summaryrefslogtreecommitdiff
path: root/src/3rdparty/proj/PJ_chamb.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/proj/PJ_chamb.c')
-rw-r--r--src/3rdparty/proj/PJ_chamb.c112
1 files changed, 112 insertions, 0 deletions
diff --git a/src/3rdparty/proj/PJ_chamb.c b/src/3rdparty/proj/PJ_chamb.c
new file mode 100644
index 00000000..c17a7133
--- /dev/null
+++ b/src/3rdparty/proj/PJ_chamb.c
@@ -0,0 +1,112 @@
+typedef struct { double r, Az; } VECT;
+#define PROJ_PARMS__ \
+ struct { /* control point data */ \
+ double phi, lam; \
+ double cosphi, sinphi; \
+ VECT v; \
+ XY p; \
+ double Az; \
+ } c[3]; \
+ XY p; \
+ double beta_0, beta_1, beta_2;
+#define PJ_LIB__
+#include <projects.h>
+PROJ_HEAD(chamb, "Chamberlin Trimetric") "\n\tMisc Sph, no inv."
+"\n\tlat_1= lon_1= lat_2= lon_2= lat_3= lon_3=";
+#include <stdio.h>
+#define THIRD 0.333333333333333333
+#define TOL 1e-9
+ static VECT /* distance and azimuth from point 1 to point 2 */
+vect(double dphi, double c1, double s1, double c2, double s2, double dlam) {
+ VECT v;
+ double cdl, dp, dl;
+
+ cdl = cos(dlam);
+ if (fabs(dphi) > 1. || fabs(dlam) > 1.)
+ v.r = aacos(s1 * s2 + c1 * c2 * cdl);
+ else { /* more accurate for smaller distances */
+ dp = sin(.5 * dphi);
+ dl = sin(.5 * dlam);
+ v.r = 2. * aasin(sqrt(dp * dp + c1 * c2 * dl * dl));
+ }
+ if (fabs(v.r) > TOL)
+ v.Az = atan2(c2 * sin(dlam), c1 * s2 - s1 * c2 * cdl);
+ else
+ v.r = v.Az = 0.;
+ return v;
+}
+ static double /* law of cosines */
+lc(double b,double c,double a) {
+ return aacos(.5 * (b * b + c * c - a * a) / (b * c));
+}
+FORWARD(s_forward); /* spheroid */
+ double sinphi, cosphi, a;
+ VECT v[3];
+ int i, j;
+
+ sinphi = sin(lp.phi);
+ cosphi = cos(lp.phi);
+ for (i = 0; i < 3; ++i) { /* dist/azimiths from control */
+ v[i] = vect(lp.phi - P->c[i].phi, P->c[i].cosphi, P->c[i].sinphi,
+ cosphi, sinphi, lp.lam - P->c[i].lam);
+ if ( ! v[i].r)
+ break;
+ v[i].Az = adjlon(v[i].Az - P->c[i].v.Az);
+ }
+ if (i < 3) /* current point at control point */
+ xy = P->c[i].p;
+ else { /* point mean of intersepts */
+ xy = P->p;
+ for (i = 0; i < 3; ++i) {
+ j = i == 2 ? 0 : i + 1;
+ a = lc(P->c[i].v.r, v[i].r, v[j].r);
+ if (v[i].Az < 0.)
+ a = -a;
+ if (! i) { /* coord comp unique to each arc */
+ xy.x += v[i].r * cos(a);
+ xy.y -= v[i].r * sin(a);
+ } else if (i == 1) {
+ a = P->beta_1 - a;
+ xy.x -= v[i].r * cos(a);
+ xy.y -= v[i].r * sin(a);
+ } else {
+ a = P->beta_2 - a;
+ xy.x += v[i].r * cos(a);
+ xy.y += v[i].r * sin(a);
+ }
+ }
+ xy.x *= THIRD; /* mean of arc intercepts */
+ xy.y *= THIRD;
+ }
+ return xy;
+}
+FREEUP; if (P) pj_dalloc(P); }
+ENTRY0(chamb)
+ int i, j;
+ char line[10];
+
+ for (i = 0; i < 3; ++i) { /* get control point locations */
+ (void)sprintf(line, "rlat_%d", i+1);
+ P->c[i].phi = pj_param(P->params, line).f;
+ (void)sprintf(line, "rlon_%d", i+1);
+ P->c[i].lam = pj_param(P->params, line).f;
+ P->c[i].lam = adjlon(P->c[i].lam - P->lam0);
+ P->c[i].cosphi = cos(P->c[i].phi);
+ P->c[i].sinphi = sin(P->c[i].phi);
+ }
+ for (i = 0; i < 3; ++i) { /* inter ctl pt. distances and azimuths */
+ j = i == 2 ? 0 : i + 1;
+ P->c[i].v = vect(P->c[j].phi - P->c[i].phi, P->c[i].cosphi, P->c[i].sinphi,
+ P->c[j].cosphi, P->c[j].sinphi, P->c[j].lam - P->c[i].lam);
+ if (! P->c[i].v.r) E_ERROR(-25);
+ /* co-linearity problem ignored for now */
+ }
+ P->beta_0 = lc(P->c[0].v.r, P->c[2].v.r, P->c[1].v.r);
+ P->beta_1 = lc(P->c[0].v.r, P->c[1].v.r, P->c[2].v.r);
+ P->beta_2 = PI - P->beta_0;
+ P->p.y = 2. * (P->c[0].p.y = P->c[1].p.y = P->c[2].v.r * sin(P->beta_0));
+ P->c[2].p.y = 0.;
+ P->c[0].p.x = - (P->c[1].p.x = 0.5 * P->c[0].v.r);
+ P->p.x = P->c[2].p.x = P->c[0].p.x + P->c[2].v.r * cos(P->beta_0);
+ P->es = 0.; P->fwd = s_forward;
+ENDENTRY(P)