister double_result = d2;
+ const SwVfpRegister single_scratch = s0;
+ const Register scratch = r9;
+ const Register scratch2 = r7;
+
+ __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
+ __ ldr(base, MemOperand(sp, 1 * kPointerSize));
+ __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
+
+ // Convert base to double value and store it in d0.
+ __ JumpIfNotSmi(base, &base_not_smi);
+ // Base is a Smi. Untag and convert it.
+ __ SmiUntag(base);
+ __ vmov(single_scratch, base);
+ __ vcvt_f64_s32(double_base, single_scratch);
+ __ b(&convert_exponent);
+
+ __ bind(&base_not_smi);
+ __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
+ __ cmp(scratch, heapnumbermap);
+ __ b(ne, &call_runtime);
+ // Base is a heapnumber. Load it into double register.
+ __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
+
+ __ bind(&convert_exponent);
+ __ JumpIfNotSmi(exponent, &exponent_not_smi);
+ __ SmiUntag(exponent);
+
+ // The base is in a double register and the exponent is
+ // an untagged smi. Allocate a heap number and call a
+ // C function for integer exponents. The register containing
+ // the heap number is callee-saved.
+ __ AllocateHeapNumber(heapnumber,
+ scratch,
+ scratch2,
+ heapnumbermap,
+ &call_runtime);
+ __ push(lr);
+ __ PrepareCallCFunction(3, scratch);
+ __ mov(r2, exponent);
+ __ vmov(r0, r1, double_base);
+ __ CallCFunction(
+ ExternalReference::power_double_int_function(masm->isolate()), 3);
+ __ pop(lr);
+ __ GetCFunctionDoubleResult(double_result);
+ __ vstr(double_result,
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
+ __ mov(r0, heapnumber);
+ __ Ret(2 * kPointerSize);
+
+ __ bind(&exponent_not_smi);
+ __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
+ __ cmp(scratch, heapnumbermap);
+ __ b(ne, &call_runtime);
+ // Exponent is a heapnumber. Load it into double register.
+ __ vldr(double_exponent,
+ FieldMemOperand(exponent, HeapNumber::kValueOffset));
+
+ // The base and the exponent are in double registers.
+ // Allocate a heap number and call a C function for
+ // double exponents. The register containing
+ // the heap number is callee-saved.
+ __ AllocateHeapNumber(heapnumber,
+ scratch,
+ scratch2,
+ heapnumbermap,
+ &call_runtime);
+ __ push(lr);
+ __ PrepareCallCFunction(4, scratch);
+ __ vmov(r0, r1, double_base);
+ __ vmov(r2, r3, double_exponent);
+ __ CallCFunction(
+ ExternalReference::power_double_double_function(masm->isolate()), 4);
+ __ pop(lr);
+ __ GetCFunctionDoubleResult(double_result);
+ __ vstr(double_result,
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
+ __ mov(r0, heapnumber);
+ __ Ret(2 * kPointerSize);
+ }
+
+ __ bind(&call_runtime);
+ __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
+}
+
+
+bool CEntryStub::NeedsImmovableCode() {
+ return true;
+}
+
+
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
+ __ Throw(r0);
+}
+
+
+void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
+ UncatchableExceptionType type) {
+ __ ThrowUncatchable(type, r0);
+}
+
+
+void CEntryStub::GenerateCore(MacroAssembler* masm,
+ Label* throw_normal_exception,
+ Label* throw_termination_exception,
+ Label* throw_out_of_memory_exception,
+ bool do_gc,
+ bool always_allocate) {
+ // r0: result parameter for PerformGC, if any
+ // r4: number of arguments including receiver (C callee-saved)
+ // r5: pointer to builtin function (C callee-saved)
+ // r6: pointer to the first argument (C callee-saved)
+ Isolate* isolate = masm->isolate();
+
+ if (do_gc) {
+ // Passing r0.
+ __ PrepareCallCFunction(1, r1);
+ __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1);
+ }
+
+ ExternalReference scope_depth =
+ ExternalReference::heap_always_allocate_scope_depth(isolate);
+ if (always_allocate) {
+ __ mov(r0, Operand(scope_depth));
+ __ ldr(r1, MemOperand(r0));
+ __ add(r1, r1, Operand(1));
+ __ str(r1, MemOperand(r0));
+ }
+
+ // Call C built-in.
+ // r0 = argc, r1 = argv
+ __ mov(r0, Operand(r4));
+ __ mov(r1, Operand(r6));
+
+#if defined(V8_HOST_ARCH_ARM)
+ int frame_alignment = MacroAssembler::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (FLAG_debug_code) {
+ if (frame_alignment > kPointerSize) {
+ Label alignment_as_expected;
+ ASSERT(IsPowerOf2(frame_alignment));
+ __ tst(sp, Operand(frame_alignment_mask));
+ __ b(eq, &alignment_as_expected);
+ // Don't use Check here, as it will call Runtime_Abort re-entering here.
+ __ stop("Unexpected alignment");
+ __ bind(&alignment_as_expected);
+ }
+ }
+#endif
+
+ __ mov(r2, Operand(ExternalReference::isolate_address()));
+
+
+ // TODO(1242173): To let the GC traverse the return address of the exit
+ // frames, we need to know where the return address is. Right now,
+ // we store it on the stack to be able to find it again, but we never
+ // restore from it in case of changes, which makes it impossible to
+ // support moving the C entry code stub. This should be fixed, but currently
+ // this is OK because the CEntryStub gets generated so early in the V8 boot
+ // sequence that it is not moving ever.
+
+ // Compute the return address in lr to return to after the jump below. Pc is
+ // already at '+ 8' from the current instruction but return is after three
+ // instructions so add another 4 to pc to get the return address.
+ masm->add(lr, pc, Operand(4));
+ __ str(lr, MemOperand(sp, 0));
+ masm->Jump(r5);
+
+ if (always_allocate) {
+ // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
+ // though (contain the result).
+ __ mov(r2, Operand(scope_depth));
+ __ ldr(r3, MemOperand(r2));
+ __ sub(r3, r3, Operand(1));
+ __ str(r3, MemOperand(r2));
+ }
+
+ // check for failure result
+ Label failure_returned;
+ STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
+ // Lower 2 bits of r2 are 0 iff r0 has failure tag.
+ __ add(r2, r0, Operand(1));
+ __ tst(r2, Operand(kFailureTagMask));
+ __ b(eq, &failure_returned);
+
+ // Exit C frame and return.
+ // r0:r1: result
+ // sp: stack pointer
+ // fp: frame pointer
+ // Callee-saved register r4 still holds argc.
+ __ LeaveExitFrame(save_doubles_, r4);
+ __ mov(pc, lr);
+
+ // check if we should retry or throw exception
+ Label retry;
+ __ bind(&failure_returned);
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
+ __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
+ __ b(eq, &retry);
+
+ // Special handling of out of memory exceptions.
+ Failure* out_of_memory = Failure::OutOfMemoryException();
+ __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+ __ b(eq, throw_out_of_memory_exception);
+
+ // Retrieve the pending exception and clear the variable.
+ __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate)));
+ __ ldr(r3, MemOperand(ip));
+ __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ isolate)));
+ __ ldr(r0, MemOperand(ip));
+ __ str(r3, MemOperand(ip));
+
+ // Special handling of termination exceptions which are uncatchable
+ // by javascript code.
+ __ cmp(r0, Operand(isolate->factory()->termination_exception()));
+ __ b(eq, throw_termination_exception);
+
+ // Handle normal exception.
+ __ jmp(throw_normal_exception);
+
+ __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+ // Called from JavaScript; parameters are on stack as if calling JS function
+ // r0: number of arguments including receiver
+ // r1: pointer to builtin function
+ // fp: frame pointer (restored after C call)
+ // sp: stack pointer (restored as callee's sp after C call)
+ // cp: current context (C callee-saved)
+
+ // Result returned in r0 or r0+r1 by default.
+
+ // NOTE: Invocations of builtins may return failure objects
+ // instead of a proper result. The builtin entry handles
+ // this by performing a garbage collection and retrying the
+ // builtin once.
+
+ // Compute the argv pointer in a callee-saved register.
+ __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
+ __ sub(r6, r6, Operand(kPointerSize));
+
+ // Enter the exit frame that transitions from JavaScript to C++.
+ __ EnterExitFrame(save_doubles_);
+
+ // Setup argc and the builtin function in callee-saved registers.
+ __ mov(r4, Operand(r0));
+ __ mov(r5, Operand(r1));
+
+ // r4: number of arguments (C callee-saved)
+ // r5: pointer to builtin function (C callee-saved)
+ // r6: pointer to first argument (C callee-saved)
+
+ Label throw_normal_exception;
+ Label throw_termination_exception;
+ Label throw_out_of_memory_exception;
+
+ // Call into the runtime system.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ false,
+ false);
+
+ // Do space-specific GC and retry runtime call.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ true,
+ false);
+
+ // Do full GC and retry runtime call one final time.
+ Failure* failure = Failure::InternalError();
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ true,
+ true);
+
+ __ bind(&throw_out_of_memory_exception);
+ GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
+
+ __ bind(&throw_termination_exception);
+ GenerateThrowUncatchable(masm, TERMINATION);
+
+ __ bind(&throw_normal_exception);
+ GenerateThrowTOS(masm);
+}
+
+
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ // [sp+0]: argv
+
+ Label invoke, exit;
+
+ // Called from C, so do not pop argc and args on exit (preserve sp)
+ // No need to save register-passed args
+ // Save callee-saved registers (incl. cp and fp), sp, and lr
+ __ stm(db_w, sp, kCalleeSaved | lr.bit());
+
+ // Get address of argv, see stm above.
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv
+
+ // Push a frame with special values setup to mark it as an entry frame.
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ // r4: argv
+ Isolate* isolate = masm->isolate();
+ __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
+ __ mov(r7, Operand(Smi::FromInt(marker)));
+ __ mov(r6, Operand(Smi::FromInt(marker)));
+ __ mov(r5,
+ Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate)));
+ __ ldr(r5, MemOperand(r5));
+ __ Push(r8, r7, r6, r5);
+
+ // Setup frame pointer for the frame to be pushed.
