summaryrefslogtreecommitdiff
path: root/src/3rdparty/earcut/earcut.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/earcut/earcut.hpp')
-rw-r--r--src/3rdparty/earcut/earcut.hpp773
1 files changed, 0 insertions, 773 deletions
diff --git a/src/3rdparty/earcut/earcut.hpp b/src/3rdparty/earcut/earcut.hpp
deleted file mode 100644
index 1f14b9f7..00000000
--- a/src/3rdparty/earcut/earcut.hpp
+++ /dev/null
@@ -1,773 +0,0 @@
-#pragma once
-
-#include <algorithm>
-#include <cassert>
-#include <cmath>
-#include <memory>
-#include <vector>
-
-namespace mapbox {
-
-namespace util {
-
-template <std::size_t I, typename T> struct nth {
- inline static typename std::tuple_element<I, T>::type
- get(const T& t) { return std::get<I>(t); };
-};
-
-}
-
-namespace detail {
-
-template <typename N = uint32_t>
-class Earcut {
-public:
- std::vector<N> indices;
- N vertices = 0;
-
- template <typename Polygon>
- void operator()(const Polygon& points);
-
-private:
- struct Node {
- Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
- Node(const Node&) = delete;
- Node& operator=(const Node&) = delete;
- Node(Node&&) = delete;
- Node& operator=(Node&&) = delete;
-
- const N i;
- const double x;
- const double y;
-
- // previous and next vertice nodes in a polygon ring
- Node* prev = nullptr;
- Node* next = nullptr;
-
- // z-order curve value
- int32_t z = 0;
-
- // previous and next nodes in z-order
- Node* prevZ = nullptr;
- Node* nextZ = nullptr;
-
- // indicates whether this is a steiner point
- bool steiner = false;
- };
-
- template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
- Node* filterPoints(Node* start, Node* end = nullptr);
- void earcutLinked(Node* ear, int pass = 0);
- bool isEar(Node* ear);
- bool isEarHashed(Node* ear);
- Node* cureLocalIntersections(Node* start);
- void splitEarcut(Node* start);
- template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
- void eliminateHole(Node* hole, Node* outerNode);
- Node* findHoleBridge(Node* hole, Node* outerNode);
- void indexCurve(Node* start);
- Node* sortLinked(Node* list);
- int32_t zOrder(const double x_, const double y_);
- Node* getLeftmost(Node* start);
- bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
- bool isValidDiagonal(Node* a, Node* b);
- double area(const Node* p, const Node* q, const Node* r) const;
- bool equals(const Node* p1, const Node* p2);
- bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
- bool intersectsPolygon(const Node* a, const Node* b);
- bool locallyInside(const Node* a, const Node* b);
- bool middleInside(const Node* a, const Node* b);
- Node* splitPolygon(Node* a, Node* b);
- template <typename Point> Node* insertNode(N i, const Point& p, Node* last);
- void removeNode(Node* p);
-
- bool hashing;
- double minX, maxX;
- double minY, maxY;
- double size;
-
- template <typename T, typename Alloc = std::allocator<T>>
- class ObjectPool {
- public:
- ObjectPool() { }
- ObjectPool(std::size_t blockSize_) {
- reset(blockSize_);
- }
- ~ObjectPool() {
- clear();
- }
- template <typename... Args>
- T* construct(Args&&... args) {
- if (currentIndex >= blockSize) {
- currentBlock = alloc.allocate(blockSize);
- allocations.emplace_back(currentBlock);
- currentIndex = 0;
- }
- T* object = &currentBlock[currentIndex++];
- alloc.construct(object, std::forward<Args>(args)...);
- return object;
- }
- void reset(std::size_t newBlockSize) {
- for (auto allocation : allocations) alloc.deallocate(allocation, blockSize);
- allocations.clear();
- blockSize = std::max<std::size_t>(1, newBlockSize);
- currentBlock = nullptr;
- currentIndex = blockSize;
- }
- void clear() { reset(blockSize); }
- private:
- T* currentBlock = nullptr;
- std::size_t currentIndex = 1;
- std::size_t blockSize = 1;
- std::vector<T*> allocations;
- Alloc alloc;
- };
- ObjectPool<Node> nodes;
-};
-
-template <typename N> template <typename Polygon>
-void Earcut<N>::operator()(const Polygon& points) {
- // reset
