summaryrefslogtreecommitdiff
path: root/src/mbgl/util/tile_cover.cpp
blob: fb4579b9ab07c769f7da13ec928327fa9e649f6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#include <mbgl/map/transform_state.hpp>
#include <mbgl/math/log2.hpp>
#include <mbgl/util/bounding_volumes.hpp>
#include <mbgl/util/constants.hpp>
#include <mbgl/util/interpolate.hpp>
#include <mbgl/util/tile_coordinate.hpp>
#include <mbgl/util/tile_cover.hpp>
#include <mbgl/util/tile_cover_impl.hpp>

#include <functional>
#include <list>

namespace mbgl {

namespace {

using ScanLine = const std::function<void(int32_t x0, int32_t x1, int32_t y)>;

// Taken from polymaps src/Layer.js
// https://github.com/simplegeo/polymaps/blob/master/src/Layer.js#L333-L383
struct edge {
    double x0 = 0, y0 = 0;
    double x1 = 0, y1 = 0;
    double dx = 0, dy = 0;

    edge(Point<double> a, Point<double> b) {
        if (a.y > b.y) std::swap(a, b);
        x0 = a.x;
        y0 = a.y;
        x1 = b.x;
        y1 = b.y;
        dx = b.x - a.x;
        dy = b.y - a.y;
    }
};

// scan-line conversion
void scanSpans(edge e0, edge e1, int32_t ymin, int32_t ymax, ScanLine& scanLine) {
    double y0 = ::fmax(ymin, std::floor(e1.y0));
    double y1 = ::fmin(ymax, std::ceil(e1.y1));

    // sort edges by x-coordinate
    if ((e0.x0 == e1.x0 && e0.y0 == e1.y0) ?
        (e0.x0 + e1.dy / e0.dy * e0.dx < e1.x1) :
        (e0.x1 - e1.dy / e0.dy * e0.dx < e1.x0)) {
        std::swap(e0, e1);
    }

    // scan lines!
    double m0 = e0.dx / e0.dy;
    double m1 = e1.dx / e1.dy;
    double d0 = e0.dx > 0; // use y + 1 to compute x0
    double d1 = e1.dx < 0; // use y + 1 to compute x1
    for (int32_t y = y0; y < y1; y++) {
        double x0 = m0 * ::fmax(0, ::fmin(e0.dy, y + d0 - e0.y0)) + e0.x0;
        double x1 = m1 * ::fmax(0, ::fmin(e1.dy, y + d1 - e1.y0)) + e1.x0;
        scanLine(std::floor(x1), std::ceil(x0), y);
    }
}

// scan-line conversion
void scanTriangle(const Point<double>& a,
                  const Point<double>& b,
                  const Point<double>& c,
                  int32_t ymin,
                  int32_t ymax,
                  ScanLine& scanLine) {
    edge ab = edge(a, b);
    edge bc = edge(b, c);
    edge ca = edge(c, a);

    // sort edges by y-length
    if (ab.dy > bc.dy) { std::swap(ab, bc); }
    if (ab.dy > ca.dy) { std::swap(ab, ca); }
    if (bc.dy > ca.dy) { std::swap(bc, ca); }

    // scan span! scan span!
    if (ab.dy) scanSpans(ca, ab, ymin, ymax, scanLine);
    if (bc.dy) scanSpans(ca, bc, ymin, ymax, scanLine);
}

} // namespace

namespace util {

namespace {

std::vector<UnwrappedTileID> tileCover(const Point<double>& tl,
                                       const Point<double>& tr,
                                       const Point<double>& br,
                                       const Point<double>& bl,
                                       const Point<double>& c,
                                       uint8_t z) {
    const int32_t tiles = 1 << z;

    struct ID {
        int32_t x, y;
        double sqDist;
    };

    std::vector<ID> t;

    auto scanLine = [&](int32_t x0, int32_t x1, int32_t y) {
        int32_t x;
        if (y >= 0 && y <= tiles) {
            for (x = x0; x < x1; ++x) {
                const auto dx = x + 0.5 - c.x;
                const auto dy = y + 0.5 - c.y;
                t.emplace_back(ID{ x, y, dx * dx + dy * dy });
            }
        }
    };

    // Divide the screen up in two triangles and scan each of them:
    // \---+
    // | \ |
    // +---\.
    scanTriangle(tl, tr, br, 0, tiles, scanLine);
    scanTriangle(br, bl, tl, 0, tiles, scanLine);

    // Sort first by distance, then by x/y.
    std::sort(t.begin(), t.end(), [](const ID& a, const ID& b) {
        return std::tie(a.sqDist, a.x, a.y) < std::tie(b.sqDist, b.x, b.y);
    });

