1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
#include <mbgl/text/shaping.hpp>
#include <mbgl/util/constants.hpp>
#include <mbgl/util/i18n.hpp>
#include <mbgl/layout/symbol_feature.hpp>
#include <mbgl/math/minmax.hpp>
#include <mbgl/text/bidi.hpp>
#include <algorithm>
#include <list>
#include <cmath>
namespace {
// Zero width space that is used to suggest break points for Japanese labels.
char16_t ZWSP = u'\u200b';
} // namespace
namespace mbgl {
// static
AnchorAlignment AnchorAlignment::getAnchorAlignment(style::SymbolAnchorType anchor) {
AnchorAlignment result(0.5f, 0.5f);
switch (anchor) {
case style::SymbolAnchorType::Right:
case style::SymbolAnchorType::TopRight:
case style::SymbolAnchorType::BottomRight:
result.horizontalAlign = 1.0f;
break;
case style::SymbolAnchorType::Left:
case style::SymbolAnchorType::TopLeft:
case style::SymbolAnchorType::BottomLeft:
result.horizontalAlign = 0.0f;
break;
default:
break;
}
switch (anchor) {
case style::SymbolAnchorType::Bottom:
case style::SymbolAnchorType::BottomLeft:
case style::SymbolAnchorType::BottomRight:
result.verticalAlign = 1.0f;
break;
case style::SymbolAnchorType::Top:
case style::SymbolAnchorType::TopLeft:
case style::SymbolAnchorType::TopRight:
result.verticalAlign = 0.0f;
break;
default:
break;
}
return result;
}
style::TextJustifyType getAnchorJustification(style::SymbolAnchorType anchor) {
switch (anchor) {
case style::SymbolAnchorType::Right:
case style::SymbolAnchorType::TopRight:
case style::SymbolAnchorType::BottomRight:
return style::TextJustifyType::Right;
case style::SymbolAnchorType::Left:
case style::SymbolAnchorType::TopLeft:
case style::SymbolAnchorType::BottomLeft:
return style::TextJustifyType::Left;
default:
return style::TextJustifyType::Center;
}
}
PositionedIcon PositionedIcon::shapeIcon(const ImagePosition& image, const std::array<float, 2>& iconOffset, style::SymbolAnchorType iconAnchor, const float iconRotation) {
AnchorAlignment anchorAlign = AnchorAlignment::getAnchorAlignment(iconAnchor);
float dx = iconOffset[0];
float dy = iconOffset[1];
float x1 = dx - image.displaySize()[0] * anchorAlign.horizontalAlign;
float x2 = x1 + image.displaySize()[0];
float y1 = dy - image.displaySize()[1] * anchorAlign.verticalAlign;
float y2 = y1 + image.displaySize()[1];
return PositionedIcon { image, y1, y2, x1, x2, iconRotation };
}
void align(Shaping& shaping,
const float justify,
const float horizontalAlign,
const float verticalAlign,
const float maxLineLength,
const float lineHeight,
const std::size_t lineCount) {
const float shiftX = (justify - horizontalAlign) * maxLineLength;
const float shiftY = (-verticalAlign * lineCount + 0.5) * lineHeight;
for (auto& glyph : shaping.positionedGlyphs) {
glyph.x += shiftX;
glyph.y += shiftY;
}
}
// justify left = 0, right = 1, center = .5
void justifyLine(std::vector<PositionedGlyph>& positionedGlyphs,
const GlyphMap& glyphMap,
std::size_t start,
std::size_t end,
float justify) {
if (!justify) {
return;
}
PositionedGlyph& glyph = positionedGlyphs[end];
auto glyphs = glyphMap.find(glyph.font);
if (glyphs == glyphMap.end()) {
return;
}
auto it = glyphs->second.find(glyph.glyph);
if (it != glyphs->second.end() && it->second) {
const float lastAdvance = (*it->second)->metrics.advance * glyph.scale;
const float lineIndent = float(glyph.x + lastAdvance) * justify;
for (std::size_t j = start; j <= end; j++) {
positionedGlyphs[j].x -= lineIndent;
}
}
}
float determineAverageLineWidth(const TaggedString& logicalInput,
const float spacing,
float maxWidth,
const GlyphMap& glyphMap) {
float totalWidth = 0;
for (std::size_t i = 0; i < logicalInput.length(); i++) {
const SectionOptions& section = logicalInput.getSection(i);
char16_t codePoint = logicalInput.getCharCodeAt(i);
auto glyphs = glyphMap.find(section.fontStackHash);