- indices.clear();
- vertices = 0;
-
- if (points.empty()) return;
-
- double x;
- double y;
- size = 0;
- int threshold = 80;
- std::size_t len = 0;
-
- for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
- threshold -= static_cast<int>(points[i].size());
- len += points[i].size();
- }
-
- //estimate size of nodes and indices
- nodes.reset(len * 3 / 2);
- indices.reserve(len + points[0].size());
-
- Node* outerNode = linkedList(points[0], true);
- if (!outerNode) return;
-
- if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
-
- // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
- hashing = threshold < 0;
- if (hashing) {
- Node* p = outerNode->next;
- minX = maxX = p->x;
- minY = maxY = p->y;
- do {
- x = p->x;
- y = p->y;
- minX = (std::min)(minX, x);
- minY = (std::min)(minY, y);
- maxX = (std::max)(maxX, x);
- maxY = (std::max)(maxY, y);
- p = p->next;
- } while (p != outerNode);
-
- // minX, minY and size are later used to transform coords into integers for z-order calculation
- size = (std::max)(maxX - minX, maxY - minY);
- }
-
- earcutLinked(outerNode);
-
- nodes.clear();
-}
-
-// create a circular doubly linked list from polygon points in the specified winding order
-template <typename N> template <typename Ring>
-typename Earcut<N>::Node*
-Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
- using Point = typename Ring::value_type;
- double sum = 0;
- const int len = static_cast<int>(points.size());
- int i, j;
- Point p1, p2;
- Node* last = nullptr;
-
- // calculate original winding order of a polygon ring
- for (i = 0, j = len - 1; i < len; j = i++) {
- p1 = points[i];
- p2 = points[j];
- const double p20 = util::nth<0, Point>::get(p2);
- const double p10 = util::nth<0, Point>::get(p1);
- const double p11 = util::nth<1, Point>::get(p1);
- const double p21 = util::nth<1, Point>::get(p2);
- sum += (p20 - p10) * (p11 + p21);
- }
-
- // link points into circular doubly-linked list in the specified winding order
- if (clockwise == (sum > 0)) {
- for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
- } else {
- for (i = len - 1; i >= 0; i--) last = insertNode(vertices + i, points[i], last);
- }
-
- if (last && equals(last, last->next)) {
- removeNode(last);
- last = last->next;
- }
-
- vertices += len;
-
- return last;
-}
-
-// eliminate colinear or duplicate points
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::filterPoints(Node* start, Node* end) {
- if (!end) end = start;
-
- Node* p = start;
- bool again;
- do {
- again = false;
-
- if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
- removeNode(p);
- p = end = p->prev;
-
- if (p == p->next) return nullptr;
- again = true;
-
- } else {
- p = p->next;
- }
- } while (again || p != end);
-
- return end;
-}
-
-// main ear slicing loop which triangulates a polygon (given as a linked list)
-template <typename N>
-void Earcut<N>::earcutLinked(Node* ear, int pass) {
- if (!ear) return;
-
- // interlink polygon nodes in z-order
- if (!pass && hashing) indexCurve(ear);
-
- Node* stop = ear;
- Node* prev;
- Node* next;
-
- int iterations = 0;
-
- // iterate through ears, slicing them one by one
- while (ear->prev != ear->next) {
- iterations++;
- prev = ear->prev;
- next = ear->next;
-
- if (hashing ? isEarHashed(ear) : isEar(ear)) {
- // cut off the triangle
- indices.emplace_back(prev->i);
- indices.emplace_back(ear->i);
- indices.emplace_back(next->i);
-
- removeNode(ear);
-
- // skipping the next vertice leads to less sliver triangles
- ear = next->next;
- stop = next->next;
-
- continue;
- }
-
- ear = next;
-
- // if we looped through the whole remaining polygon and can't find any more ears
- if (ear == stop) {
- // try filtering points and slicing again
- if (!pass) earcutLinked(filterPoints(ear), 1);
-
- // if this didn't work, try curing all small self-intersections locally
- else if (pass == 1) {
- ear = cureLocalIntersections(ear);
- earcutLinked(ear, 2);
-