+ __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ // If this is the outermost JS call, set js_entry_sp value.
+ ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate);
+ __ mov(r5, Operand(ExternalReference(js_entry_sp)));
+ __ ldr(r6, MemOperand(r5));
+ __ cmp(r6, Operand(0, RelocInfo::NONE));
+ __ str(fp, MemOperand(r5), eq);
+#endif
+
+ // Call a faked try-block that does the invoke.
+ __ bl(&invoke);
+
+ // Caught exception: Store result (exception) in the pending
+ // exception field in the JSEnv and return a failure sentinel.
+ // Coming in here the fp will be invalid because the PushTryHandler below
+ // sets it to 0 to signal the existence of the JSEntry frame.
+ __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ isolate)));
+ __ str(r0, MemOperand(ip));
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
+ __ b(&exit);
+
+ // Invoke: Link this frame into the handler chain.
+ __ bind(&invoke);
+ // Must preserve r0-r4, r5-r7 are available.
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
+ // If an exception not caught by another handler occurs, this handler
+ // returns control to the code after the bl(&invoke) above, which
+ // restores all kCalleeSaved registers (including cp and fp) to their
+ // saved values before returning a failure to C.
+
+ // Clear any pending exceptions.
+ __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate)));
+ __ ldr(r5, MemOperand(ip));
+ __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ isolate)));
+ __ str(r5, MemOperand(ip));
+
+ // Invoke the function by calling through JS entry trampoline builtin.
+ // Notice that we cannot store a reference to the trampoline code directly in
+ // this stub, because runtime stubs are not traversed when doing GC.
+
+ // Expected registers by Builtins::JSEntryTrampoline
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ // r4: argv
+ if (is_construct) {
+ ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
+ isolate);
+ __ mov(ip, Operand(construct_entry));
+ } else {
+ ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
+ __ mov(ip, Operand(entry));
+ }
+ __ ldr(ip, MemOperand(ip)); // deref address
+
+ // Branch and link to JSEntryTrampoline. We don't use the double underscore
+ // macro for the add instruction because we don't want the coverage tool
+ // inserting instructions here after we read the pc.
+ __ mov(lr, Operand(pc));
+ masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
+
+ // Unlink this frame from the handler chain. When reading the
+ // address of the next handler, there is no need to use the address
+ // displacement since the current stack pointer (sp) points directly
+ // to the stack handler.
+ __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
+ __ mov(ip, Operand(ExternalReference(Isolate::k_handler_address, isolate)));
+ __ str(r3, MemOperand(ip));
+ // No need to restore registers
+ __ add(sp, sp, Operand(StackHandlerConstants::kSize));
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ // If current FP value is the same as js_entry_sp value, it means that
+ // the current function is the outermost.
+ __ mov(r5, Operand(ExternalReference(js_entry_sp)));
+ __ ldr(r6, MemOperand(r5));
+ __ cmp(fp, Operand(r6));
+ __ mov(r6, Operand(0, RelocInfo::NONE), LeaveCC, eq);
+ __ str(r6, MemOperand(r5), eq);
+#endif
+
+ __ bind(&exit); // r0 holds result
+ // Restore the top frame descriptors from the stack.
+ __ pop(r3);
+ __ mov(ip,
+ Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate)));
+ __ str(r3, MemOperand(ip));
+
+ // Reset the stack to the callee saved registers.
+ __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+
+ // Restore callee-saved registers and return.
+#ifdef DEBUG
+ if (FLAG_debug_code) {
+ __ mov(lr, Operand(pc));
+ }
+#endif
+ __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
+}
+
+
+// Uses registers r0 to r4.
+// Expected input (depending on whether args are in registers or on the stack):
+// * object: r0 or at sp + 1 * kPointerSize.
+// * function: r1 or at sp.
+//
+// An inlined call site may have been generated before calling this stub.
+// In this case the offset to the inline site to patch is passed on the stack,
+// in the safepoint slot for register r4.
+// (See LCodeGen::DoInstanceOfKnownGlobal)
+void InstanceofStub::Generate(MacroAssembler* masm) {
+ // Call site inlining and patching implies arguments in registers.
+ ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
+ // ReturnTrueFalse is only implemented for inlined call sites.
+ ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
+
+ // Fixed register usage throughout the stub:
+ const Register object = r0; // Object (lhs).
+ Register map = r3; // Map of the object.
+ const Register function = r1; // Function (rhs).
+ const Register prototype = r4; // Prototype of the function.
+ const Register inline_site = r9;
+ const Register scratch = r2;
+
+ const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize;
+
+ Label slow, loop, is_instance, is_not_instance, not_js_object;
+
+ if (!HasArgsInRegisters()) {
+ __ ldr(object, MemOperand(sp, 1 * kPointerSize));
+ __ ldr(function, MemOperand(sp, 0));
+ }
+
+ // Check that the left hand is a JS object and load map.
+ __ JumpIfSmi(object, &not_js_object);
+ __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
+
+ // If there is a call site cache don't look in the global cache, but do the
+ // real lookup and update the call site cache.
+ if (!HasCallSiteInlineCheck()) {
+ Label miss;
+ __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
+ __ cmp(function, ip);
+ __ b(ne, &miss);
+ __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
+ __ cmp(map, ip);
+ __ b(ne, &miss);
+ __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&miss);
+ }
+
+ // Get the prototype of the function.
+ __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
+
+ // Check that the function prototype is a JS object.
+ __ JumpIfSmi(prototype, &slow);
+ __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
+
+ // Update the global instanceof or call site inlined cache with the current
+ // map and function. The cached answer will be set when it is known below.
+ if (!HasCallSiteInlineCheck()) {
+ __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
+ __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
+ } else {
+ ASSERT(HasArgsInRegisters());
+ // Patch the (relocated) inlined map check.
+
+ // The offset was stored in r4 safepoint slot.
+ // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
+ __ LoadFromSafepointRegisterSlot(scratch, r4);
+ __ sub(inline_site, lr, scratch);
+ // Get the map location in scratch and patch it.
+ __ GetRelocatedValueLocation(inline_site, scratch);
+ __ str(map, MemOperand(scratch));
+ }
+
+ // Register mapping: r3 is object map and r4 is function prototype.
+ // Get prototype of object into r2.
+ __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
+
+ // We don't need map any more. Use it as a scratch register.
+ Register scratch2 = map;
+ map = no_reg;
+
+ // Loop through the prototype chain looking for the function prototype.
+ __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
+ __ bind(&loop);
+ __ cmp(scratch, Operand(prototype));
+ __ b(eq, &is_instance);
+ __ cmp(scratch, scratch2);
+ __ b(eq, &is_not_instance);
+ __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
+ __ jmp(&loop);
+
+ __ bind(&is_instance);
+ if (!HasCallSiteInlineCheck()) {
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
+ } else {
+ // Patch the call site to return true.
+ __ LoadRoot(r0, Heap::kTrueValueRootIndex);
+ __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
+ // Get the boolean result location in scratch and patch it.
+ __ GetRelocatedValueLocation(inline_site, scratch);
+ __ str(r0, MemOperand(scratch));
+
+ if (!ReturnTrueFalseObject()) {
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ }
+ }
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&is_not_instance);
+ if (!HasCallSiteInlineCheck()) {
+ __ mov(r0, Operand(Smi::FromInt(1)));
+ __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
+ } else {
+ // Patch the call site to return false.
+ __ LoadRoot(r0, Heap::kFalseValueRootIndex);
+ __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
+ // Get the boolean result location in scratch and patch it.
+ __ GetRelocatedValueLocation(inline_site, scratch);
+ __ str(r0, MemOperand(scratch));
+
+ if (!ReturnTrueFalseObject()) {
+ __ mov(r0, Operand(Smi::FromInt(1)));
+ }
+ }
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+ Label object_not_null, object_not_null_or_smi;
+ __ bind(&not_js_object);
+ // Before null, smi and string value checks, check that the rhs is a function
+ // as for a non-function rhs an exception needs to be thrown.
+ __ JumpIfSmi(function, &slow);
+ __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
+ __ b(ne, &slow);
+
+ // Null is not instance of anything.
+ __ cmp(scratch, Operand(FACTORY->null_value()));
+ __ b(ne, &object_not_null);
+ __ mov(r0, Operand(Smi::FromInt(1)));
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&object_not_null);
+ // Smi values are not instances of anything.
+ __ JumpIfNotSmi(object, &object_not_null_or_smi);
+ __ mov(r0, Operand(Smi::FromInt(1)));
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&object_not_null_or_smi);
+ // String values are not instances of anything.
+ __ IsObjectJSStringType(object, scratch, &slow);
+ __ mov(r0, Operand(Smi::FromInt(1)));
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+
+ // Slow-case. Tail call builtin.
+ __ bind(&slow);
+ if (!ReturnTrueFalseObject()) {
+ if (HasArgsInRegisters()) {
+ __ Push(r0, r1);
+ }
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
+ } else {
+ __ EnterInternalFrame();
+ __ Push(r0, r1);
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS);
+ __ LeaveInternalFrame();
+ __ cmp(r0, Operand(0));
+ __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
+ __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
+ __ Ret(HasArgsInRegisters() ? 0 : 2);
+ }
+}
+
+
+Register InstanceofStub::left() { return r0; }
+
+
+Register InstanceofStub::right() { return r1; }
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+ // The displacement is the offset of the last parameter (if any)
+ // relative to the frame pointer.
+ static const int kDisplacement =
+ StandardFrameConstants::kCallerSPOffset - kPointerSize;
+
+ // Check that the key is a smi.
+ Label slow;
+ __ JumpIfNotSmi(r1, &slow);
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor;
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ b(eq, &adaptor);
+
+ // Check index against formal parameters count limit passed in
+ // through register r0. Use unsigned comparison to get negative
+ // check for free.
+ __ cmp(r1, r0);
+ __ b(hs, &slow);
+
+ // Read the argument from the stack and return it.
+ __ sub(r3, r0, r1);
+ __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ ldr(r0, MemOperand(r3, kDisplacement));
+ __ Jump(lr);
+
+ // Arguments adaptor case: Check index against actual arguments
+ // limit found in the arguments adaptor frame. Use unsigned
+ // comparison to get negative check for free.
