summaryrefslogtreecommitdiff
path: root/src/mbgl/text/shaping.cpp
blob: c81f25d4eb58b879b006d3bc17a3ec61d60ffdc5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#include <mbgl/text/shaping.hpp>
#include <mbgl/util/i18n.hpp>
#include <mbgl/layout/symbol_feature.hpp>
#include <mbgl/math/minmax.hpp>
#include <mbgl/text/bidi.hpp>

#include <boost/algorithm/string.hpp>

#include <algorithm>

namespace mbgl {

PositionedIcon PositionedIcon::shapeIcon(const ImagePosition& image, const std::array<float, 2>& iconOffset, const float iconRotation) {
    float dx = iconOffset[0];
    float dy = iconOffset[1];
    float x1 = dx - image.displaySize()[0] / 2.0f;
    float x2 = x1 + image.displaySize()[0];
    float y1 = dy - image.displaySize()[1] / 2.0f;
    float y2 = y1 + image.displaySize()[1];

    return PositionedIcon { image, y1, y2, x1, x2, iconRotation };
}

void align(Shaping& shaping,
           const float justify,
           const float horizontalAlign,
           const float verticalAlign,
           const float maxLineLength,
           const float lineHeight,
           const std::size_t lineCount) {
    const float shiftX = (justify - horizontalAlign) * maxLineLength;
    const float shiftY = (-verticalAlign * lineCount + 0.5) * lineHeight;
    
    for (auto& glyph : shaping.positionedGlyphs) {
        glyph.x += shiftX;
        glyph.y += shiftY;
    }
}

// justify left = 0, right = 1, center = .5
void justifyLine(std::vector<PositionedGlyph>& positionedGlyphs,
                 const Glyphs& glyphs,
                 std::size_t start,
                 std::size_t end,
                 float justify) {
    if (!justify) {
        return;
    }
    
    PositionedGlyph& glyph = positionedGlyphs[end];
    auto it = glyphs.find(glyph.glyph);
    if (it != glyphs.end() && it->second) {
        const uint32_t lastAdvance = (*it->second)->metrics.advance;
        const float lineIndent = float(glyph.x + lastAdvance) * justify;
        
        for (std::size_t j = start; j <= end; j++) {
            positionedGlyphs[j].x -= lineIndent;
        }
    }
}

float determineAverageLineWidth(const std::u16string& logicalInput,
                                const float spacing,
                                float maxWidth,
                                const Glyphs& glyphs) {
    float totalWidth = 0;
    
    for (char16_t chr : logicalInput) {
        auto it = glyphs.find(chr);
        if (it != glyphs.end() && it->second) {
            totalWidth += (*it->second)->metrics.advance + spacing;
        }
    }
    
    int32_t targetLineCount = std::fmax(1, std::ceil(totalWidth / maxWidth));
    return totalWidth / targetLineCount;
}

float calculateBadness(const float lineWidth, const float targetWidth, const float penalty, const bool isLastBreak) {
    const float raggedness = std::pow(lineWidth - targetWidth, 2);
    if (isLastBreak) {
        // Favor finals lines shorter than average over longer than average
        if (lineWidth < targetWidth) {
            return raggedness / 2;
        } else {
            return raggedness * 2;
        }
    }
    if (penalty < 0) {
        return raggedness - std::pow(penalty, 2);
    }
    return raggedness + std::pow(penalty, 2);
}

float calculatePenalty(char16_t codePoint, char16_t nextCodePoint) {
    float penalty = 0;
    // Force break on newline
    if (codePoint == 0x0a) {
        penalty -= 10000;
    }
    // Penalize open parenthesis at end of line
    if (codePoint == 0x28 || codePoint == 0xff08) {
        penalty += 50;
    }
    
    // Penalize close parenthesis at beginning of line
    if (nextCodePoint == 0x29 || nextCodePoint == 0xff09) {
        penalty += 50;
    }
    
    return penalty;
}

struct PotentialBreak {
    PotentialBreak(const std::size_t p_index, const float p_x, const PotentialBreak* p_priorBreak, const float p_badness)
    : index(p_index), x(p_x), priorBreak(p_priorBreak), badness(p_badness)
    {}
    
    const std::size_t index;
    const float x;
    const PotentialBreak* priorBreak;
    const float badness;
};


PotentialBreak evaluateBreak(const std::size_t breakIndex, const float breakX, const float targetWidth, const std::list<PotentialBreak>& potentialBreaks, const float penalty, const bool isLastBreak) {
    // We could skip evaluating breaks where the line length (breakX - priorBreak.x) > maxWidth
    //  ...but in fact we allow lines longer than maxWidth (if there's no break points)
    //  ...and when targetWidth and maxWidth are close, strictly enforcing maxWidth can give
    //     more lopsided results.
    
    const PotentialBreak* bestPriorBreak = nullptr;
    float bestBreakBadness = calculateBadness(breakX, targetWidth, penalty, isLastBreak);
    for (const auto& potentialBreak : potentialBreaks) {
        const float lineWidth = breakX - potentialBreak.x;
        float breakBadness =
        calculateBadness(lineWidth, targetWidth, penalty, isLastBreak) + potentialBreak.badness;
        if (breakBadness <= bestBreakBadness) {
            bestPriorBreak = &potentialBreak;
            bestBreakBadness = breakBadness;
        }
    }
    
    return PotentialBreak(breakIndex, breakX, bestPriorBreak, bestBreakBadness);
}

std::set<std::size_t> leastBadBreaks(const PotentialBreak& lastLineBreak) {
    std::set<std::size_t> leastBadBreaks = { lastLineBreak.index };
    const PotentialBreak* priorBreak = lastLineBreak.priorBreak;
    while (priorBreak) {
        leastBadBreaks.insert(priorBreak->index);
        priorBreak = priorBreak->priorBreak;
    }
    return leastBadBreaks;
}