if (glyphs == glyphMap.end()) {
continue;
}
auto it = glyphs->second.find(codePoint);
if (it == glyphs->second.end() || !it->second) {
continue;
}
totalWidth += (*it->second)->metrics.advance * section.scale + spacing;
}
int32_t targetLineCount = ::fmax(1, std::ceil(totalWidth / maxWidth));
return totalWidth / targetLineCount;
}
float calculateBadness(const float lineWidth, const float targetWidth, const float penalty, const bool isLastBreak) {
const float raggedness = std::pow(lineWidth - targetWidth, 2);
if (isLastBreak) {
// Favor finals lines shorter than average over longer than average
if (lineWidth < targetWidth) {
return raggedness / 2;
} else {
return raggedness * 2;
}
}
if (penalty < 0) {
return raggedness - std::pow(penalty, 2);
}
return raggedness + std::pow(penalty, 2);
}
float calculatePenalty(char16_t codePoint, char16_t nextCodePoint, bool penalizableIdeographicBreak) {
float penalty = 0;
// Force break on newline
if (codePoint == 0x0a) {
penalty -= 10000;
}
// Penalize open parenthesis at end of line
if (codePoint == 0x28 || codePoint == 0xff08) {
penalty += 50;
}
// Penalize close parenthesis at beginning of line
if (nextCodePoint == 0x29 || nextCodePoint == 0xff09) {
penalty += 50;
}
// Penalize breaks between characters that allow ideographic breaking because
// they are less preferable than breaks at spaces (or zero width spaces)
if (penalizableIdeographicBreak) {
penalty += 150;
}
return penalty;
}
struct PotentialBreak {
PotentialBreak(const std::size_t p_index, const float p_x, const PotentialBreak* p_priorBreak, const float p_badness)
: index(p_index), x(p_x), priorBreak(p_priorBreak), badness(p_badness)
{}
const std::size_t index;
const float x;
const PotentialBreak* priorBreak;
const float badness;
};
PotentialBreak evaluateBreak(const std::size_t breakIndex, const float breakX, const float targetWidth, const std::list<PotentialBreak>& potentialBreaks, const float penalty, const bool isLastBreak) {
// We could skip evaluating breaks where the line length (breakX - priorBreak.x) > maxWidth
// ...but in fact we allow lines longer than maxWidth (if there's no break points)
// ...and when targetWidth and maxWidth are close, strictly enforcing maxWidth can give
// more lopsided results.
const PotentialBreak* bestPriorBreak = nullptr;
float bestBreakBadness = calculateBadness(breakX, targetWidth, penalty, isLastBreak);
for (const auto& potentialBreak : potentialBreaks) {
const float lineWidth = breakX - potentialBreak.x;
float breakBadness =
calculateBadness(lineWidth, targetWidth, penalty, isLastBreak) + potentialBreak.badness;
if (breakBadness <= bestBreakBadness) {
bestPriorBreak = &potentialBreak;
bestBreakBadness = breakBadness;
}
}
return PotentialBreak(breakIndex, breakX, bestPriorBreak, bestBreakBadness);
}
std::set<std::size_t> leastBadBreaks(const PotentialBreak& lastLineBreak) {
std::set<std::size_t> leastBadBreaks = { lastLineBreak.index };
const PotentialBreak* priorBreak = lastLineBreak.priorBreak;
while (priorBreak) {
leastBadBreaks.insert(priorBreak->index);
priorBreak = priorBreak->priorBreak;
}
return leastBadBreaks;
}
// We determine line breaks based on shaped text in logical order. Working in visual order would be
// more intuitive, but we can't do that because the visual order may be changed by line breaks!
std::set<std::size_t> determineLineBreaks(const TaggedString& logicalInput,
const float spacing,
float maxWidth,
const WritingModeType writingMode,
const GlyphMap& glyphMap) {
if (!maxWidth || writingMode != WritingModeType::Horizontal) {
return {};
}
if (logicalInput.empty()) {
return {};
}
const float targetWidth = determineAverageLineWidth(logicalInput, spacing, maxWidth, glyphMap);
std::list<PotentialBreak> potentialBreaks;
float currentX = 0;
// Find first occurance of zero width space (ZWSP) character.