+ __ bind(&adaptor);
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ cmp(r1, r0);
+ __ b(cs, &slow);
+
+ // Read the argument from the adaptor frame and return it.
+ __ sub(r3, r0, r1);
+ __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ ldr(r0, MemOperand(r3, kDisplacement));
+ __ Jump(lr);
+
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments
+ // by calling the runtime system.
+ __ bind(&slow);
+ __ push(r1);
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
+ // sp[0] : number of parameters
+ // sp[4] : receiver displacement
+ // sp[8] : function
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor_frame, try_allocate, runtime;
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ b(eq, &adaptor_frame);
+
+ // Get the length from the frame.
+ __ ldr(r1, MemOperand(sp, 0));
+ __ b(&try_allocate);
+
+ // Patch the arguments.length and the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ str(r1, MemOperand(sp, 0));
+ __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ str(r3, MemOperand(sp, 1 * kPointerSize));
+
+ // Try the new space allocation. Start out with computing the size
+ // of the arguments object and the elements array in words.
+ Label add_arguments_object;
+ __ bind(&try_allocate);
+ __ cmp(r1, Operand(0, RelocInfo::NONE));
+ __ b(eq, &add_arguments_object);
+ __ mov(r1, Operand(r1, LSR, kSmiTagSize));
+ __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
+ __ bind(&add_arguments_object);
+ __ add(r1, r1, Operand(GetArgumentsObjectSize() / kPointerSize));
+
+ // Do the allocation of both objects in one go.
+ __ AllocateInNewSpace(
+ r1,
+ r0,
+ r2,
+ r3,
+ &runtime,
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+
+ // Get the arguments boilerplate from the current (global) context.
+ __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
+ __ ldr(r4, MemOperand(r4,
+ Context::SlotOffset(GetArgumentsBoilerplateIndex())));
+
+ // Copy the JS object part.
+ __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
+
+ if (type_ == NEW_NON_STRICT) {
+ // Setup the callee in-object property.
+ STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
+ __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
+ const int kCalleeOffset = JSObject::kHeaderSize +
+ Heap::kArgumentsCalleeIndex * kPointerSize;
+ __ str(r3, FieldMemOperand(r0, kCalleeOffset));
+ }
+
+ // Get the length (smi tagged) and set that as an in-object property too.
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+ __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
+ __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
+ Heap::kArgumentsLengthIndex * kPointerSize));
+
+ // If there are no actual arguments, we're done.
+ Label done;
+ __ cmp(r1, Operand(0, RelocInfo::NONE));
+ __ b(eq, &done);
+
+ // Get the parameters pointer from the stack.
+ __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
+
+ // Setup the elements pointer in the allocated arguments object and
+ // initialize the header in the elements fixed array.
+ __ add(r4, r0, Operand(GetArgumentsObjectSize()));
+ __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
+ __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
+ __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
+ __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
+ __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop.
+
+ // Copy the fixed array slots.
+ Label loop;
+ // Setup r4 to point to the first array slot.
+ __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ bind(&loop);
+ // Pre-decrement r2 with kPointerSize on each iteration.
+ // Pre-decrement in order to skip receiver.
+ __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
+ // Post-increment r4 with kPointerSize on each iteration.
+ __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
+ __ sub(r1, r1, Operand(1));
+ __ cmp(r1, Operand(0, RelocInfo::NONE));
+ __ b(ne, &loop);
+
+ // Return and remove the on-stack parameters.
+ __ bind(&done);
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
+}
+
+
+void RegExpExecStub::Generate(MacroAssembler* masm) {
+ // Just jump directly to runtime if native RegExp is not selected at compile
+ // time or if regexp entry in generated code is turned off runtime switch or
+ // at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#else // V8_INTERPRETED_REGEXP
+ if (!FLAG_regexp_entry_native) {
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+ return;
+ }
+
+ // Stack frame on entry.
+ // sp[0]: last_match_info (expected JSArray)
+ // sp[4]: previous index
+ // sp[8]: subject string
+ // sp[12]: JSRegExp object
+
+ static const int kLastMatchInfoOffset = 0 * kPointerSize;
+ static const int kPreviousIndexOffset = 1 * kPointerSize;
+ static const int kSubjectOffset = 2 * kPointerSize;
+ static const int kJSRegExpOffset = 3 * kPointerSize;
+
+ Label runtime, invoke_regexp;
+
+ // Allocation of registers for this function. These are in callee save
+ // registers and will be preserved by the call to the native RegExp code, as
+ // this code is called using the normal C calling convention. When calling
+ // directly from generated code the native RegExp code will not do a GC and
+ // therefore the content of these registers are safe to use after the call.
+ Register subject = r4;
+ Register regexp_data = r5;
+ Register last_match_info_elements = r6;
+
+ // Ensure that a RegExp stack is allocated.
+ Isolate* isolate = masm->isolate();
+ ExternalReference address_of_regexp_stack_memory_address =
+ ExternalReference::address_of_regexp_stack_memory_address(isolate);
+ ExternalReference address_of_regexp_stack_memory_size =
+ ExternalReference::address_of_regexp_stack_memory_size(isolate);
+ __ mov(r0, Operand(address_of_regexp_stack_memory_size));
+ __ ldr(r0, MemOperand(r0, 0));
+ __ tst(r0, Operand(r0));
+ __ b(eq, &runtime);
+
+ // Check that the first argument is a JSRegExp object.
+ __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &runtime);
+ __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
+ __ b(ne, &runtime);
+
+ // Check that the RegExp has been compiled (data contains a fixed array).
+ __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
+ if (FLAG_debug_code) {
+ __ tst(regexp_data, Operand(kSmiTagMask));
+ __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
+ __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
+ __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
+ }
+
+ // regexp_data: RegExp data (FixedArray)
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+ __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
+ __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
+ __ b(ne, &runtime);
+
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the number of captures fit in the static offsets vector buffer.
+ __ ldr(r2,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2. This
+ // uses the asumption that smis are 2 * their untagged value.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ add(r2, r2, Operand(2)); // r2 was a smi.
+ // Check that the static offsets vector buffer is large enough.
+ __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
+ __ b(hi, &runtime);
+
+ // r2: Number of capture registers
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the second argument is a string.
+ __ ldr(subject, MemOperand(sp, kSubjectOffset));
+ __ tst(subject, Operand(kSmiTagMask));
+ __ b(eq, &runtime);
+ Condition is_string = masm->IsObjectStringType(subject, r0);
+ __ b(NegateCondition(is_string), &runtime);
+ // Get the length of the string to r3.
+ __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
+
+ // r2: Number of capture registers
+ // r3: Length of subject string as a smi
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the third argument is a positive smi less than the subject
+ // string length. A negative value will be greater (unsigned comparison).
+ __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(ne, &runtime);
+ __ cmp(r3, Operand(r0));
+ __ b(ls, &runtime);
+
+ // r2: Number of capture registers
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the fourth object is a JSArray object.
+ __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &runtime);
+ __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
+ __ b(ne, &runtime);
+ // Check that the JSArray is in fast case.
+ __ ldr(last_match_info_elements,
+ FieldMemOperand(r0, JSArray::kElementsOffset));
+ __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
+ __ cmp(r0, ip);
+ __ b(ne, &runtime);
+ // Check that the last match info has space for the capture registers and the
+ // additional information.
+ __ ldr(r0,
+ FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
+ __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
+ __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
+ __ b(gt, &runtime);
+
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check the representation and encoding of the subject string.
+ Label seq_string;
+ __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
+ // First check for flat string.
+ __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
+ STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
+ __ b(eq, &seq_string);
+
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check for flat cons string.
+ // A flat cons string is a cons string where the second part is the empty
+ // string. In that case the subject string is just the first part of the cons
+ // string. Also in this case the first part of the cons string is known to be
+ // a sequential string or an external string.
+ STATIC_ASSERT(kExternalStringTag !=0);
+ STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
+ __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
+ __ b(ne, &runtime);
+ __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
+ __ LoadRoot(r1, Heap::kEmptyStringRootIndex);
+ __ cmp(r0, r1);
+ __ b(ne, &runtime);
+ __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
+ __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
+ // Is first part a flat string?
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ tst(r0, Operand(kStringRepresentationMask));
+ __ b(ne, &runtime);
+
+ __ bind(&seq_string);
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // r0: Instance type of subject string
+ STATIC_ASSERT(4 == kAsciiStringTag);
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ // Find the code object based on the assumptions above.
+ __ and_(r0, r0, Operand(kStringEncodingMask));
+ __ mov(r3, Operand(r0, ASR, 2), SetCC);
+ __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
+ __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
+
+ // Check that the irregexp code has been generated for the actual string
+ // encoding. If it has, the field contains a code object otherwise it contains
+ // the hole.
+ __ CompareObjectType(r7, r0, r0, CODE_TYPE);
+ __ b(ne, &runtime);
+
+ // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
+ // r7: code
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Load used arguments before starting to push arguments for call to native
+ // RegExp code to avoid handling changing stack height.
+ __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
+ __ mov(r1, Operand(r1, ASR, kSmiTagSize));
+
+ // r1: previous index
+ // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
+ // r7: code
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // All checks done. Now push arguments for native regexp code.
+ __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
+
+ // Isolates: note we add an additional parameter here (isolate pointer).
+ static const int kRegExpExecuteArguments = 8;
+ static const int kParameterRegisters = 4;
+ __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
+
+ // Stack pointer now points to cell where return address is to be written.
+ // Arguments are before that on the stack or in registers.
+
+ // Argument 8 (sp[16]): Pass current isolate address.
+ __ mov(r0, Operand(ExternalReference::isolate_address()));
+ __ str(r0, MemOperand(sp, 4 * kPointerSize));
+
+ // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
+ __ mov(r0, Operand(1));
+ __ str(r0, MemOperand(sp, 3 * kPointerSize));
+
+ // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
+ __ mov(r0, Operand(address_of_regexp_stack_memory_address));
+ __ ldr(r0, MemOperand(r0, 0));
+ __ mov(r2, Operand(address_of_regexp_stack_memory_size));
+ __ ldr(r2, MemOperand(r2, 0));
+ __ add(r0, r0, Operand(r2));
+ __ str(r0, MemOperand(sp, 2 * kPointerSize));
+
+ // Argument 5 (sp[4]): static offsets vector buffer.