// We determine line breaks based on shaped text in logical order. Working in visual order would be
//  more intuitive, but we can't do that because the visual order may be changed by line breaks!
std::set<std::size_t> determineLineBreaks(const std::u16string& logicalInput,
                                          const float spacing,
                                          float maxWidth,
                                          const WritingModeType writingMode,
                                          const Glyphs& glyphs) {
    if (!maxWidth || writingMode != WritingModeType::Horizontal) {
        return {};
    }
    
    if (logicalInput.empty()) {
        return {};
    }
    
    const float targetWidth = determineAverageLineWidth(logicalInput, spacing, maxWidth, glyphs);
    
    std::list<PotentialBreak> potentialBreaks;
    float currentX = 0;
    
    for (std::size_t i = 0; i < logicalInput.size(); i++) {
        const char16_t codePoint = logicalInput[i];
        auto it = glyphs.find(codePoint);
        if (it != glyphs.end() && it->second && !boost::algorithm::is_any_of(u" \t\n\v\f\r")(codePoint)) {
            currentX += (*it->second)->metrics.advance + spacing;
        }
        
        // Ideographic characters, spaces, and word-breaking punctuation that often appear without
        // surrounding spaces.
        if ((i < logicalInput.size() - 1) &&
            (util::i18n::allowsWordBreaking(codePoint) || util::i18n::allowsIdeographicBreaking(codePoint))) {
            potentialBreaks.push_back(evaluateBreak(i+1, currentX, targetWidth, potentialBreaks,
                                                    calculatePenalty(codePoint, logicalInput[i+1]),
                                                    false));
        }
    }
    
    return leastBadBreaks(evaluateBreak(logicalInput.size(), currentX, targetWidth, potentialBreaks, 0, true));
}

void shapeLines(Shaping& shaping,
                          const std::vector<std::u16string>& lines,
                          const float spacing,
                          const float lineHeight,
                          const float horizontalAlign,
                          const float verticalAlign,
                          const float justify,
                          const float verticalHeight,
                          const WritingModeType writingMode,
                          const Glyphs& glyphs) {
    
    // the y offset *should* be part of the font metadata
    const int32_t yOffset = -17;
    
    float x = 0;
    float y = yOffset;
    
    float maxLineLength = 0;
    
    for (std::u16string line : lines) {
        // Collapse whitespace so it doesn't throw off justification
        boost::algorithm::trim_if(line, boost::algorithm::is_any_of(u" \t\n\v\f\r"));
        
        if (line.empty()) {
            y += lineHeight; // Still need a line feed after empty line
            continue;
        }
        
        std::size_t lineStartIndex = shaping.positionedGlyphs.size();
        for (char16_t chr : line) {
            auto it = glyphs.find(chr);
            if (it == glyphs.end() || !it->second) {
                continue;
            }
            
            const Glyph& glyph = **it->second;
            
            if (writingMode == WritingModeType::Horizontal || !util::i18n::hasUprightVerticalOrientation(chr)) {
                shaping.positionedGlyphs.emplace_back(chr, x, y, 0);
                x += glyph.metrics.advance + spacing;
            } else {
                shaping.positionedGlyphs.emplace_back(chr, x, 0, -M_PI_2);
                x += verticalHeight + spacing;
            }
        }
        
        // Only justify if we placed at least one glyph
        if (shaping.positionedGlyphs.size() != lineStartIndex) {
            float lineLength = x - spacing; // Don't count trailing spacing
            maxLineLength = util::max(lineLength, maxLineLength);
            
            justifyLine(shaping.positionedGlyphs, glyphs, lineStartIndex,
                        shaping.positionedGlyphs.size() - 1, justify);
        }
        
        x = 0;
        y += lineHeight;
    }
    
    align(shaping, justify, horizontalAlign, verticalAlign, maxLineLength, lineHeight,
          lines.size());
    const uint32_t height = lines.size() * lineHeight;
    
    // Calculate the bounding box
    shaping.top += -verticalAlign * height;
    shaping.bottom = shaping.top + height;
    shaping.left += -horizontalAlign * maxLineLength;
    shaping.right = shaping.left + maxLineLength;
}

const Shaping getShaping(const std::u16string& logicalInput,
                         const float maxWidth,
                         const float lineHeight,
                         const float horizontalAlign,
                         const float verticalAlign,
                         const float justify,
                         const float spacing,
                         const Point<float>& translate,
                         const float verticalHeight,
                         const WritingModeType writingMode,
                         BiDi& bidi,
                         const Glyphs& glyphs) {
    Shaping shaping(translate.x, translate.y, writingMode);
    
    std::vector<std::u16string> reorderedLines =
    bidi.processText(logicalInput,
                     determineLineBreaks(logicalInput, spacing, maxWidth, writingMode, glyphs));
    
    shapeLines(shaping, reorderedLines, spacing, lineHeight, horizontalAlign, verticalAlign,
               justify, verticalHeight, writingMode, glyphs);
    
    return shaping;
}


} // namespace mbgl