- // as a last resort, try splitting the remaining polygon into two
- } else if (pass == 2) splitEarcut(ear);
-
- break;
- }
- }
-}
-
-// check whether a polygon node forms a valid ear with adjacent nodes
-template <typename N>
-bool Earcut<N>::isEar(Node* ear) {
- const Node* a = ear->prev;
- const Node* b = ear;
- const Node* c = ear->next;
-
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
-
- // now make sure we don't have other points inside the potential ear
- Node* p = ear->next->next;
-
- while (p != ear->prev) {
- if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
- area(p->prev, p, p->next) >= 0) return false;
- p = p->next;
- }
-
- return true;
-}
-
-template <typename N>
-bool Earcut<N>::isEarHashed(Node* ear) {
- const Node* a = ear->prev;
- const Node* b = ear;
- const Node* c = ear->next;
-
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
-
- // triangle bbox; min & max are calculated like this for speed
- const double minTX = (std::min)(a->x, (std::min)(b->x, c->x));
- const double minTY = (std::min)(a->y, (std::min)(b->y, c->y));
- const double maxTX = (std::max)(a->x, (std::max)(b->x, c->x));
- const double maxTY = (std::max)(a->y, (std::max)(b->y, c->y));
-
- // z-order range for the current triangle bbox;
- const int32_t minZ = zOrder(minTX, minTY);
- const int32_t maxZ = zOrder(maxTX, maxTY);
-
- // first look for points inside the triangle in increasing z-order
- Node* p = ear->nextZ;
-
- while (p && p->z <= maxZ) {
- if (p != ear->prev && p != ear->next &&
- pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
- area(p->prev, p, p->next) >= 0) return false;
- p = p->nextZ;
- }
-
- // then look for points in decreasing z-order
- p = ear->prevZ;
-
- while (p && p->z >= minZ) {
- if (p != ear->prev && p != ear->next &&
- pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
- area(p->prev, p, p->next) >= 0) return false;
- p = p->prevZ;
- }
-
- return true;
-}
-
-// go through all polygon nodes and cure small local self-intersections
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::cureLocalIntersections(Node* start) {
- Node* p = start;
- do {
- Node* a = p->prev;
- Node* b = p->next->next;
-
- // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
- if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
- indices.emplace_back(a->i);
- indices.emplace_back(p->i);
- indices.emplace_back(b->i);
-
- // remove two nodes involved
- removeNode(p);
- removeNode(p->next);
-
- p = start = b;
- }
- p = p->next;
- } while (p != start);
-
- return p;
-}
-
-// try splitting polygon into two and triangulate them independently
-template <typename N>
-void Earcut<N>::splitEarcut(Node* start) {
- // look for a valid diagonal that divides the polygon into two
- Node* a = start;
- do {
- Node* b = a->next->next;
- while (b != a->prev) {
- if (a->i != b->i && isValidDiagonal(a, b)) {
- // split the polygon in two by the diagonal
- Node* c = splitPolygon(a, b);
-
- // filter colinear points around the cuts
- a = filterPoints(a, a->next);
- c = filterPoints(c, c->next);
-
- // run earcut on each half
- earcutLinked(a);
- earcutLinked(c);
- return;
- }
- b = b->next;
- }
- a = a->next;
- } while (a != start);
-}
-
-// link every hole into the outer loop, producing a single-ring polygon without holes
-template <typename N> template <typename Polygon>
-typename Earcut<N>::Node*
-Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
- const size_t len = points.size();
-
- std::vector<Node*> queue;
- for (size_t i = 1; i < len; i++) {
- Node* list = linkedList(points[i], false);
- if (list) {
- if (list == list->next) list->steiner = true;
- queue.push_back(getLeftmost(list));
- }
- }
- std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
- return a->x < b->x;
- });
-
- // process holes from left to right
- for (size_t i = 0; i < queue.size(); i++) {
- eliminateHole(queue[i], outerNode);
- outerNode = filterPoints(outerNode, outerNode->next);
- }
-
- return outerNode;
-}
