summaryrefslogtreecommitdiff
path: root/src/mbgl/util/bounding_volumes.cpp
blob: ccad4d95af98c67ea43d3946fca530ea3f6e7b32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#include <mbgl/util/bounding_volumes.hpp>

#include <algorithm>
#include <cassert>
#include <cmath>

namespace mbgl {
namespace {

vec3 toVec3(const vec4& v) {
    return vec3{v[0], v[1], v[2]};
}

double vec4Dot(const vec4& a, const vec4& b) {
    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}

template <size_t N>
static Point<double> ProjectPointsToAxis(const std::array<vec3, N>& points, const vec3& origin, const vec3& axis) {
    double min = std::numeric_limits<double>::max();
    double max = -std::numeric_limits<double>::max();

    for (const vec3& point : points) {
        double projectedPoint = vec3Dot(vec3Sub(point, origin), axis);
        min = std::min(projectedPoint, min);
        max = std::max(projectedPoint, max);
    }

    return {min, max};
}

} // namespace

namespace util {

AABB::AABB() : min({0, 0, 0}), max({0, 0, 0}) {}

AABB::AABB(const vec3& min_, const vec3& max_) : min(min_), max(max_) {}

vec3 AABB::closestPoint(const vec3& point) const {
    return {std::max(std::min(max[0], point[0]), min[0]),
            std::max(std::min(max[1], point[1]), min[1]),
            std::max(std::min(max[2], point[2]), min[2])};
}

vec3 AABB::distanceXYZ(const vec3& point) const {
    vec3 vec = vec3Sub(closestPoint(point), point);

    vec[0] = std::abs(vec[0]);
    vec[1] = std::abs(vec[1]);
    vec[2] = std::abs(vec[2]);

    return vec;
}

AABB AABB::quadrant(int idx) const {
    assert(idx >= 0 && idx < 4);
    vec3 quadrantMin = min;
    vec3 quadrantMax = max;
    const double xCenter = 0.5 * (max[0] + min[0]);
    const double yCenter = 0.5 * (max[1] + min[1]);

    // This aabb is split into 4 quadrants. For each axis define in which side of the split "idx" is
    // The result for indices 0, 1, 2, 3 is: { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 }
    const std::array<int, 4> xSplit = {0, 1, 0, 1};
    const std::array<int, 4> ySplit = {0, 0, 1, 1};

    quadrantMin[0] = xSplit[idx] ? xCenter : quadrantMin[0];
    quadrantMax[0] = xSplit[idx] ? quadrantMax[0] : xCenter;

    quadrantMin[1] = ySplit[idx] ? yCenter : quadrantMin[1];
    quadrantMax[1] = ySplit[idx] ? quadrantMax[1] : yCenter;

    return {quadrantMin, quadrantMax};
}

bool AABB::intersects(const AABB& aabb) const {
    if (min[0] > aabb.max[0] || aabb.min[0] > max[0]) return false;
    if (min[1] > aabb.max[1] || aabb.min[1] > max[1]) return false;
    if (min[2] > aabb.max[2] || aabb.min[2] > max[2]) return false;
    return true;
}

bool AABB::operator==(const AABB& aabb) const {
    return min == aabb.min && max == aabb.max;
}

bool AABB::operator!=(const AABB& aabb) const {
    return !(*this == aabb);
}

// Named index values for frustum::points array
enum {
    near_tl = 0,
    near_tr = 1,
    near_br = 2,
    near_bl = 3,
    far_tl = 4,
    far_tr = 5,
    far_br = 6,
    far_bl = 7,
};

Frustum::Frustum(const std::array<vec3, 8>& points_, const std::array<vec4, 6>& planes_)
    : points(points_), planes(planes_) {
    const Point<double> xBounds = ProjectPointsToAxis(points, {0, 0, 0}, {1, 0, 0});
    const Point<double> yBounds = ProjectPointsToAxis(points, {0, 0, 0}, {0, 1, 0});
    const Point<double> zBounds = ProjectPointsToAxis(points, {0, 0, 0}, {0, 0, 1});

    bounds = AABB({xBounds.x, yBounds.x, zBounds.x}, {xBounds.y, yBounds.y, zBounds.y});

    // Precompute a set of separating axis candidates for precise intersection tests.
    // Remaining axes not covered in basic intersection tests are: axis[] = (edges of aabb) x (edges of frustum)
    std::array<vec3, 6> frustumEdges = {vec3Sub(points[near_br], points[near_bl]),
                                        vec3Sub(points[near_tl], points[near_bl]),
                                        vec3Sub(points[far_tl], points[near_tl]),
                                        vec3Sub(points[far_tr], points[near_tr]),
                                        vec3Sub(points[far_br], points[near_br]),
                                        vec3Sub(points[far_bl], points[near_bl])};

    for (size_t i = 0; i < frustumEdges.size(); i++) {
        // Cross product [1, 0, 0] x [a, b, c] == [0, -c, b]
        // Cross product [0, 1, 0] x [a, b, c] == [c, 0, -a]
        const vec3 axis0 = {0.0, -frustumEdges[i][2], frustumEdges[i][1]};
        const vec3 axis1 = {frustumEdges[i][2], 0.0, -frustumEdges[i][0]};

        projections[i * 2] = {axis0, ProjectPointsToAxis(points, points[0], axis0)};
        projections[i * 2 + 1] = {axis1, ProjectPointsToAxis(points, points[0], axis1)};
    }
}

