summaryrefslogtreecommitdiff
path: root/src/3rdparty/earcut/earcut.hpp
diff options
context:
space:
mode:
authorPaolo Angelelli <paolo.angelelli@qt.io>2017-07-07 15:31:00 +0200
committerPaolo Angelelli <paolo.angelelli@qt.io>2017-07-28 12:13:56 +0000
commit763d5977e7758adb232e1ecd091f926e6f54e75a (patch)
treedcc9ccf70b9214ba8857963750322cded5db42d2 /src/3rdparty/earcut/earcut.hpp
parent3ac051c4549575634cecc706175b019f4ed4c3bf (diff)
downloadqtlocation-763d5977e7758adb232e1ecd091f926e6f54e75a.tar.gz
Fix dragging items out of map bounds
In 5.9.0 map items are clipped against the visible region. This implies that their geometry is also clipped against the visible region. This is problematic in ::geometryChanged, since the old geometry is always clipped in this way. This patch clips items against a "projectable" region instead, that is the part of the map that is in front of the camera. Since this can produce very large vertices, mapbox earcut 3rd party library is pulled in, to replace qTriangulate that only supports coordinates up to 1<<21. This patch also contains a fix for earcut.hpp to make it build also on QNX6.6 Task-number: QTBUG-61727 Change-Id: Iffc95fdae88fef982c1eb86db567b326b5e51057 Reviewed-by: Ville Voutilainen <ville.voutilainen@qt.io> Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org> Reviewed-by: Paolo Angelelli <paolo.angelelli@qt.io>
Diffstat (limited to 'src/3rdparty/earcut/earcut.hpp')
-rw-r--r--src/3rdparty/earcut/earcut.hpp779
1 files changed, 779 insertions, 0 deletions
diff --git a/src/3rdparty/earcut/earcut.hpp b/src/3rdparty/earcut/earcut.hpp
new file mode 100644
index 00000000..287be028
--- /dev/null
+++ b/src/3rdparty/earcut/earcut.hpp
@@ -0,0 +1,779 @@
+#pragma once
+#ifndef EARCUT_HPP
+#define EARCUT_HPP
+
+#include <array>
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <memory>
+#include <vector>
+
+namespace mapbox {
+
+namespace util {
+
+template <std::size_t I, typename T> struct nth {
+
+ inline static typename std::tuple_element<I, T>::type
+ get(const T& t) { return std::get<I>(t); }
+};
+
+
+}
+
+namespace detail {
+
+template <typename N = uint32_t>
+class Earcut {
+public:
+ std::vector<N> indices;
+ N vertices = 0;
+
+ template <typename Polygon>
+ void operator()(const Polygon& points);
+
+private:
+ struct Node {
+ Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
+ Node(const Node&) = delete;
+ Node& operator=(const Node&) = delete;
+ Node(Node&&) = delete;
+ Node& operator=(Node&&) = delete;
+
+ const N i;
+ const double x;
+ const double y;
+
+ // previous and next vertice nodes in a polygon ring
+ Node* prev = nullptr;
+ Node* next = nullptr;
+
+ // z-order curve value
+ int32_t z = 0;
+
+ // previous and next nodes in z-order
+ Node* prevZ = nullptr;
+ Node* nextZ = nullptr;
+
+ // indicates whether this is a steiner point
+ bool steiner = false;
+ };
+
+ template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
+ Node* filterPoints(Node* start, Node* end = nullptr);
+ void earcutLinked(Node* ear, int pass = 0);
+ bool isEar(Node* ear);
+ bool isEarHashed(Node* ear);
+ Node* cureLocalIntersections(Node* start);
+ void splitEarcut(Node* start);
+ template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
+ void eliminateHole(Node* hole, Node* outerNode);
+ Node* findHoleBridge(Node* hole, Node* outerNode);
+ void indexCurve(Node* start);
+ Node* sortLinked(Node* list);
+ int32_t zOrder(const double x_, const double y_);
+ Node* getLeftmost(Node* start);
+ bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
+ bool isValidDiagonal(Node* a, Node* b);
+ double area(const Node* p, const Node* q, const Node* r) const;
+ bool equals(const Node* p1, const Node* p2);
+ bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
+ bool intersectsPolygon(const Node* a, const Node* b);
+ bool locallyInside(const Node* a, const Node* b);
+ bool middleInside(const Node* a, const Node* b);
+ Node* splitPolygon(Node* a, Node* b);
+ template <typename Point> Node* insertNode(N i, const Point& p, Node* last);
+ void removeNode(Node* p);
+
+ bool hashing;
+ double minX, maxX;
+ double minY, maxY;
+ double size;
+
+ template <typename T, typename Alloc = std::allocator<T>>
+ class ObjectPool {