-
-// find a bridge between vertices that connects hole with an outer ring and and link it
-template <typename N>
-void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
- outerNode = findHoleBridge(hole, outerNode);
- if (outerNode) {
- Node* b = splitPolygon(outerNode, hole);
- filterPoints(b, b->next);
- }
-}
-
-// David Eberly's algorithm for finding a bridge between hole and outer polygon
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
- Node* p = outerNode;
- double hx = hole->x;
- double hy = hole->y;
- double qx = -std::numeric_limits<double>::infinity();
- Node* m = nullptr;
-
- // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
- // segment's endpoint with lesser x will be potential connection Vertex
- do {
- if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
- double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
- if (x <= hx && x > qx) {
- qx = x;
- if (x == hx) {
- if (hy == p->y) return p;
- if (hy == p->next->y) return p->next;
- }
- m = p->x < p->next->x ? p : p->next;
- }
- }
- p = p->next;
- } while (p != outerNode);
-
- if (!m) return 0;
-
- if (hx == qx) return m->prev;
-
- // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
- // if there are no points found, we have a valid connection;
- // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
-
- const Node* stop = m;
- double tanMin = std::numeric_limits<double>::infinity();
- double tanCur = 0;
-
- p = m->next;
- double mx = m->x;
- double my = m->y;
-
- while (p != stop) {
- if (hx >= p->x && p->x >= mx && hx != p->x &&
- pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
-
- tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
-
- if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole)) {
- m = p;
- tanMin = tanCur;
- }
- }
-
- p = p->next;
- }
-
- return m;
-}
-
-// interlink polygon nodes in z-order
-template <typename N>
-void Earcut<N>::indexCurve(Node* start) {
- assert(start);
- Node* p = start;
-
- do {
- p->z = p->z ? p->z : zOrder(p->x, p->y);
- p->prevZ = p->prev;
- p->nextZ = p->next;
- p = p->next;
- } while (p != start);
-
- p->prevZ->nextZ = nullptr;
- p->prevZ = nullptr;
-
- sortLinked(p);
-}
-
-// Simon Tatham's linked list merge sort algorithm
-// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::sortLinked(Node* list) {
- assert(list);
- Node* p;
- Node* q;
- Node* e;
- Node* tail;
- int i, numMerges, pSize, qSize;
- int inSize = 1;
-
- while (true) {
- p = list;
- list = nullptr;
- tail = nullptr;
- numMerges = 0;
-
- while (p) {
- numMerges++;
- q = p;
- pSize = 0;
- for (i = 0; i < inSize; i++) {
- pSize++;
- q = q->nextZ;
- if (!q) break;
- }
-
- qSize = inSize;
-
- while (pSize > 0 || (qSize > 0 && q)) {
-
- if (pSize == 0) {
- e = q;
- q = q->nextZ;
- qSize--;
- } else if (qSize == 0 || !q) {
- e = p;
- p = p->nextZ;
- pSize--;
- } else if (p->z <= q->z) {
- e = p;
- p = p->nextZ;
- pSize--;
- } else {
- e = q;
- q = q->nextZ;
- qSize--;
- }
-
- if (tail) tail->nextZ = e;
- else list = e;
-
- e->prevZ = tail;
- tail = e;
- }
-
- p = q;
- }
-
- tail->nextZ = nullptr;
-
- if (numMerges <= 1) return list;
-
- inSize *= 2;
- }
-}
-
-// z-order of a Vertex given coords and size of the data bounding box
-template <typename N>
-int32_t Earcut<N>::zOrder(const double x_, const double y_) {
- // coords are transformed into non-negative 15-bit integer range
- int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) / size);
- int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) / size);
-
- x = (x | (x << 8)) & 0x00FF00FF;
- x = (x | (x << 4)) & 0x0F0F0F0F;
- x = (x | (x << 2)) & 0x33333333;
- x = (x | (x << 1)) & 0x55555555;
-
- y = (y | (y << 8)) & 0x00FF00FF;
- y = (y | (y << 4)) & 0x0F0F0F0F;
- y = (y | (y << 2)) & 0x33333333;
- y = (y | (y << 1)) & 0x55555555;
-
- return x | (y << 1);
-}
-
-// find the leftmost node of a polygon ring
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::getLeftmost(Node* start) {
- Node* p = start;