Frustum Frustum::fromInvProjMatrix(const mat4& invProj, double worldSize, double zoom, bool flippedY) {
    // Define frustum corner points in normalized clip space
    std::array<vec4, 8> cornerCoords = {vec4{-1.0, 1.0, -1.0, 1.0},
                                        vec4{1.0, 1.0, -1.0, 1.0},
                                        vec4{1.0, -1.0, -1.0, 1.0},
                                        vec4{-1.0, -1.0, -1.0, 1.0},
                                        vec4{-1.0, 1.0, 1.0, 1.0},
                                        vec4{1.0, 1.0, 1.0, 1.0},
                                        vec4{1.0, -1.0, 1.0, 1.0},
                                        vec4{-1.0, -1.0, 1.0, 1.0}};

    const double scale = std::pow(2.0, zoom);

    // Transform points to tile space
    for (auto& coord : cornerCoords) {
        matrix::transformMat4(coord, coord, invProj);
        for (auto& component : coord) component *= 1.0 / coord[3] / worldSize * scale;
    }

    std::array<vec3i, 6> frustumPlanePointIndices = {
        vec3i{near_bl, near_br, far_br},  // bottom
        vec3i{near_tl, near_bl, far_bl},  // left
        vec3i{near_br, near_tr, far_tr},  // right
        vec3i{near_tl, far_tl, far_tr},   // top
        vec3i{near_tl, near_tr, near_br}, // near
        vec3i{far_br, far_tr, far_tl}     // far
    };

    if (flippedY) {
        std::for_each(frustumPlanePointIndices.begin(), frustumPlanePointIndices.end(), [](vec3i& tri) {
            std::swap(tri[1], tri[2]);
        });
    }

    std::array<vec4, 6> frustumPlanes;

    for (std::size_t i = 0; i < frustumPlanePointIndices.size(); i++) {
        const vec3i indices = frustumPlanePointIndices[i];

        // Compute plane equation using 3 points on the plane
        const vec3 p0 = toVec3(cornerCoords[indices[0]]);
        const vec3 p1 = toVec3(cornerCoords[indices[1]]);
        const vec3 p2 = toVec3(cornerCoords[indices[2]]);

        const vec3 a = vec3Sub(p0, p1);
        const vec3 b = vec3Sub(p2, p1);
        const vec3 n = vec3Normalize(vec3Cross(a, b));

        frustumPlanes[i] = {n[0], n[1], n[2], -vec3Dot(n, p1)};
    }

    std::array<vec3, 8> frustumPoints;

    for (size_t i = 0; i < cornerCoords.size(); i++) frustumPoints[i] = toVec3(cornerCoords[i]);

    return {frustumPoints, frustumPlanes};
}

IntersectionResult Frustum::intersects(const AABB& aabb) const {
    // Execute separating axis test between two convex objects to find intersections
    // Each frustum plane together with 3 major axes define the separating axes
    // This implementation is conservative as it's not checking all possible axes.
    // False positive rate is ~0.5% of all cases (see intersectsPrecise).
    // Note: test only 4 points as both min and max points have zero elevation
    assert(aabb.min[2] == 0.0 && aabb.max[2] == 0.0);

    if (!bounds.intersects(aabb)) return IntersectionResult::Separate;

    const std::array<vec4, 4> aabbPoints = {
        vec4{aabb.min[0], aabb.min[1], 0.0, 1.0},
        vec4{aabb.max[0], aabb.min[1], 0.0, 1.0},
        vec4{aabb.max[0], aabb.max[1], 0.0, 1.0},
        vec4{aabb.min[0], aabb.max[1], 0.0, 1.0},
    };

    bool fullyInside = true;

    for (const vec4& plane : planes) {
        size_t pointsInside = 0;

        pointsInside += vec4Dot(plane, aabbPoints[0]) >= 0.0;
        pointsInside += vec4Dot(plane, aabbPoints[1]) >= 0.0;
        pointsInside += vec4Dot(plane, aabbPoints[2]) >= 0.0;
        pointsInside += vec4Dot(plane, aabbPoints[3]) >= 0.0;

        if (!pointsInside) {
            // Separating axis found, no intersection
            return IntersectionResult::Separate;
        }

        if (pointsInside != aabbPoints.size()) fullyInside = false;
    }

    return fullyInside ? IntersectionResult::Contains : IntersectionResult::Intersects;
}

IntersectionResult Frustum::intersectsPrecise(const AABB& aabb, bool edgeCasesOnly) const {
    if (!edgeCasesOnly) {
        IntersectionResult result = intersects(aabb);

        if (result == IntersectionResult::Separate) return result;
    }

    const std::array<vec3, 4> aabbPoints = {vec3{aabb.min[0], aabb.min[1], 0.0},
                                            vec3{aabb.max[0], aabb.min[1], 0.0},
                                            vec3{aabb.max[0], aabb.max[1], 0.0},
                                            vec3{aabb.min[0], aabb.max[1], 0.0}};

    // For a precise SAT-test all edge cases needs to be covered
    // Projections of the frustum on separating axis candidates have been precomputed already
    for (const Projection& proj : projections) {
        Point<double> projectedAabb = ProjectPointsToAxis(aabbPoints, points[0], proj.axis);
        const Point<double>& projectedFrustum = proj.projection;

        if (projectedFrustum.y < projectedAabb.x || projectedFrustum.x > projectedAabb.y) {
            return IntersectionResult::Separate;
        }
    }

    return IntersectionResult::Intersects;
}

} // namespace util
} // namespace mbgl