+ public:
+ ObjectPool() { }
+ ObjectPool(std::size_t blockSize_) {
+ reset(blockSize_);
+ }
+ ~ObjectPool() {
+ clear();
+ }
+ template <typename... Args>
+ T* construct(Args&&... args) {
+ if (currentIndex >= blockSize) {
+ currentBlock = alloc.allocate(blockSize);
+ allocations.emplace_back(currentBlock);
+ currentIndex = 0;
+ }
+ T* object = &currentBlock[currentIndex++];
+ alloc.construct(object, std::forward<Args>(args)...);
+ return object;
+ }
+ void reset(std::size_t newBlockSize) {
+ for (auto allocation : allocations) alloc.deallocate(allocation, blockSize);
+ allocations.clear();
+ blockSize = std::max<std::size_t>(1, newBlockSize);
+ currentBlock = nullptr;
+ currentIndex = blockSize;
+ }
+ void clear() { reset(blockSize); }
+ private:
+ T* currentBlock = nullptr;
+ std::size_t currentIndex = 1;
+ std::size_t blockSize = 1;
+ std::vector<T*> allocations;
+ Alloc alloc;
+ };
+ ObjectPool<Node> nodes;
+};
+
+template <typename N> template <typename Polygon>
+void Earcut<N>::operator()(const Polygon& points) {
+ // reset
+ indices.clear();
+ vertices = 0;
+
+ if (points.empty()) return;
+
+ double x;
+ double y;
+ size = 0;
+ int threshold = 80;
+ std::size_t len = 0;
+
+ for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
+ threshold -= static_cast<int>(points[i].size());
+ len += points[i].size();
+ }
+
+ //estimate size of nodes and indices
+ nodes.reset(len * 3 / 2);
+ indices.reserve(len + points[0].size());
+
+ Node* outerNode = linkedList(points[0], true);
+ if (!outerNode) return;
+
+ if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
+
+ // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
+ hashing = threshold < 0;
+ if (hashing) {
+ Node* p = outerNode->next;
+ minX = maxX = p->x;
+ minY = maxY = p->y;
+ do {
+ x = p->x;
+ y = p->y;
+ minX = (std::min)(minX, x);
+ minY = (std::min)(minY, y);
+ maxX = (std::max)(maxX, x);
+ maxY = (std::max)(maxY, y);
+ p = p->next;
+ } while (p != outerNode);
+
+ // minX, minY and size are later used to transform coords into integers for z-order calculation
+ size = (std::max)(maxX - minX, maxY - minY);
+ }
+
+ earcutLinked(outerNode);
+
+ nodes.clear();
+}
+
+// create a circular doubly linked list from polygon points in the specified winding order
+template <typename N> template <typename Ring>
+typename Earcut<N>::Node*
+Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
+ using Point = typename Ring::value_type;
+ double sum = 0;
+ const int len = static_cast<int>(points.size());
+ int i, j;
+ Point p1, p2;
+ Node* last = nullptr;
+
+ // calculate original winding order of a polygon ring
+ for (i = 0, j = len - 1; i < len; j = i++) {
+ p1 = points[i];
+ p2 = points[j];
+ const double p20 = util::nth<0, Point>::get(p2);
+ const double p10 = util::nth<0, Point>::get(p1);
+ const double p11 = util::nth<1, Point>::get(p1);
+ const double p21 = util::nth<1, Point>::get(p2);
+ sum += (p20 - p10) * (p11 + p21);
+ }
+
+ // link points into circular doubly-linked list in the specified winding order
+ if (clockwise == (sum > 0)) {
+ for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
+ } else {
+ for (i = len - 1; i >= 0; i--) last = insertNode(vertices + i, points[i], last);
+ }
+
+ if (last && equals(last, last->next)) {
+ removeNode(last);
+ last = last->next;
+ }
+
+ vertices += len;
+
+ return last;
+}
+
+// eliminate colinear or duplicate points
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::filterPoints(Node* start, Node* end) {
+ if (!end) end = start;
+
+ Node* p = start;
+ bool again;
+ do {
+ again = false;
+
+ if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
+ removeNode(p);
+ p = end = p->prev;
+
+ if (p == p->next) return nullptr;
+ again = true;
+
+ } else {
+ p = p->next;
+ }
+ } while (again || p != end);
+
+ return end;
+}
+
+// main ear slicing loop which triangulates a polygon (given as a linked list)
+template <typename N>
+void Earcut<N>::earcutLinked(Node* ear, int pass) {
+ if (!ear) return;
+
+ // interlink polygon nodes in z-order
+ if (!pass && hashing) indexCurve(ear);
+
+ Node* stop = ear;
+ Node* prev;
+ Node* next;
+
+ int iterations = 0;
+
+ // iterate through ears, slicing them one by one
+ while (ear->prev != ear->next) {