    // Erase duplicate tile IDs (they typically occur at the common side of both triangles).
    t.erase(std::unique(t.begin(), t.end(), [](const ID& a, const ID& b) {
                return a.x == b.x && a.y == b.y;
            }), t.end());

    std::vector<UnwrappedTileID> result;
    result.reserve(t.size());
    for (const auto& id : t) {
        result.emplace_back(z, id.x, id.y);
    }
    return result;
}

} // namespace

int32_t coveringZoomLevel(double zoom, style::SourceType type, uint16_t size) {
    zoom += util::log2(util::tileSize / size);
    if (type == style::SourceType::Raster || type == style::SourceType::Video) {
        return ::round(zoom);
    } else {
        return std::floor(zoom);
    }
}

std::vector<OverscaledTileID> tileCover(const TransformState& state, uint8_t z, const optional<uint8_t>& overscaledZ) {
    struct Node {
        AABB aabb;
        uint8_t zoom;
        uint32_t x, y;
        int16_t wrap;
        bool fullyVisible;
    };

    struct ResultTile {
        OverscaledTileID id;
        double sqrDist;
    };

    const double numTiles = std::pow(2.0, z);
    const double worldSize = Projection::worldSize(state.getScale());
    const uint8_t minZoom = state.getPitch() <= (60.0 / 180.0) * M_PI ? z : 0;
    const uint8_t maxZoom = z;
    const uint8_t overscaledZoom = overscaledZ.value_or(z);
    const bool flippedY = state.getViewportMode() == ViewportMode::FlippedY;

    auto centerPoint =
        TileCoordinate::fromScreenCoordinate(state, z, {state.getSize().width / 2.0, state.getSize().height / 2.0}).p;

    vec3 centerCoord = {{centerPoint.x, centerPoint.y, 0.0}};

    const Frustum frustum = Frustum::fromInvProjMatrix(state.getInvProjectionMatrix(), worldSize, z, flippedY);

    // There should always be a certain number of maximum zoom level tiles surrounding the center location
    const double radiusOfMaxLvlLodInTiles = 3;

    const auto newRootTile = [&](int16_t wrap) -> Node {
        return {AABB({{wrap * numTiles, 0.0, 0.0}}, {{(wrap + 1) * numTiles, numTiles, 0.0}}),
                uint8_t(0),
                uint16_t(0),
                uint16_t(0),
                wrap,
                false};
    };

    // Perform depth-first traversal on tile tree to find visible tiles
    std::vector<Node> stack;
    std::vector<ResultTile> result;
    stack.reserve(128);

    // World copies shall be rendered three times on both sides from closest to farthest
    for (int i = 1; i <= 3; i++) {
        stack.push_back(newRootTile(-i));
        stack.push_back(newRootTile(i));
    }

    stack.push_back(newRootTile(0));

    while (!stack.empty()) {
        Node node = stack.back();
        stack.pop_back();

        // Use cached visibility information of ancestor nodes
        if (!node.fullyVisible) {
            const IntersectionResult intersection = frustum.intersects(node.aabb);

            if (intersection == IntersectionResult::Separate) continue;

            node.fullyVisible = intersection == IntersectionResult::Contains;
        }

        const vec3 distanceXyz = node.aabb.distanceXYZ(centerCoord);
        const double* longestDim = std::max_element(distanceXyz.data(), distanceXyz.data() + distanceXyz.size());
        assert(longestDim);

        // We're using distance based heuristics to determine if a tile should be split into quadrants or not.
        // radiusOfMaxLvlLodInTiles defines that there's always a certain number of maxLevel tiles next to the map
        // center. Using the fact that a parent node in quadtree is twice the size of its children (per dimension) we
        // can define distance thresholds for each relative level: f(k) = offset + 2 + 4 + 8 + 16 + ... + 2^k. This is
        // the same as "offset+2^(k+1)-2"
        const double distToSplit = radiusOfMaxLvlLodInTiles + (1 << (maxZoom - node.zoom)) - 2;

        // Have we reached the target depth or is the tile too far away to be any split further?
        if (node.zoom == maxZoom || (*longestDim > distToSplit && node.zoom >= minZoom)) {
            // Perform precise intersection test between the frustum and aabb. This will cull < 1% false positives
            // missed by the original test
            if (node.fullyVisible || frustum.intersectsPrecise(node.aabb, true) != IntersectionResult::Separate) {
                const OverscaledTileID id = {
                    node.zoom == maxZoom ? overscaledZoom : node.zoom, node.wrap, node.zoom, node.x, node.y};
                const double dx = node.wrap * numTiles + node.x + 0.5 - centerCoord[0];
                const double dy = node.y + 0.5 - centerCoord[1];

                result.push_back({id, dx * dx + dy * dy});
            }
            continue;
        }

        for (int i = 0; i < 4; i++) {
            const uint32_t childX = (node.x << 1) + (i % 2);
            const uint32_t childY = (node.y << 1) + (i >> 1);