+ __ mov(r0,
+ Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
+ __ str(r0, MemOperand(sp, 1 * kPointerSize));
+
+ // For arguments 4 and 3 get string length, calculate start of string data and
+ // calculate the shift of the index (0 for ASCII and 1 for two byte).
+ __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
+ __ mov(r0, Operand(r0, ASR, kSmiTagSize));
+ STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
+ __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ eor(r3, r3, Operand(1));
+ // Argument 4 (r3): End of string data
+ // Argument 3 (r2): Start of string data
+ __ add(r2, r9, Operand(r1, LSL, r3));
+ __ add(r3, r9, Operand(r0, LSL, r3));
+
+ // Argument 2 (r1): Previous index.
+ // Already there
+
+ // Argument 1 (r0): Subject string.
+ __ mov(r0, subject);
+
+ // Locate the code entry and call it.
+ __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
+ DirectCEntryStub stub;
+ stub.GenerateCall(masm, r7);
+
+ __ LeaveExitFrame(false, no_reg);
+
+ // r0: result
+ // subject: subject string (callee saved)
+ // regexp_data: RegExp data (callee saved)
+ // last_match_info_elements: Last match info elements (callee saved)
+
+ // Check the result.
+ Label success;
+
+ __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
+ __ b(eq, &success);
+ Label failure;
+ __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
+ __ b(eq, &failure);
+ __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
+ // If not exception it can only be retry. Handle that in the runtime system.
+ __ b(ne, &runtime);
+ // Result must now be exception. If there is no pending exception already a
+ // stack overflow (on the backtrack stack) was detected in RegExp code but
+ // haven't created the exception yet. Handle that in the runtime system.
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+ __ mov(r1, Operand(ExternalReference::the_hole_value_location(isolate)));
+ __ ldr(r1, MemOperand(r1, 0));
+ __ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ isolate)));
+ __ ldr(r0, MemOperand(r2, 0));
+ __ cmp(r0, r1);
+ __ b(eq, &runtime);
+
+ __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
+
+ // Check if the exception is a termination. If so, throw as uncatchable.
+ __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex);
+ __ cmp(r0, ip);
+ Label termination_exception;
+ __ b(eq, &termination_exception);
+
+ __ Throw(r0); // Expects thrown value in r0.
+
+ __ bind(&termination_exception);
+ __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0.
+
+ __ bind(&failure);
+ // For failure and exception return null.
+ __ mov(r0, Operand(FACTORY->null_value()));
+ __ add(sp, sp, Operand(4 * kPointerSize));
+ __ Ret();
+
+ // Process the result from the native regexp code.
+ __ bind(&success);
+ __ ldr(r1,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ add(r1, r1, Operand(2)); // r1 was a smi.
+
+ // r1: number of capture registers
+ // r4: subject string
+ // Store the capture count.
+ __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
+ __ str(r2, FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastCaptureCountOffset));
+ // Store last subject and last input.
+ __ mov(r3, last_match_info_elements); // Moved up to reduce latency.
+ __ str(subject,
+ FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastSubjectOffset));
+ __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7);
+ __ str(subject,
+ FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastInputOffset));
+ __ mov(r3, last_match_info_elements);
+ __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7);
+
+ // Get the static offsets vector filled by the native regexp code.
+ ExternalReference address_of_static_offsets_vector =
+ ExternalReference::address_of_static_offsets_vector(isolate);
+ __ mov(r2, Operand(address_of_static_offsets_vector));
+
+ // r1: number of capture registers
+ // r2: offsets vector
+ Label next_capture, done;
+ // Capture register counter starts from number of capture registers and
+ // counts down until wraping after zero.
+ __ add(r0,
+ last_match_info_elements,
+ Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
+ __ bind(&next_capture);
+ __ sub(r1, r1, Operand(1), SetCC);
+ __ b(mi, &done);
+ // Read the value from the static offsets vector buffer.
+ __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
+ // Store the smi value in the last match info.
+ __ mov(r3, Operand(r3, LSL, kSmiTagSize));
+ __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
+ __ jmp(&next_capture);
+ __ bind(&done);
+
+ // Return last match info.
+ __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
+ __ add(sp, sp, Operand(4 * kPointerSize));
+ __ Ret();
+
+ // Do the runtime call to execute the regexp.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#endif // V8_INTERPRETED_REGEXP
+}
+
+
+void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
+ const int kMaxInlineLength = 100;
+ Label slowcase;
+ Label done;
+ __ ldr(r1, MemOperand(sp, kPointerSize * 2));
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(ne, &slowcase);
+ __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
+ __ b(hi, &slowcase);
+ // Smi-tagging is equivalent to multiplying by 2.
+ // Allocate RegExpResult followed by FixedArray with size in ebx.
+ // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
+ // Elements: [Map][Length][..elements..]
+ // Size of JSArray with two in-object properties and the header of a
+ // FixedArray.
+ int objects_size =
+ (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
+ __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
+ __ add(r2, r5, Operand(objects_size));
+ __ AllocateInNewSpace(
+ r2, // In: Size, in words.
+ r0, // Out: Start of allocation (tagged).
+ r3, // Scratch register.
+ r4, // Scratch register.
+ &slowcase,
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+ // r0: Start of allocated area, object-tagged.
+ // r1: Number of elements in array, as smi.
+ // r5: Number of elements, untagged.
+
+ // Set JSArray map to global.regexp_result_map().
+ // Set empty properties FixedArray.
+ // Set elements to point to FixedArray allocated right after the JSArray.
+ // Interleave operations for better latency.
+ __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ add(r3, r0, Operand(JSRegExpResult::kSize));
+ __ mov(r4, Operand(FACTORY->empty_fixed_array()));
+ __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
+ __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
+ __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
+ __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
+ __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
+
+ // Set input, index and length fields from arguments.
+ __ ldr(r1, MemOperand(sp, kPointerSize * 0));
+ __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
+ __ ldr(r1, MemOperand(sp, kPointerSize * 1));
+ __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
+ __ ldr(r1, MemOperand(sp, kPointerSize * 2));
+ __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset));
+
+ // Fill out the elements FixedArray.
+ // r0: JSArray, tagged.
+ // r3: FixedArray, tagged.
+ // r5: Number of elements in array, untagged.
+
+ // Set map.
+ __ mov(r2, Operand(FACTORY->fixed_array_map()));
+ __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
+ // Set FixedArray length.
+ __ mov(r6, Operand(r5, LSL, kSmiTagSize));
+ __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
+ // Fill contents of fixed-array with the-hole.
+ __ mov(r2, Operand(FACTORY->the_hole_value()));
+ __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ // Fill fixed array elements with hole.
+ // r0: JSArray, tagged.
+ // r2: the hole.
+ // r3: Start of elements in FixedArray.
+ // r5: Number of elements to fill.
+ Label loop;
+ __ tst(r5, Operand(r5));
+ __ bind(&loop);
+ __ b(le, &done); // Jump if r1 is negative or zero.
+ __ sub(r5, r5, Operand(1), SetCC);
+ __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
+ __ jmp(&loop);
+
+ __ bind(&done);
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&slowcase);
+ __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+ Label slow;
+
+ // If the receiver might be a value (string, number or boolean) check for this
+ // and box it if it is.
+ if (ReceiverMightBeValue()) {
+ // Get the receiver from the stack.
+ // function, receiver [, arguments]
+ Label receiver_is_value, receiver_is_js_object;
+ __ ldr(r1, MemOperand(sp, argc_ * kPointerSize));
+
+ // Check if receiver is a smi (which is a number value).
+ __ JumpIfSmi(r1, &receiver_is_value);
+
+ // Check if the receiver is a valid JS object.
+ __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE);
+ __ b(ge, &receiver_is_js_object);
+
+ // Call the runtime to box the value.
+ __ bind(&receiver_is_value);
+ __ EnterInternalFrame();
+ __ push(r1);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
+ __ LeaveInternalFrame();
+ __ str(r0, MemOperand(sp, argc_ * kPointerSize));
+
+ __ bind(&receiver_is_js_object);
+ }
+
+ // Get the function to call from the stack.
+ // function, receiver [, arguments]
+ __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
+
+ // Check that the function is really a JavaScript function.
+ // r1: pushed function (to be verified)
+ __ JumpIfSmi(r1, &slow);
+ // Get the map of the function object.
+ __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
+ __ b(ne, &slow);
+
+ // Fast-case: Invoke the function now.
+ // r1: pushed function
+ ParameterCount actual(argc_);
+ __ InvokeFunction(r1, actual, JUMP_FUNCTION);
+
+ // Slow-case: Non-function called.
+ __ bind(&slow);
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+ // of the original receiver from the call site).
+ __ str(r1, MemOperand(sp, argc_ * kPointerSize));
+ __ mov(r0, Operand(argc_)); // Setup the number of arguments.
+ __ mov(r2, Operand(0, RelocInfo::NONE));
+ __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET);
+}
+
+
+// Unfortunately you have to run without snapshots to see most of these
+// names in the profile since most compare stubs end up in the snapshot.
+const char* CompareStub::GetName() {
+ ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
+ (lhs_.is(r1) && rhs_.is(r0)));
+
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+
+ const char* cc_name;
+ switch (cc_) {
+ case lt: cc_name = "LT"; break;
+ case gt: cc_name = "GT"; break;
+ case le: cc_name = "LE"; break;
+ case ge: cc_name = "GE"; break;
+ case eq: cc_name = "EQ"; break;
+ case ne: cc_name = "NE"; break;
+ default: cc_name = "UnknownCondition"; break;
+ }
+
+ const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1";
+ const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1";
+
+ const char* strict_name = "";
+ if (strict_ && (cc_ == eq || cc_ == ne)) {
+ strict_name = "_STRICT";
+ }
+
+ const char* never_nan_nan_name = "";
+ if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
+ never_nan_nan_name = "_NO_NAN";
+ }
+
+ const char* include_number_compare_name = "";
+ if (!include_number_compare_) {
+ include_number_compare_name = "_NO_NUMBER";
+ }
+
+ const char* include_smi_compare_name = "";
+ if (!include_smi_compare_) {
+ include_smi_compare_name = "_NO_SMI";
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "CompareStub_%s%s%s%s%s%s",
+ cc_name,
+ lhs_name,
+ rhs_name,
+ strict_name,
+ never_nan_nan_name,
+ include_number_compare_name,
+ include_smi_compare_name);
+ return name_;
+}
+
+
+int CompareStub::MinorKey() {
+ // Encode the three parameters in a unique 16 bit value. To avoid duplicate
+ // stubs the never NaN NaN condition is only taken into account if the
+ // condition is equals.
+ ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
+ ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
+ (lhs_.is(r1) && rhs_.is(r0)));
+ return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
+ | RegisterField::encode(lhs_.is(r0))
+ | StrictField::encode(strict_)
+ | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
+ | IncludeNumberCompareField::encode(include_number_compare_)
+ | IncludeSmiCompareField::encode(include_smi_compare_);
+}
+
+
+// StringCharCodeAtGenerator
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+ Label flat_string;
+ Label ascii_string;
+ Label got_char_code;
+
+ // If the receiver is a smi trigger the non-string case.
+ __ JumpIfSmi(object_, receiver_not_string_);
+
+ // Fetch the instance type of the receiver into result register.
+ __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ // If the receiver is not a string trigger the non-string case.
+ __ tst(result_, Operand(kIsNotStringMask));
+ __ b(ne, receiver_not_string_);
+
+ // If the index is non-smi trigger the non-smi case.
+ __ JumpIfNotSmi(index_, &index_not_smi_);
+
+ // Put smi-tagged index into scratch register.
+ __ mov(scratch_, index_);
+ __ bind(&got_smi_index_);
+
+ // Check for index out of range.
+ __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
+ __ cmp(ip, Operand(scratch_));
+ __ b(ls, index_out_of_range_);
+
+ // We need special handling for non-flat strings.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ tst(result_, Operand(kStringRepresentationMask));
+ __ b(eq, &flat_string);
+
+ // Handle non-flat strings.
+ __ tst(result_, Operand(kIsConsStringMask));
+ __ b(eq, &call_runtime_);
+
+ // ConsString.
+ // Check whether the right hand side is the empty string (i.e. if
+ // this is really a flat string in a cons string). If that is not
+ // the case we would rather go to the runtime system now to flatten
+ // the string.
+ __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
+ __ LoadRoot(ip, Heap::kEmptyStringRootIndex);
+ __ cmp(result_, Operand(ip));
+ __ b(ne, &call_runtime_);
+ // Get the first of the two strings and load its instance type.
+ __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
+ __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ // If the first cons component is also non-flat, then go to runtime.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ tst(result_, Operand(kStringRepresentationMask));
+ __ b(ne, &call_runtime_);
+
+ // Check for 1-byte or 2-byte string.
+ __ bind(&flat_string);
+ STATIC_ASSERT(kAsciiStringTag != 0);
+ __ tst(result_, Operand(kStringEncodingMask));
+ __ b(ne, &ascii_string);
+
+ // 2-byte string.
+ // Load the 2-byte character code into the result register. We can
+ // add without shifting since the smi tag size is the log2 of the
+ // number of bytes in a two-byte character.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
+ __ add(scratch_, object_, Operand(scratch_));
+ __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
+ __ jmp(&got_char_code);
+
+ // ASCII string.
+ // Load the byte into the result register.
+ __ bind(&ascii_string);
+ __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
+ __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
+
+ __ bind(&got_char_code);
+ __ mov(result_, Operand(result_, LSL, kSmiTagSize));
+ __ bind(&exit_);
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+ __ Abort("Unexpected fallthrough to CharCodeAt slow case");
+
+ // Index is not a smi.
+ __ bind(&index_not_smi_);
+ // If index is a heap number, try converting it to an integer.
+ __ CheckMap(index_,
+ scratch_,
+ Heap::kHeapNumberMapRootIndex,
+ index_not_number_,
+ true);
+ call_helper.BeforeCall(masm);
+ __ Push(object_, index_);
+ __ push(index_); // Consumed by runtime conversion function.
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+ } else {
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+ // NumberToSmi discards numbers that are not exact integers.
+ __ CallRuntime(Runtime::kNumberToSmi, 1);
+ }
+ // Save the conversion result before the pop instructions below
+ // have a chance to overwrite it.
+ __ Move(scratch_, r0);
+ __ pop(index_);
+ __ pop(object_);
+ // Reload the instance type.
+ __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ call_helper.AfterCall(masm);
+ // If index is still not a smi, it must be out of range.
+ __ JumpIfNotSmi(scratch_, index_out_of_range_);
+ // Otherwise, return to the fast path.
+ __ jmp(&got_smi_index_);
+
+ // Call runtime. We get here when the receiver is a string and the
+ // index is a number, but the code of getting the actual character
+ // is too complex (e.g., when the string needs to be flattened).
+ __ bind(&call_runtime_);
+ call_helper.BeforeCall(masm);
+ __ Push(object_, index_);
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2);
+ __ Move(result_, r0);
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort("Unexpected fallthrough from CharCodeAt slow case");
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharFromCodeGenerator
+
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
+ // Fast case of Heap::LookupSingleCharacterStringFromCode.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiShiftSize == 0);
+ ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
+ __ tst(code_,
+ Operand(kSmiTagMask |
+ ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
+ __ b(ne, &slow_case_);
+
+ __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
+ // At this point code register contains smi tagged ASCII char code.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(result_, Operand(ip));
+ __ b(eq, &slow_case_);
+ __ bind(&exit_);
+}
+
+
+void StringCharFromCodeGenerator::GenerateSlow(
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+ __ Abort("Unexpected fallthrough to CharFromCode slow case");
+
+ __ bind(&slow_case_);
+ call_helper.BeforeCall(masm);
+ __ push(code_);
+ __ CallRuntime(Runtime::kCharFromCode, 1);
+ __ Move(result_, r0);
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort("Unexpected fallthrough from CharFromCode slow case");
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharAtGenerator
+
+void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
+ char_code_at_generator_.GenerateFast(masm);
+ char_from_code_generator_.GenerateFast(masm);
+}
+
+
+void StringCharAtGenerator::GenerateSlow(
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+ char_code_at_generator_.GenerateSlow(masm, call_helper);
+ char_from_code_generator_.GenerateSlow(masm, call_helper);
+}
+
+
+class StringHelper : public AllStatic {
+ public:
+ // Generate code for copying characters using a simple loop. This should only
+ // be used in places where the number of characters is small and the
+ // additional setup and checking in GenerateCopyCharactersLong adds too much
+ // overhead. Copying of overlapping regions is not supported.
+ // Dest register ends at the position after the last character written.
+ static void GenerateCopyCharacters(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch,
+ bool ascii);
+
+ // Generate code for copying a large number of characters. This function
+ // is allowed to spend extra time setting up conditions to make copying
+ // faster. Copying of overlapping regions is not supported.
+ // Dest register ends at the position after the last character written.
+ static void GenerateCopyCharactersLong(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Register scratch5,
+ int flags);
+
+
+ // Probe the symbol table for a two character string. If the string is
+ // not found by probing a jump to the label not_found is performed. This jump
+ // does not guarantee that the string is not in the symbol table. If the
+ // string is found the code falls through with the string in register r0.
+ // Contents of both c1 and c2 registers are modified. At the exit c1 is
+ // guaranteed to contain halfword with low and high bytes equal to
+ // initial contents of c1 and c2 respectively.
+ static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
+ Register c1,
+ Register c2,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Register scratch5,
+ Label* not_found);
+
+ // Generate string hash.
+ static void GenerateHashInit(MacroAssembler* masm,
+ Register hash,
+ Register character);
+
+ static void GenerateHashAddCharacter(MacroAssembler* masm,
+ Register hash,
+ Register character);
+
+ static void GenerateHashGetHash(MacroAssembler* masm,
+ Register hash);
+
+ private:
+ DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
+};
+
+
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch,
+ bool ascii) {
+ Label loop;
+ Label done;
+ // This loop just copies one character at a time, as it is only used for very
+ // short strings.
+ if (!ascii) {
+ __ add(count, count, Operand(count), SetCC);
+ } else {
+ __ cmp(count, Operand(0, RelocInfo::NONE));
+ }
+ __ b(eq, &done);
+
+ __ bind(&loop);
+ __ ldrb(scratch, MemOperand(src, 1, PostIndex));
+ // Perform sub between load and dependent store to get the load time to
+ // complete.
+ __ sub(count, count, Operand(1), SetCC);
+ __ strb(scratch, MemOperand(dest, 1, PostIndex));
+ // last iteration.
+ __ b(gt, &loop);
+
+ __ bind(&done);
+}
+
+
+enum CopyCharactersFlags {
+ COPY_ASCII = 1,
+ DEST_ALWAYS_ALIGNED = 2
+};
+
+
+void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Register scratch5,
+ int flags) {
+ bool ascii = (flags & COPY_ASCII) != 0;
+ bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
+
+ if (dest_always_aligned && FLAG_debug_code) {
+ // Check that destination is actually word aligned if the flag says
+ // that it is.
+ __ tst(dest, Operand(kPointerAlignmentMask));
+ __ Check(eq, "Destination of copy not aligned.");
+ }
+
+ const int kReadAlignment = 4;
+ const int kReadAlignmentMask = kReadAlignment - 1;
+ // Ensure that reading an entire aligned word containing the last character
+ // of a string will not read outside the allocated area (because we pad up
+ // to kObjectAlignment).
+ STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
+ // Assumes word reads and writes are little endian.
+ // Nothing to do for zero characters.
+ Label done;
+ if (!ascii) {
+ __ add(count, count, Operand(count), SetCC);
+ } else {
+ __ cmp(count, Operand(0, RelocInfo::NONE));
+ }
+ __ b(eq, &done);
+
+ // Assume that you cannot read (or write) unaligned.
+ Label byte_loop;
+ // Must copy at least eight bytes, otherwise just do it one byte at a time.