+ iterations++;
+ prev = ear->prev;
+ next = ear->next;
+
+ if (hashing ? isEarHashed(ear) : isEar(ear)) {
+ // cut off the triangle
+ indices.emplace_back(prev->i);
+ indices.emplace_back(ear->i);
+ indices.emplace_back(next->i);
+
+ removeNode(ear);
+
+ // skipping the next vertice leads to less sliver triangles
+ ear = next->next;
+ stop = next->next;
+
+ continue;
+ }
+
+ ear = next;
+
+ // if we looped through the whole remaining polygon and can't find any more ears
+ if (ear == stop) {
+ // try filtering points and slicing again
+ if (!pass) earcutLinked(filterPoints(ear), 1);
+
+ // if this didn't work, try curing all small self-intersections locally
+ else if (pass == 1) {
+ ear = cureLocalIntersections(ear);
+ earcutLinked(ear, 2);
+
+ // as a last resort, try splitting the remaining polygon into two
+ } else if (pass == 2) splitEarcut(ear);
+
+ break;
+ }
+ }
+}
+
+// check whether a polygon node forms a valid ear with adjacent nodes
+template <typename N>
+bool Earcut<N>::isEar(Node* ear) {
+ const Node* a = ear->prev;
+ const Node* b = ear;
+ const Node* c = ear->next;
+
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+ // now make sure we don't have other points inside the potential ear
+ Node* p = ear->next->next;
+
+ while (p != ear->prev) {
+ if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+ area(p->prev, p, p->next) >= 0) return false;
+ p = p->next;
+ }
+
+ return true;
+}
+
+template <typename N>
+bool Earcut<N>::isEarHashed(Node* ear) {
+ const Node* a = ear->prev;
+ const Node* b = ear;
+ const Node* c = ear->next;
+
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+ // triangle bbox; min & max are calculated like this for speed
+ const double minTX = (std::min)(a->x, (std::min)(b->x, c->x));
+ const double minTY = (std::min)(a->y, (std::min)(b->y, c->y));
+ const double maxTX = (std::max)(a->x, (std::max)(b->x, c->x));
+ const double maxTY = (std::max)(a->y, (std::max)(b->y, c->y));
+
+ // z-order range for the current triangle bbox;
+ const int32_t minZ = zOrder(minTX, minTY);
+ const int32_t maxZ = zOrder(maxTX, maxTY);
+
+ // first look for points inside the triangle in increasing z-order
+ Node* p = ear->nextZ;
+
+ while (p && p->z <= maxZ) {
+ if (p != ear->prev && p != ear->next &&
+ pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+ area(p->prev, p, p->next) >= 0) return false;
+ p = p->nextZ;
+ }
+
+ // then look for points in decreasing z-order
+ p = ear->prevZ;
+
+ while (p && p->z >= minZ) {
+ if (p != ear->prev && p != ear->next &&
+ pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+ area(p->prev, p, p->next) >= 0) return false;
+ p = p->prevZ;
+ }
+
+ return true;
+}
+
+// go through all polygon nodes and cure small local self-intersections
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::cureLocalIntersections(Node* start) {
+ Node* p = start;
+ do {
+ Node* a = p->prev;
+ Node* b = p->next->next;
+
+ // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
+ if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
+ indices.emplace_back(a->i);
+ indices.emplace_back(p->i);
+ indices.emplace_back(b->i);
+
+ // remove two nodes involved
+ removeNode(p);
+ removeNode(p->next);
+
+ p = start = b;
+ }
+ p = p->next;
+ } while (p != start);
+
+ return p;
+}
+
+// try splitting polygon into two and triangulate them independently
+template <typename N>
+void Earcut<N>::splitEarcut(Node* start) {
+ // look for a valid diagonal that divides the polygon into two
+ Node* a = start;
+ do {
+ Node* b = a->next->next;
+ while (b != a->prev) {
+ if (a->i != b->i && isValidDiagonal(a, b)) {
+ // split the polygon in two by the diagonal
+ Node* c = splitPolygon(a, b);
+
+ // filter colinear points around the cuts
+ a = filterPoints(a, a->next);
+ c = filterPoints(c, c->next);
+
+ // run earcut on each half
+ earcutLinked(a);
+ earcutLinked(c);
+ return;
+ }
+ b = b->next;
+ }
+ a = a->next;
+ } while (a != start);
+}
+
+// link every hole into the outer loop, producing a single-ring polygon without holes
+template <typename N> template <typename Polygon>
+typename Earcut<N>::Node*
+Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
+ const size_t len = points.size();
