summaryrefslogtreecommitdiff
path: root/src/mbgl/util/geometry_within.cpp
blob: 618567a8e12f29690eda667c8c6b881c7fd8178d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include <mbgl/util/geometry_within.hpp>

#include <algorithm>

namespace mbgl {

namespace {
bool rayIntersect(const Point<int64_t>& p, const Point<int64_t>& p1, const Point<int64_t>& p2) {
    return ((p1.y > p.y) != (p2.y > p.y)) && (p.x < (p2.x - p1.x) * (p.y - p1.y) / (p2.y - p1.y) + p1.x);
}

// check if point p in on line segment with end points p1 and p2
bool onBoundary(const Point<int64_t>& p, const Point<int64_t>& p1, const Point<int64_t>& p2) {
    // requirements of point p on line segment:
    // 1. colinear: cross product of vector p->p1(x1, y1) and vector p->p2(x2, y2) equals to 0
    // 2. p is between p1 and p2
    const auto x1 = p.x - p1.x;
    const auto y1 = p.y - p1.y;
    const auto x2 = p.x - p2.x;
    const auto y2 = p.y - p2.y;
    return (x1 * y2 - x2 * y1 == 0) && (x1 * x2 <= 0) && (y1 * y2 <= 0);
}

// a, b are end points for line segment1, c and d are end points for line segment2
bool lineIntersectLine(const Point<int64_t>& a,
                       const Point<int64_t>& b,
                       const Point<int64_t>& c,
                       const Point<int64_t>& d) {
    const auto perp = [](const Point<int64_t>& v1, const Point<int64_t>& v2) { return (v1.x * v2.y - v1.y * v2.x); };

    // check if two segments are parallel or not
    // precondition is end point a, b is inside polygon, if line a->b is
    // parallel to polygon edge c->d, then a->b won't intersect with c->d
    auto vectorP = Point<int64_t>(b.x - a.x, b.y - a.y);
    auto vectorQ = Point<int64_t>(d.x - c.x, d.y - c.y);
    if (perp(vectorQ, vectorP) == 0) return false;

    // check if p1 and p2 are in different sides of line segment q1->q2
    const auto twoSided =
        [](const Point<int64_t>& p1, const Point<int64_t>& p2, const Point<int64_t>& q1, const Point<int64_t>& q2) {
            int64_t x1;
            int64_t y1;
            int64_t x2;
            int64_t y2;
            int64_t x3;
            int64_t y3;

            // q1->p1 (x1, y1), q1->p2 (x2, y2), q1->q2 (x3, y3)
            x1 = p1.x - q1.x;
            y1 = p1.y - q1.y;
            x2 = p2.x - q1.x;
            y2 = p2.y - q1.y;
            x3 = q2.x - q1.x;
            y3 = q2.y - q1.y;
            auto ret1 = (x1 * y3 - x3 * y1);
            auto ret2 = (x2 * y3 - x3 * y2);
            return (ret1 > 0 && ret2 < 0) || (ret1 < 0 && ret2 > 0);
        };

    // If lines are intersecting with each other, the relative location should be:
    // a and b lie in different sides of segment c->d
    // c and d lie in different sides of segment a->b
    return twoSided(a, b, c, d) && twoSided(c, d, a, b);
}

bool lineIntersectPolygon(const Point<int64_t>& p1, const Point<int64_t>& p2, const Polygon<int64_t>& polygon) {
    for (auto ring : polygon) {
        auto length = ring.size();
        // loop through every edge of the ring
        for (std::size_t i = 0; i < length - 1; ++i) {
            if (lineIntersectLine(p1, p2, ring[i], ring[i + 1])) {
                return true;
            }
        }
    }
    return false;
}

} // namespace

void updateBBox(WithinBBox& bbox, const Point<int64_t>& p) {
    bbox[0] = std::min(p.x, bbox[0]);
    bbox[1] = std::min(p.y, bbox[1]);
    bbox[2] = std::max(p.x, bbox[2]);
    bbox[3] = std::max(p.y, bbox[3]);
}

bool boxWithinBox(const WithinBBox& bbox1, const WithinBBox& bbox2) {
    if (bbox1[0] <= bbox2[0]) return false;
    if (bbox1[2] >= bbox2[2]) return false;
    if (bbox1[1] <= bbox2[1]) return false;
    if (bbox1[3] >= bbox2[3]) return false;
    return true;
}

// ray casting algorithm for detecting if point is in polygon
bool pointWithinPolygon(const Point<int64_t>& point, const Polygon<int64_t>& polygon) {
    bool within = false;
    for (const auto& ring : polygon) {
        const auto length = ring.size();
        // loop through every edge of the ring
        for (std::size_t i = 0; i < length - 1; ++i) {
            if (onBoundary(point, ring[i], ring[i + 1])) return false;
            if (rayIntersect(point, ring[i], ring[i + 1])) {
                within = !within;
            }
        }
    }
    return within;
}

bool pointWithinPolygons(const Point<int64_t>& point, const MultiPolygon<int64_t>& polygons) {
    for (const auto& polygon : polygons) {
        if (pointWithinPolygon(point, polygon)) return true;
    }
    return false;
}

bool lineStringWithinPolygon(const LineString<int64_t>& line, const Polygon<int64_t>& polygon) {
    const auto length = line.size();
    // First, check if geometry points of line segments are all inside polygon
    for (std::size_t i = 0; i < length; ++i) {
        if (!pointWithinPolygon(line[i], polygon)) {
            return false;
        }
    }

    // Second, check if there is line segment intersecting polygon edge
    for (std::size_t i = 0; i < length - 1; ++i) {
        if (lineIntersectPolygon(line[i], line[i + 1], polygon)) {
            return false;
        }
    }
    return true;
}

bool lineStringWithinPolygons(const LineString<int64_t>& line, const MultiPolygon<int64_t>& polygons) {
    for (const auto& polygon : polygons) {
        if (lineStringWithinPolygon(line, polygon)) return true;
    }
    return false;
}
} // namespace mbgl