+ __ cmp(count, Operand(8));
+ __ add(count, dest, Operand(count));
+ Register limit = count; // Read until src equals this.
+ __ b(lt, &byte_loop);
+
+ if (!dest_always_aligned) {
+ // Align dest by byte copying. Copies between zero and three bytes.
+ __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
+ Label dest_aligned;
+ __ b(eq, &dest_aligned);
+ __ cmp(scratch4, Operand(2));
+ __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
+ __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
+ __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
+ __ strb(scratch1, MemOperand(dest, 1, PostIndex));
+ __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
+ __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
+ __ bind(&dest_aligned);
+ }
+
+ Label simple_loop;
+
+ __ sub(scratch4, dest, Operand(src));
+ __ and_(scratch4, scratch4, Operand(0x03), SetCC);
+ __ b(eq, &simple_loop);
+ // Shift register is number of bits in a source word that
+ // must be combined with bits in the next source word in order
+ // to create a destination word.
+
+ // Complex loop for src/dst that are not aligned the same way.
+ {
+ Label loop;
+ __ mov(scratch4, Operand(scratch4, LSL, 3));
+ Register left_shift = scratch4;
+ __ and_(src, src, Operand(~3)); // Round down to load previous word.
+ __ ldr(scratch1, MemOperand(src, 4, PostIndex));
+ // Store the "shift" most significant bits of scratch in the least
+ // signficant bits (i.e., shift down by (32-shift)).
+ __ rsb(scratch2, left_shift, Operand(32));
+ Register right_shift = scratch2;
+ __ mov(scratch1, Operand(scratch1, LSR, right_shift));
+
+ __ bind(&loop);
+ __ ldr(scratch3, MemOperand(src, 4, PostIndex));
+ __ sub(scratch5, limit, Operand(dest));
+ __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
+ __ str(scratch1, MemOperand(dest, 4, PostIndex));
+ __ mov(scratch1, Operand(scratch3, LSR, right_shift));
+ // Loop if four or more bytes left to copy.
+ // Compare to eight, because we did the subtract before increasing dst.
+ __ sub(scratch5, scratch5, Operand(8), SetCC);
+ __ b(ge, &loop);
+ }
+ // There is now between zero and three bytes left to copy (negative that
+ // number is in scratch5), and between one and three bytes already read into
+ // scratch1 (eight times that number in scratch4). We may have read past
+ // the end of the string, but because objects are aligned, we have not read
+ // past the end of the object.
+ // Find the minimum of remaining characters to move and preloaded characters
+ // and write those as bytes.
+ __ add(scratch5, scratch5, Operand(4), SetCC);
+ __ b(eq, &done);
+ __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
+ // Move minimum of bytes read and bytes left to copy to scratch4.
+ __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
+ // Between one and three (value in scratch5) characters already read into
+ // scratch ready to write.
+ __ cmp(scratch5, Operand(2));
+ __ strb(scratch1, MemOperand(dest, 1, PostIndex));
+ __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
+ __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
+ __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
+ __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
+ // Copy any remaining bytes.
+ __ b(&byte_loop);
+
+ // Simple loop.
+ // Copy words from src to dst, until less than four bytes left.
+ // Both src and dest are word aligned.
+ __ bind(&simple_loop);
+ {
+ Label loop;
+ __ bind(&loop);
+ __ ldr(scratch1, MemOperand(src, 4, PostIndex));
+ __ sub(scratch3, limit, Operand(dest));
+ __ str(scratch1, MemOperand(dest, 4, PostIndex));
+ // Compare to 8, not 4, because we do the substraction before increasing
+ // dest.
+ __ cmp(scratch3, Operand(8));
+ __ b(ge, &loop);
+ }
+
+ // Copy bytes from src to dst until dst hits limit.
+ __ bind(&byte_loop);
+ __ cmp(dest, Operand(limit));
+ __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
+ __ b(ge, &done);
+ __ strb(scratch1, MemOperand(dest, 1, PostIndex));
+ __ b(&byte_loop);
+
+ __ bind(&done);
+}
+
+
+void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
+ Register c1,
+ Register c2,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Register scratch5,
+ Label* not_found) {
+ // Register scratch3 is the general scratch register in this function.
+ Register scratch = scratch3;
+
+ // Make sure that both characters are not digits as such strings has a
+ // different hash algorithm. Don't try to look for these in the symbol table.
+ Label not_array_index;
+ __ sub(scratch, c1, Operand(static_cast<int>('0')));
+ __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
+ __ b(hi, &not_array_index);
+ __ sub(scratch, c2, Operand(static_cast<int>('0')));
+ __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
+
+ // If check failed combine both characters into single halfword.
+ // This is required by the contract of the method: code at the
+ // not_found branch expects this combination in c1 register
+ __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
+ __ b(ls, not_found);
+
+ __ bind(&not_array_index);
+ // Calculate the two character string hash.
+ Register hash = scratch1;
+ StringHelper::GenerateHashInit(masm, hash, c1);
+ StringHelper::GenerateHashAddCharacter(masm, hash, c2);
+ StringHelper::GenerateHashGetHash(masm, hash);
+
+ // Collect the two characters in a register.
+ Register chars = c1;
+ __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
+
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+ // hash: hash of two character string.
+
+ // Load symbol table
+ // Load address of first element of the symbol table.
+ Register symbol_table = c2;
+ __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
+
+ Register undefined = scratch4;
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
+
+ // Calculate capacity mask from the symbol table capacity.
+ Register mask = scratch2;
+ __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
+ __ mov(mask, Operand(mask, ASR, 1));
+ __ sub(mask, mask, Operand(1));
+
+ // Calculate untagged address of the first element of the symbol table.
+ Register first_symbol_table_element = symbol_table;
+ __ add(first_symbol_table_element, symbol_table,
+ Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
+
+ // Registers
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+ // hash: hash of two character string
+ // mask: capacity mask
+ // first_symbol_table_element: address of the first element of
+ // the symbol table
+ // undefined: the undefined object
+ // scratch: -
+
+ // Perform a number of probes in the symbol table.
+ static const int kProbes = 4;
+ Label found_in_symbol_table;
+ Label next_probe[kProbes];
+ for (int i = 0; i < kProbes; i++) {
+ Register candidate = scratch5; // Scratch register contains candidate.
+
+ // Calculate entry in symbol table.
+ if (i > 0) {
+ __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
+ } else {
+ __ mov(candidate, hash);
+ }
+
+ __ and_(candidate, candidate, Operand(mask));
+
+ // Load the entry from the symble table.
+ STATIC_ASSERT(SymbolTable::kEntrySize == 1);
+ __ ldr(candidate,
+ MemOperand(first_symbol_table_element,
+ candidate,
+ LSL,
+ kPointerSizeLog2));
+
+ // If entry is undefined no string with this hash can be found.
+ Label is_string;
+ __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
+ __ b(ne, &is_string);
+
+ __ cmp(undefined, candidate);
+ __ b(eq, not_found);
+ // Must be null (deleted entry).
+ if (FLAG_debug_code) {
+ __ LoadRoot(ip, Heap::kNullValueRootIndex);
+ __ cmp(ip, candidate);
+ __ Assert(eq, "oddball in symbol table is not undefined or null");
+ }
+ __ jmp(&next_probe[i]);
+
+ __ bind(&is_string);
+
+ // Check that the candidate is a non-external ASCII string. The instance
+ // type is still in the scratch register from the CompareObjectType
+ // operation.
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
+
+ // If length is not 2 the string is not a candidate.
+ __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
+ __ cmp(scratch, Operand(Smi::FromInt(2)));
+ __ b(ne, &next_probe[i]);
+
+ // Check if the two characters match.
+ // Assumes that word load is little endian.
+ __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
+ __ cmp(chars, scratch);
+ __ b(eq, &found_in_symbol_table);
+ __ bind(&next_probe[i]);
+ }
+
+ // No matching 2 character string found by probing.
+ __ jmp(not_found);
+
+ // Scratch register contains result when we fall through to here.
+ Register result = scratch;
+ __ bind(&found_in_symbol_table);
+ __ Move(r0, result);
+}
+
+
+void StringHelper::GenerateHashInit(MacroAssembler* masm,
+ Register hash,
+ Register character) {
+ // hash = character + (character << 10);
+ __ add(hash, character, Operand(character, LSL, 10));
+ // hash ^= hash >> 6;
+ __ eor(hash, hash, Operand(hash, ASR, 6));
+}
+
+
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
+ Register hash,
+ Register character) {
+ // hash += character;
+ __ add(hash, hash, Operand(character));
+ // hash += hash << 10;
+ __ add(hash, hash, Operand(hash, LSL, 10));
+ // hash ^= hash >> 6;
+ __ eor(hash, hash, Operand(hash, ASR, 6));
+}
+
+
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
+ Register hash) {
+ // hash += hash << 3;
+ __ add(hash, hash, Operand(hash, LSL, 3));
+ // hash ^= hash >> 11;
+ __ eor(hash, hash, Operand(hash, ASR, 11));
+ // hash += hash << 15;
+ __ add(hash, hash, Operand(hash, LSL, 15), SetCC);
+
+ // if (hash == 0) hash = 27;
+ __ mov(hash, Operand(27), LeaveCC, ne);
+}
+
+
+void SubStringStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ // Stack frame on entry.
+ // lr: return address
+ // sp[0]: to
+ // sp[4]: from
+ // sp[8]: string
+
+ // This stub is called from the native-call %_SubString(...), so
+ // nothing can be assumed about the arguments. It is tested that:
+ // "string" is a sequential string,
+ // both "from" and "to" are smis, and
+ // 0 <= from <= to <= string.length.
+ // If any of these assumptions fail, we call the runtime system.
+
+ static const int kToOffset = 0 * kPointerSize;
+ static const int kFromOffset = 1 * kPointerSize;
+ static const int kStringOffset = 2 * kPointerSize;
+
+ // Check bounds and smi-ness.
+ Register to = r6;
+ Register from = r7;
+ __ Ldrd(to, from, MemOperand(sp, kToOffset));
+ STATIC_ASSERT(kFromOffset == kToOffset + 4);
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ // I.e., arithmetic shift right by one un-smi-tags.