+
+ std::vector<Node*> queue;
+ for (size_t i = 1; i < len; i++) {
+ Node* list = linkedList(points[i], false);
+ if (list) {
+ if (list == list->next) list->steiner = true;
+ queue.push_back(getLeftmost(list));
+ }
+ }
+ std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
+ return a->x < b->x;
+ });
+
+ // process holes from left to right
+ for (size_t i = 0; i < queue.size(); i++) {
+ eliminateHole(queue[i], outerNode);
+ outerNode = filterPoints(outerNode, outerNode->next);
+ }
+
+ return outerNode;
+}
+
+// find a bridge between vertices that connects hole with an outer ring and and link it
+template <typename N>
+void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
+ outerNode = findHoleBridge(hole, outerNode);
+ if (outerNode) {
+ Node* b = splitPolygon(outerNode, hole);
+ filterPoints(b, b->next);
+ }
+}
+
+// David Eberly's algorithm for finding a bridge between hole and outer polygon
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
+ Node* p = outerNode;
+ double hx = hole->x;
+ double hy = hole->y;
+ double qx = -std::numeric_limits<double>::infinity();
+ Node* m = nullptr;
+
+ // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
+ // segment's endpoint with lesser x will be potential connection Vertex
+ do {
+ if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
+ double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
+ if (x <= hx && x > qx) {
+ qx = x;
+ if (x == hx) {
+ if (hy == p->y) return p;
+ if (hy == p->next->y) return p->next;
+ }
+ m = p->x < p->next->x ? p : p->next;
+ }
+ }
+ p = p->next;
+ } while (p != outerNode);
+
+ if (!m) return 0;
+
+ if (hx == qx) return m->prev;
+
+ // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
+ // if there are no points found, we have a valid connection;
+ // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
+
+ const Node* stop = m;
+ double tanMin = std::numeric_limits<double>::infinity();
+ double tanCur = 0;
+
+ p = m->next;
+ double mx = m->x;
+ double my = m->y;
+
+ while (p != stop) {
+ if (hx >= p->x && p->x >= mx && hx != p->x &&
+ pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
+
+ tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
+
+ if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole)) {
+ m = p;
+ tanMin = tanCur;
+ }
+ }
+
+ p = p->next;
+ }
+
+ return m;
+}
+
+// interlink polygon nodes in z-order
+template <typename N>
+void Earcut<N>::indexCurve(Node* start) {
+ assert(start);
+ Node* p = start;
+
+ do {
+ p->z = p->z ? p->z : zOrder(p->x, p->y);
+ p->prevZ = p->prev;
+ p->nextZ = p->next;
+ p = p->next;
+ } while (p != start);
+
+ p->prevZ->nextZ = nullptr;
+ p->prevZ = nullptr;
+
+ sortLinked(p);
+}
+
+// Simon Tatham's linked list merge sort algorithm
+// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::sortLinked(Node* list) {
+ assert(list);
+ Node* p;
+ Node* q;
+ Node* e;
+ Node* tail;
+ int i, numMerges, pSize, qSize;
+ int inSize = 1;
+
+ while (true) {
+ p = list;
+ list = nullptr;
+ tail = nullptr;
+ numMerges = 0;
+
+ while (p) {
+ numMerges++;
+ q = p;
+ pSize = 0;
+ for (i = 0; i < inSize; i++) {
+ pSize++;
+ q = q->nextZ;
+ if (!q) break;
+ }
+
+ qSize = inSize;
+
+ while (pSize > 0 || (qSize > 0 && q)) {
+
+ if (pSize == 0) {
+ e = q;
+ q = q->nextZ;
+ qSize--;
+ } else if (qSize == 0 || !q) {
+ e = p;
+ p = p->nextZ;
+ pSize--;
+ } else if (p->z <= q->z) {
+ e = p;
+ p = p->nextZ;
+ pSize--;
+ } else {
+ e = q;
+ q = q->nextZ;
+ qSize--;
+ }
+
+ if (tail) tail->nextZ = e;
+ else list = e;
+
+ e->prevZ = tail;
+ tail = e;
+ }
+
+ p = q;
+ }
+
+ tail->nextZ = nullptr;
+
+ if (numMerges <= 1) return list;
+
+ inSize *= 2;
+ }
+}
+
+// z-order of a Vertex given coords and size of the data bounding box
+template <typename N>
+int32_t Earcut<N>::zOrder(const double x_, const double y_) {
+ // coords are transformed into non-negative 15-bit integer range
+ int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) / size);
+ int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) / size);
+
+ x = (x | (x << 8)) & 0x00FF00FF;
+ x = (x | (x << 4)) & 0x0F0F0F0F;
+ x = (x | (x << 2)) & 0x33333333;
+ x = (x | (x << 1)) & 0x55555555;
+
+ y = (y | (y << 8)) & 0x00FF00FF;
+ y = (y | (y << 4)) & 0x0F0F0F0F;