- Node* leftmost = start;
- do {
- if (p->x < leftmost->x) leftmost = p;
- p = p->next;
- } while (p != start);
-
- return leftmost;
-}
-
-// check if a point lies within a convex triangle
-template <typename N>
-bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
- return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
- (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
- (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
-}
-
-// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
-template <typename N>
-bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
- return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) &&
- locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
-}
-
-// signed area of a triangle
-template <typename N>
-double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
- return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
-}
-
-// check if two points are equal
-template <typename N>
-bool Earcut<N>::equals(const Node* p1, const Node* p2) {
- return p1->x == p2->x && p1->y == p2->y;
-}
-
-// check if two segments intersect
-template <typename N>
-bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
- if ((equals(p1, q1) && equals(p2, q2)) ||
- (equals(p1, q2) && equals(p2, q1))) return true;
- return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) &&
- (area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
-}
-
-// check if a polygon diagonal intersects any polygon segments
-template <typename N>
-bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
- const Node* p = a;
- do {
- if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
- intersects(p, p->next, a, b)) return true;
- p = p->next;
- } while (p != a);
-
- return false;
-}
-
-// check if a polygon diagonal is locally inside the polygon
-template <typename N>
-bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
- return area(a->prev, a, a->next) < 0 ?
- area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
- area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
-}
-
-// check if the middle Vertex of a polygon diagonal is inside the polygon
-template <typename N>
-bool Earcut<N>::middleInside(const Node* a, const Node* b) {
- const Node* p = a;
- bool inside = false;
- double px = (a->x + b->x) / 2;
- double py = (a->y + b->y) / 2;
- do {
- if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
- (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
- inside = !inside;
- p = p->next;
- } while (p != a);
-
- return inside;
-}
-
-// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
-// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
-// single ring
-template <typename N>
-typename Earcut<N>::Node*
-Earcut<N>::splitPolygon(Node* a, Node* b) {
- Node* a2 = nodes.construct(a->i, a->x, a->y);
- Node* b2 = nodes.construct(b->i, b->x, b->y);
- Node* an = a->next;
- Node* bp = b->prev;
-
- a->next = b;
- b->prev = a;
-
- a2->next = an;
- an->prev = a2;
-
- b2->next = a2;
- a2->prev = b2;
-
- bp->next = b2;
- b2->prev = bp;
-
- return b2;
-}
-
-// create a node and util::optionally link it with previous one (in a circular doubly linked list)
-template <typename N> template <typename Point>
-typename Earcut<N>::Node*
-Earcut<N>::insertNode(N i, const Point& pt, Node* last) {
- Node* p = nodes.construct(i, util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
-
- if (!last) {
- p->prev = p;
- p->next = p;
-
- } else {
- assert(last);
- p->next = last->next;
- p->prev = last;
- last->next->prev = p;
- last->next = p;
- }
- return p;
-}
-
-template <typename N>
-void Earcut<N>::removeNode(Node* p) {
- p->next->prev = p->prev;
- p->prev->next = p->next;
-
- if (p->prevZ) p->prevZ->nextZ = p->nextZ;
- if (p->nextZ) p->nextZ->prevZ = p->prevZ;
-}
-}
-
-template <typename N = uint32_t, typename Polygon>
-std::vector<N> earcut(const Polygon& poly) {
- mapbox::detail::Earcut<N> earcut;
- earcut(poly);
- return earcut.indices;
-}
-}