+ __ mov(r2, Operand(to, ASR, 1), SetCC);
+ __ mov(r3, Operand(from, ASR, 1), SetCC, cc);
+ // If either to or from had the smi tag bit set, then carry is set now.
+ __ b(cs, &runtime); // Either "from" or "to" is not a smi.
+ __ b(mi, &runtime); // From is negative.
+
+ // Both to and from are smis.
+
+ __ sub(r2, r2, Operand(r3), SetCC);
+ __ b(mi, &runtime); // Fail if from > to.
+ // Special handling of sub-strings of length 1 and 2. One character strings
+ // are handled in the runtime system (looked up in the single character
+ // cache). Two character strings are looked for in the symbol cache.
+ __ cmp(r2, Operand(2));
+ __ b(lt, &runtime);
+
+ // r2: length
+ // r3: from index (untaged smi)
+ // r6 (a.k.a. to): to (smi)
+ // r7 (a.k.a. from): from offset (smi)
+
+ // Make sure first argument is a sequential (or flat) string.
+ __ ldr(r5, MemOperand(sp, kStringOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ tst(r5, Operand(kSmiTagMask));
+ __ b(eq, &runtime);
+ Condition is_string = masm->IsObjectStringType(r5, r1);
+ __ b(NegateCondition(is_string), &runtime);
+
+ // r1: instance type
+ // r2: length
+ // r3: from index (untagged smi)
+ // r5: string
+ // r6 (a.k.a. to): to (smi)
+ // r7 (a.k.a. from): from offset (smi)
+ Label seq_string;
+ __ and_(r4, r1, Operand(kStringRepresentationMask));
+ STATIC_ASSERT(kSeqStringTag < kConsStringTag);
+ STATIC_ASSERT(kConsStringTag < kExternalStringTag);
+ __ cmp(r4, Operand(kConsStringTag));
+ __ b(gt, &runtime); // External strings go to runtime.
+ __ b(lt, &seq_string); // Sequential strings are handled directly.
+
+ // Cons string. Try to recurse (once) on the first substring.
+ // (This adds a little more generality than necessary to handle flattened
+ // cons strings, but not much).
+ __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
+ __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ tst(r1, Operand(kStringRepresentationMask));
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ b(ne, &runtime); // Cons and External strings go to runtime.
+
+ // Definitly a sequential string.
+ __ bind(&seq_string);
+
+ // r1: instance type.
+ // r2: length
+ // r3: from index (untaged smi)
+ // r5: string
+ // r6 (a.k.a. to): to (smi)
+ // r7 (a.k.a. from): from offset (smi)
+ __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
+ __ cmp(r4, Operand(to));
+ __ b(lt, &runtime); // Fail if to > length.
+ to = no_reg;
+
+ // r1: instance type.
+ // r2: result string length.
+ // r3: from index (untaged smi)
+ // r5: string.
+ // r7 (a.k.a. from): from offset (smi)
+ // Check for flat ASCII string.
+ Label non_ascii_flat;
+ __ tst(r1, Operand(kStringEncodingMask));
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ __ b(eq, &non_ascii_flat);
+
+ Label result_longer_than_two;
+ __ cmp(r2, Operand(2));
+ __ b(gt, &result_longer_than_two);
+
+ // Sub string of length 2 requested.
+ // Get the two characters forming the sub string.
+ __ add(r5, r5, Operand(r3));
+ __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
+ __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
+
+ // Try to lookup two character string in symbol table.
+ Label make_two_character_string;
+ StringHelper::GenerateTwoCharacterSymbolTableProbe(
+ masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ // r2: result string length.
+ // r3: two characters combined into halfword in little endian byte order.
+ __ bind(&make_two_character_string);
+ __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
+ __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
+ __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&result_longer_than_two);
+
+ // Allocate the result.
+ __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
+
+ // r0: result string.
+ // r2: result string length.
+ // r5: string.
+ // r7 (a.k.a. from): from offset (smi)
+ // Locate first character of result.
+ __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // Locate 'from' character of string.
+ __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ add(r5, r5, Operand(from, ASR, 1));
+
+ // r0: result string.
+ // r1: first character of result string.
+ // r2: result string length.
+ // r5: first character of sub string to copy.
+ STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
+ StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
+ COPY_ASCII | DEST_ALWAYS_ALIGNED);
+ __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&non_ascii_flat);
+ // r2: result string length.
+ // r5: string.
+ // r7 (a.k.a. from): from offset (smi)
+ // Check for flat two byte string.
+
+ // Allocate the result.
+ __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
+
+ // r0: result string.
+ // r2: result string length.
+ // r5: string.
+ // Locate first character of result.
+ __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // Locate 'from' character of string.
+ __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // As "from" is a smi it is 2 times the value which matches the size of a two
+ // byte character.
+ __ add(r5, r5, Operand(from));
+ from = no_reg;
+
+ // r0: result string.
+ // r1: first character of result.
+ // r2: result length.
+ // r5: first character of string to copy.
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ StringHelper::GenerateCopyCharactersLong(
+ masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
+ __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
+ __ add(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ // Just jump to runtime to create the sub string.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kSubString, 3, 1);
+}
+
+
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4) {
+ Label compare_lengths;
+ // Find minimum length and length difference.
+ __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
+ __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
+ Register length_delta = scratch3;
+ __ mov(scratch1, scratch2, LeaveCC, gt);
+ Register min_length = scratch1;
+ STATIC_ASSERT(kSmiTag == 0);
+ __ tst(min_length, Operand(min_length));
+ __ b(eq, &compare_lengths);
+
+ // Untag smi.
+ __ mov(min_length, Operand(min_length, ASR, kSmiTagSize));
+
+ // Setup registers so that we only need to increment one register
+ // in the loop.
+ __ add(scratch2, min_length,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ add(left, left, Operand(scratch2));
+ __ add(right, right, Operand(scratch2));
+ // Registers left and right points to the min_length character of strings.
+ __ rsb(min_length, min_length, Operand(-1));
+ Register index = min_length;
+ // Index starts at -min_length.
+
+ {
+ // Compare loop.
+ Label loop;
+ __ bind(&loop);
+ // Compare characters.
+ __ add(index, index, Operand(1), SetCC);
+ __ ldrb(scratch2, MemOperand(left, index), ne);
+ __ ldrb(scratch4, MemOperand(right, index), ne);
+ // Skip to compare lengths with eq condition true.
+ __ b(eq, &compare_lengths);
+ __ cmp(scratch2, scratch4);
+ __ b(eq, &loop);
+ // Fallthrough with eq condition false.
+ }
+ // Compare lengths - strings up to min-length are equal.
+ __ bind(&compare_lengths);
+ ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
+ // Use zero length_delta as result.
+ __ mov(r0, Operand(length_delta), SetCC, eq);
+ // Fall through to here if characters compare not-equal.
+ __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
+ __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
+ __ Ret();
+}
+
+
+void StringCompareStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ Counters* counters = masm->isolate()->counters();
+
+ // Stack frame on entry.
+ // sp[0]: right string
+ // sp[4]: left string
+ __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
+
+ Label not_same;
+ __ cmp(r0, r1);
+ __ b(ne, &not_same);
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ mov(r0, Operand(Smi::FromInt(EQUAL)));
+ __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&not_same);
+
+ // Check that both objects are sequential ASCII strings.
+ __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
+
+ // Compare flat ASCII strings natively. Remove arguments from stack first.
+ __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
+
+ // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+}
+
+
+void StringAddStub::Generate(MacroAssembler* masm) {
+ Label string_add_runtime, call_builtin;
+ Builtins::JavaScript builtin_id = Builtins::ADD;
+
+ Counters* counters = masm->isolate()->counters();
+
+ // Stack on entry:
+ // sp[0]: second argument (right).
+ // sp[4]: first argument (left).
+
+ // Load the two arguments.
+ __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
+ __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
+
+ // Make sure that both arguments are strings if not known in advance.
+ if (flags_ == NO_STRING_ADD_FLAGS) {
+ __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
+ // Load instance types.
+ __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kStringTag == 0);
+ // If either is not a string, go to runtime.
+ __ tst(r4, Operand(kIsNotStringMask));
+ __ tst(r5, Operand(kIsNotStringMask), eq);
+ __ b(ne, &string_add_runtime);
+ } else {
+ // Here at least one of the arguments is definitely a string.
+ // We convert the one that is not known to be a string.
+ if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
+ ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
+ GenerateConvertArgument(
+ masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
+ builtin_id = Builtins::STRING_ADD_RIGHT;
+ } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
+ ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
+ GenerateConvertArgument(
+ masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
+ builtin_id = Builtins::STRING_ADD_LEFT;
+ }
+ }
+
+ // Both arguments are strings.
+ // r0: first string
+ // r1: second string
+ // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ {
+ Label strings_not_empty;
+ // Check if either of the strings are empty. In that case return the other.
+ __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
+ __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
+ __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
+ STATIC_ASSERT(kSmiTag == 0);
+ // Else test if second string is empty.
+ __ cmp(r3, Operand(Smi::FromInt(0)), ne);
+ __ b(ne, &strings_not_empty); // If either string was empty, return r0.
+
+ __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&strings_not_empty);
+ }
+
+ __ mov(r2, Operand(r2, ASR, kSmiTagSize));
+ __ mov(r3, Operand(r3, ASR, kSmiTagSize));
+ // Both strings are non-empty.
+ // r0: first string
+ // r1: second string
+ // r2: length of first string
+ // r3: length of second string
+ // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // Look at the length of the result of adding the two strings.
+ Label string_add_flat_result, longer_than_two;
+ // Adding two lengths can't overflow.
+ STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
+ __ add(r6, r2, Operand(r3));
+ // Use the symbol table when adding two one character strings, as it
+ // helps later optimizations to return a symbol here.
+ __ cmp(r6, Operand(2));
+ __ b(ne, &longer_than_two);
+
+ // Check that both strings are non-external ASCII strings.
+ if (flags_ != NO_STRING_ADD_FLAGS) {
+ __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
+ }
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
+ &string_add_runtime);
+
+ // Get the two characters forming the sub string.