            // Create child node and push to the stack for traversal
            Node child = node;

            child.aabb = node.aabb.quadrant(i);
            child.zoom = node.zoom + 1;
            child.x = childX;
            child.y = childY;

            stack.push_back(child);
        }
    }

    // Sort results by distance
    std::sort(
        result.begin(), result.end(), [](const ResultTile& a, const ResultTile& b) { return a.sqrDist < b.sqrDist; });

    std::vector<OverscaledTileID> ids;
    ids.reserve(result.size());

    for (const auto& tile : result) {
        ids.push_back(tile.id);
    }

    return ids;
}

std::vector<UnwrappedTileID> tileCover(const LatLngBounds& bounds_, uint8_t z) {
    if (bounds_.isEmpty() ||
        bounds_.south() >  util::LATITUDE_MAX ||
        bounds_.north() < -util::LATITUDE_MAX) {
        return {};
    }

    LatLngBounds bounds = LatLngBounds::hull(
        { std::max(bounds_.south(), -util::LATITUDE_MAX), bounds_.west() },
        { std::min(bounds_.north(),  util::LATITUDE_MAX), bounds_.east() });

    return tileCover(
        Projection::project(bounds.northwest(), z),
        Projection::project(bounds.northeast(), z),
        Projection::project(bounds.southeast(), z),
        Projection::project(bounds.southwest(), z),
        Projection::project(bounds.center(), z),
        z);
}

std::vector<UnwrappedTileID> tileCover(const Geometry<double>& geometry, uint8_t z) {
    std::vector<UnwrappedTileID> result;
    TileCover tc(geometry, z, true);
    while (tc.hasNext()) {
        result.push_back(*tc.next());
    };

    return result;
}

// Taken from https://github.com/mapbox/sphericalmercator#xyzbbox-zoom-tms_style-srs
// Computes the projected tiles for the lower left and upper right points of the bounds
// and uses that to compute the tile cover count
uint64_t tileCount(const LatLngBounds& bounds, uint8_t zoom){
    if (zoom == 0) {
        return 1;
    }
    auto sw = Projection::project(bounds.southwest(), zoom);
    auto ne = Projection::project(bounds.northeast(), zoom);
    auto maxTile = std::pow(2.0, zoom);
    auto x1 = floor(sw.x);
    auto x2 = ceil(ne.x) - 1;
    auto y1 = util::clamp(floor(sw.y), 0.0, maxTile - 1);
    auto y2 = util::clamp(floor(ne.y), 0.0, maxTile - 1);

    auto dx = x1 > x2 ? (maxTile - x1) + x2 : x2 - x1;
    auto dy = y1 - y2;
    return (dx + 1) * (dy + 1);
}

uint64_t tileCount(const Geometry<double>& geometry, uint8_t z) {
    uint64_t tileCount = 0;

    TileCover tc(geometry, z, true);
    while (tc.next()) {
        tileCount++;
    };
    return tileCount;
}

TileCover::TileCover(const LatLngBounds&bounds_, uint8_t z) {
    LatLngBounds bounds = LatLngBounds::hull(
        { std::max(bounds_.south(), -util::LATITUDE_MAX), bounds_.west() },
        { std::min(bounds_.north(),  util::LATITUDE_MAX), bounds_.east() });

    if (bounds.isEmpty() ||
        bounds.south() >  util::LATITUDE_MAX ||
        bounds.north() < -util::LATITUDE_MAX) {
        bounds = LatLngBounds::world();
    }

    auto sw = Projection::project(bounds.southwest(), z);
    auto ne = Projection::project(bounds.northeast(), z);
    auto se = Projection::project(bounds.southeast(), z);
    auto nw = Projection::project(bounds.northwest(), z);

    Polygon<double> p({ {sw, nw, ne, se, sw} });
    impl = std::make_unique<TileCover::Impl>(z, p, false);
}

TileCover::TileCover(const Geometry<double>& geom, uint8_t z, bool project/* = true*/)
 : impl( std::make_unique<TileCover::Impl>(z, geom, project)) {
}

TileCover::~TileCover() = default;

optional<UnwrappedTileID> TileCover::next() {
    return impl->next();
}

bool TileCover::hasNext() {
    return impl->hasNext();
}

} // namespace util
} // namespace mbgl