summaryrefslogtreecommitdiff
path: root/src/mbgl/util/math.hpp
blob: f93743f211c9194768df6a0a4dd9f4b1befc5d76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#ifndef MBGL_UTIL_MATH
#define MBGL_UTIL_MATH

#include <cmath>
#include <array>
#include <limits>

#include <mbgl/util/geometry.hpp>

namespace mbgl {
namespace util {

// TODO: split this file up into individual headers, following mbgl/math/*.hpp.

// Find the angle of the two vectors, solving the formula for the cross product
// a x b = |a||b|sin(θ) for θ.
template <typename T = double, typename S>
inline T angle_between(const Point<S>& a, const Point<S>& b) {
    return std::atan2((a.x * b.y - a.y * b.x), a.x * b.x + a.y * b.y);
}

template <typename T = double, typename S>
inline T angle_to(const Point<S>& a, const Point<S>& b) {
    return std::atan2(a.y - b.y, a.x - b.x);
}

// Reflect an angle around 0 degrees
template <typename T>
inline std::array<T, 2> flip(const std::array<T, 2>& c) {
    return {{
        static_cast<T>(2 * M_PI - c[0]),
        static_cast<T>(2 * M_PI - c[1])
    }};
}

template <typename T, typename S1, typename S2>
inline Point<T> normal(const S1& a, const S2& b) {
    T dx = b.x - a.x;
    T dy = b.y - a.y;
    T c = std::sqrt(dx * dx + dy * dy);
    return { dx / c, dy / c };
}

template <typename T>
inline T perp(const T& a) {
    return T(-a.y, a.x);
}

template <typename T, typename S1, typename S2>
inline T dist(const S1& a, const S2& b) {
    T dx = b.x - a.x;
    T dy = b.y - a.y;
    T c = std::sqrt(dx * dx + dy * dy);
    return c;
}

template <typename T, typename S1, typename S2>
inline T distSqr(const S1& a, const S2& b) {
    T dx = b.x - a.x;
    T dy = b.y - a.y;
    T c = dx * dx + dy * dy;
    return c;
}

template <typename T>
inline T round(const T& a) {
    return T(::round(a.x), ::round(a.y));
}

template <typename T>
inline T length(T a, T b) {
    return std::sqrt(a * a + b * b);
}

// Take the magnitude of vector a.
template <typename T = double, typename S>
inline T mag(const S& a) {
    return std::sqrt(a.x * a.x + a.y * a.y);
}

template <typename S>
inline S unit(const S& a) {
    auto magnitude = mag(a);
    if (magnitude == 0) {
        return a;
    }
    return a * (1 / magnitude);
}

template <typename T, typename S = double>
inline T rotate(const T& a, S angle) {
    S cos = std::cos(angle);
    S sin = std::sin(angle);
    S x = cos * a.x - sin * a.y;
    S y = sin * a.x + cos * a.y;
    return T(x, y);
}

template <typename T>
inline Point<T> matrixMultiply(const std::array<T, 4>& m, const Point<T>& p) {
    return Point<T>(m[0] * p.x + m[1] * p.y, m[2] * p.x + m[3] * p.y);
}

template <typename T>
T smoothstep(T edge0, T edge1, T x) {
    T t = clamp((x - edge0) / (edge1 - edge0), T(0), T(1));
    return t * t * (T(3) - T(2) * t);
}

// Computes the log2(x) rounded up to the next integer.
// (== number of bits required to store x)
uint32_t ceil_log2(uint64_t x);

} // namespace util
} // namespace mbgl

#endif