+ __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
+ __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
+
+ // Try to lookup two character string in symbol table. If it is not found
+ // just allocate a new one.
+ Label make_two_character_string;
+ StringHelper::GenerateTwoCharacterSymbolTableProbe(
+ masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
+ __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&make_two_character_string);
+ // Resulting string has length 2 and first chars of two strings
+ // are combined into single halfword in r2 register.
+ // So we can fill resulting string without two loops by a single
+ // halfword store instruction (which assumes that processor is
+ // in a little endian mode)
+ __ mov(r6, Operand(2));
+ __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
+ __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
+ __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&longer_than_two);
+ // Check if resulting string will be flat.
+ __ cmp(r6, Operand(String::kMinNonFlatLength));
+ __ b(lt, &string_add_flat_result);
+ // Handle exceptionally long strings in the runtime system.
+ STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
+ ASSERT(IsPowerOf2(String::kMaxLength + 1));
+ // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
+ __ cmp(r6, Operand(String::kMaxLength + 1));
+ __ b(hs, &string_add_runtime);
+
+ // If result is not supposed to be flat, allocate a cons string object.
+ // If both strings are ASCII the result is an ASCII cons string.
+ if (flags_ != NO_STRING_ADD_FLAGS) {
+ __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
+ }
+ Label non_ascii, allocated, ascii_data;
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ __ tst(r4, Operand(kStringEncodingMask));
+ __ tst(r5, Operand(kStringEncodingMask), ne);
+ __ b(eq, &non_ascii);
+
+ // Allocate an ASCII cons string.
+ __ bind(&ascii_data);
+ __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
+ __ bind(&allocated);
+ // Fill the fields of the cons string.
+ __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
+ __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
+ __ mov(r0, Operand(r7));
+ __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&non_ascii);
+ // At least one of the strings is two-byte. Check whether it happens
+ // to contain only ASCII characters.
+ // r4: first instance type.
+ // r5: second instance type.
+ __ tst(r4, Operand(kAsciiDataHintMask));
+ __ tst(r5, Operand(kAsciiDataHintMask), ne);
+ __ b(ne, &ascii_data);
+ __ eor(r4, r4, Operand(r5));
+ STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
+ __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
+ __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
+ __ b(eq, &ascii_data);
+
+ // Allocate a two byte cons string.
+ __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
+ __ jmp(&allocated);
+
+ // Handle creating a flat result. First check that both strings are
+ // sequential and that they have the same encoding.
+ // r0: first string
+ // r1: second string
+ // r2: length of first string
+ // r3: length of second string
+ // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // r6: sum of lengths.
+ __ bind(&string_add_flat_result);
+ if (flags_ != NO_STRING_ADD_FLAGS) {
+ __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
+ }
+ // Check that both strings are sequential.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ tst(r4, Operand(kStringRepresentationMask));
+ __ tst(r5, Operand(kStringRepresentationMask), eq);
+ __ b(ne, &string_add_runtime);
+ // Now check if both strings have the same encoding (ASCII/Two-byte).
+ // r0: first string.
+ // r1: second string.
+ // r2: length of first string.
+ // r3: length of second string.
+ // r6: sum of lengths..
+ Label non_ascii_string_add_flat_result;
+ ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
+ __ eor(r7, r4, Operand(r5));
+ __ tst(r7, Operand(kStringEncodingMask));
+ __ b(ne, &string_add_runtime);
+ // And see if it's ASCII or two-byte.
+ __ tst(r4, Operand(kStringEncodingMask));
+ __ b(eq, &non_ascii_string_add_flat_result);
+
+ // Both strings are sequential ASCII strings. We also know that they are
+ // short (since the sum of the lengths is less than kMinNonFlatLength).
+ // r6: length of resulting flat string
+ __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
+ // Locate first character of result.
+ __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // Locate first character of first argument.
+ __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // r0: first character of first string.
+ // r1: second string.
+ // r2: length of first string.
+ // r3: length of second string.
+ // r6: first character of result.
+ // r7: result string.
+ StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
+
+ // Load second argument and locate first character.
+ __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // r1: first character of second string.
+ // r3: length of second string.
+ // r6: next character of result.
+ // r7: result string.
+ StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
+ __ mov(r0, Operand(r7));
+ __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&non_ascii_string_add_flat_result);
+ // Both strings are sequential two byte strings.
+ // r0: first string.
+ // r1: second string.
+ // r2: length of first string.
+ // r3: length of second string.
+ // r6: sum of length of strings.
+ __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
+ // r0: first string.
+ // r1: second string.
+ // r2: length of first string.
+ // r3: length of second string.
+ // r7: result string.
+
+ // Locate first character of result.
+ __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // Locate first character of first argument.
+ __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+ // r0: first character of first string.
+ // r1: second string.
+ // r2: length of first string.
+ // r3: length of second string.
+ // r6: first character of result.
+ // r7: result string.
+ StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
+
+ // Locate first character of second argument.
+ __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+ // r1: first character of second string.
+ // r3: length of second string.
+ // r6: next character of result (after copy of first string).
+ // r7: result string.
+ StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
+
+ __ mov(r0, Operand(r7));
+ __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
+ __ add(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ // Just jump to runtime to add the two strings.
+ __ bind(&string_add_runtime);
+ __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
+
+ if (call_builtin.is_linked()) {
+ __ bind(&call_builtin);
+ __ InvokeBuiltin(builtin_id, JUMP_JS);
+ }
+}
+
+
+void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
+ int stack_offset,
+ Register arg,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Label* slow) {
+ // First check if the argument is already a string.
+ Label not_string, done;
+ __ JumpIfSmi(arg, &not_string);
+ __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
+ __ b(lt, &done);
+
+ // Check the number to string cache.
+ Label not_cached;
+ __ bind(&not_string);
+ // Puts the cached result into scratch1.
+ NumberToStringStub::GenerateLookupNumberStringCache(masm,
+ arg,
+ scratch1,
+ scratch2,
+ scratch3,
+ scratch4,
+ false,
+ &not_cached);
+ __ mov(arg, scratch1);
+ __ str(arg, MemOperand(sp, stack_offset));
+ __ jmp(&done);
+
+ // Check if the argument is a safe string wrapper.
+ __ bind(&not_cached);
+ __ JumpIfSmi(arg, slow);
+ __ CompareObjectType(
+ arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
+ __ b(ne, slow);
+ __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
+ __ and_(scratch2,
+ scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ cmp(scratch2,
+ Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ b(ne, slow);
+ __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
+ __ str(arg, MemOperand(sp, stack_offset));
+
+ __ bind(&done);
+}
+
+
+void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
+ ASSERT(state_ == CompareIC::SMIS);
+ Label miss;
+ __ orr(r2, r1, r0);
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &miss);
+
+ if (GetCondition() == eq) {
+ // For equality we do not care about the sign of the result.
+ __ sub(r0, r0, r1, SetCC);
+ } else {
+ // Untag before subtracting to avoid handling overflow.
+ __ SmiUntag(r1);
+ __ sub(r0, r1, SmiUntagOperand(r0));
+ }
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
+ ASSERT(state_ == CompareIC::HEAP_NUMBERS);
+
+ Label generic_stub;
+ Label unordered;
+ Label miss;
+ __ and_(r2, r1, Operand(r0));
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(eq, &generic_stub);
+
+ __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
+ __ b(ne, &miss);
+ __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
+ __ b(ne, &miss);
+
+ // Inlining the double comparison and falling back to the general compare
+ // stub if NaN is involved or VFP3 is unsupported.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+
+ // Load left and right operand
+ __ sub(r2, r1, Operand(kHeapObjectTag));
+ __ vldr(d0, r2, HeapNumber::kValueOffset);
+ __ sub(r2, r0, Operand(kHeapObjectTag));
+ __ vldr(d1, r2, HeapNumber::kValueOffset);
+
+ // Compare operands
+ __ VFPCompareAndSetFlags(d0, d1);
+
+ // Don't base result on status bits when a NaN is involved.
+ __ b(vs, &unordered);
+
+ // Return a result of -1, 0, or 1, based on status bits.
+ __ mov(r0, Operand(EQUAL), LeaveCC, eq);
+ __ mov(r0, Operand(LESS), LeaveCC, lt);
+ __ mov(r0, Operand(GREATER), LeaveCC, gt);
+ __ Ret();
+
+ __ bind(&unordered);
+ }
+
+ CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
+ __ bind(&generic_stub);
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
+ ASSERT(state_ == CompareIC::OBJECTS);
+ Label miss;
+ __ and_(r2, r1, Operand(r0));
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(eq, &miss);
+
+ __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
+ __ b(ne, &miss);
+ __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
+ __ b(ne, &miss);
+
+ ASSERT(GetCondition() == eq);
+ __ sub(r0, r0, Operand(r1));
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
+ __ Push(r1, r0);
+ __ push(lr);
+
+ // Call the runtime system in a fresh internal frame.
+ ExternalReference miss =
+ ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
+ __ EnterInternalFrame();
+ __ Push(r1, r0);
+ __ mov(ip, Operand(Smi::FromInt(op_)));
+ __ push(ip);
+ __ CallExternalReference(miss, 3);
+ __ LeaveInternalFrame();
+ // Compute the entry point of the rewritten stub.
+ __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
+ // Restore registers.
+ __ pop(lr);
+ __ pop(r0);
+ __ pop(r1);
+ __ Jump(r2);
+}
+
+
+void DirectCEntryStub::Generate(MacroAssembler* masm) {
+ __ ldr(pc, MemOperand(sp, 0));
+}
+
+
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
+ ExternalReference function) {
+ __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
+ RelocInfo::CODE_TARGET));
+ __ mov(r2, Operand(function));
+ // Push return address (accessible to GC through exit frame pc).
+ __ str(pc, MemOperand(sp, 0));
+ __ Jump(r2); // Call the api function.
+}
+
+
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
+ Register target) {
+ __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
+ RelocInfo::CODE_TARGET));
+ // Push return address (accessible to GC through exit frame pc).
+ __ str(pc, MemOperand(sp, 0));
+ __ Jump(target); // Call the C++ function.
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_ARM