+ y = (y | (y << 2)) & 0x33333333;
+ y = (y | (y << 1)) & 0x55555555;
+
+ return x | (y << 1);
+}
+
+// find the leftmost node of a polygon ring
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::getLeftmost(Node* start) {
+ Node* p = start;
+ Node* leftmost = start;
+ do {
+ if (p->x < leftmost->x) leftmost = p;
+ p = p->next;
+ } while (p != start);
+
+ return leftmost;
+}
+
+// check if a point lies within a convex triangle
+template <typename N>
+bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
+ return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
+ (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
+ (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
+}
+
+// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
+template <typename N>
+bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
+ return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) &&
+ locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
+}
+
+// signed area of a triangle
+template <typename N>
+double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
+ return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
+}
+
+// check if two points are equal
+template <typename N>
+bool Earcut<N>::equals(const Node* p1, const Node* p2) {
+ return p1->x == p2->x && p1->y == p2->y;
+}
+
+// check if two segments intersect
+template <typename N>
+bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
+ if ((equals(p1, q1) && equals(p2, q2)) ||
+ (equals(p1, q2) && equals(p2, q1))) return true;
+ return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) &&
+ (area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
+}
+
+// check if a polygon diagonal intersects any polygon segments
+template <typename N>
+bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
+ const Node* p = a;
+ do {
+ if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
+ intersects(p, p->next, a, b)) return true;
+ p = p->next;
+ } while (p != a);
+
+ return false;
+}
+
+// check if a polygon diagonal is locally inside the polygon
+template <typename N>
+bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
+ return area(a->prev, a, a->next) < 0 ?
+ area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
+ area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
+}
+
+// check if the middle Vertex of a polygon diagonal is inside the polygon
+template <typename N>
+bool Earcut<N>::middleInside(const Node* a, const Node* b) {
+ const Node* p = a;
+ bool inside = false;
+ double px = (a->x + b->x) / 2;
+ double py = (a->y + b->y) / 2;
+ do {
+ if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
+ (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
+ inside = !inside;
+ p = p->next;
+ } while (p != a);
+
+ return inside;
+}
+
+// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
+// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
+// single ring
+template <typename N>
+typename Earcut<N>::Node*
+Earcut<N>::splitPolygon(Node* a, Node* b) {
+ Node* a2 = nodes.construct(a->i, a->x, a->y);
+ Node* b2 = nodes.construct(b->i, b->x, b->y);
+ Node* an = a->next;
+ Node* bp = b->prev;
+
+ a->next = b;
+ b->prev = a;
+
+ a2->next = an;
+ an->prev = a2;
+
+ b2->next = a2;
+ a2->prev = b2;
+
+ bp->next = b2;
+ b2->prev = bp;
+
+ return b2;
+}
+
+// create a node and util::optionally link it with previous one (in a circular doubly linked list)
+template <typename N> template <typename Point>
+typename Earcut<N>::Node*
+Earcut<N>::insertNode(N i, const Point& pt, Node* last) {
+ Node* p = nodes.construct(i, util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
+
+ if (!last) {
+ p->prev = p;
+ p->next = p;
+
+ } else {
+ assert(last);
+ p->next = last->next;
+ p->prev = last;
+ last->next->prev = p;
+ last->next = p;
+ }
+ return p;
+}
+
+template <typename N>
+void Earcut<N>::removeNode(Node* p) {
+ p->next->prev = p->prev;
+ p->prev->next = p->next;
+
+ if (p->prevZ) p->prevZ->nextZ = p->nextZ;
+ if (p->nextZ) p->nextZ->prevZ = p->prevZ;
+}
+}
+
+template <typename N = uint32_t, typename Polygon>
+std::vector<N> earcut(const Polygon& poly) {
+ mapbox::detail::Earcut<N> earcut;
+ earcut(poly);
+ return earcut.indices;
+}
+}
+#endif //EARCUT_HPP