const bool hasServerSuggestedBreaks = logicalInput.rawText().find_first_of(ZWSP) != std::string::npos;
for (std::size_t i = 0; i < logicalInput.length(); i++) {
const SectionOptions& section = logicalInput.getSection(i);
char16_t codePoint = logicalInput.getCharCodeAt(i);
auto glyphs = glyphMap.find(section.fontStackHash);
if (glyphs == glyphMap.end()) {
continue;
}
auto it = glyphs->second.find(codePoint);
if (it != glyphs->second.end() && it->second && !util::i18n::isWhitespace(codePoint)) {
currentX += (*it->second)->metrics.advance * section.scale + spacing;
}
// Ideographic characters, spaces, and word-breaking punctuation that often appear without
// surrounding spaces.
if (i < logicalInput.length() - 1) {
const bool allowsIdeographicBreak = util::i18n::allowsIdeographicBreaking(codePoint);
if (allowsIdeographicBreak || util::i18n::allowsWordBreaking(codePoint)) {
const bool penalizableIdeographicBreak = allowsIdeographicBreak && hasServerSuggestedBreaks;
const std::size_t nextIndex = i + 1;
potentialBreaks.push_back(evaluateBreak(nextIndex, currentX, targetWidth, potentialBreaks,
calculatePenalty(codePoint, logicalInput.getCharCodeAt(nextIndex), penalizableIdeographicBreak),
false));
}
}
}
return leastBadBreaks(evaluateBreak(logicalInput.length(), currentX, targetWidth, potentialBreaks, 0, true));
}
void shapeLines(Shaping& shaping,
std::vector<TaggedString>& lines,
const float spacing,
const float lineHeight,
const style::SymbolAnchorType textAnchor,
const style::TextJustifyType textJustify,
const WritingModeType writingMode,
const GlyphMap& glyphMap) {
float x = 0;
float y = Shaping::yOffset;
float maxLineLength = 0;
const float justify = textJustify == style::TextJustifyType::Right ? 1 :
textJustify == style::TextJustifyType::Left ? 0 :
0.5;
for (TaggedString& line : lines) {
// Collapse whitespace so it doesn't throw off justification
line.trim();
const double lineMaxScale = line.getMaxScale();
if (line.empty()) {
y += lineHeight; // Still need a line feed after empty line
continue;
}
std::size_t lineStartIndex = shaping.positionedGlyphs.size();
for (std::size_t i = 0; i < line.length(); i++) {
const std::size_t sectionIndex = line.getSectionIndex(i);
const SectionOptions& section = line.sectionAt(sectionIndex);
char16_t codePoint = line.getCharCodeAt(i);
auto glyphs = glyphMap.find(section.fontStackHash);
if (glyphs == glyphMap.end()) {
continue;
}
auto it = glyphs->second.find(codePoint);
if (it == glyphs->second.end() || !it->second) {
continue;
}
// We don't know the baseline, but since we're laying out
// at 24 points, we can calculate how much it will move when
// we scale up or down.
const double baselineOffset = (lineMaxScale - section.scale) * util::ONE_EM;
const Glyph& glyph = **it->second;
if (writingMode == WritingModeType::Horizontal || !util::i18n::hasUprightVerticalOrientation(codePoint)) {
shaping.positionedGlyphs.emplace_back(codePoint, x, y + baselineOffset, false, section.fontStackHash, section.scale, sectionIndex);
x += glyph.metrics.advance * section.scale + spacing;
} else {
shaping.positionedGlyphs.emplace_back(codePoint, x, y + baselineOffset, true, section.fontStackHash, section.scale, sectionIndex);
x += util::ONE_EM * section.scale + spacing;
}
}
// Only justify if we placed at least one glyph
if (shaping.positionedGlyphs.size() != lineStartIndex) {
float lineLength = x - spacing; // Don't count trailing spacing
maxLineLength = util::max(lineLength, maxLineLength);
justifyLine(shaping.positionedGlyphs, glyphMap, lineStartIndex,
shaping.positionedGlyphs.size() - 1, justify);
}
x = 0;
y += lineHeight * lineMaxScale;
}
auto anchorAlign = AnchorAlignment::getAnchorAlignment(textAnchor);
align(shaping, justify, anchorAlign.horizontalAlign, anchorAlign.verticalAlign, maxLineLength,
lineHeight, lines.size());
const float height = y - Shaping::yOffset;
// Calculate the bounding box
shaping.top += -anchorAlign.verticalAlign * height;
shaping.bottom = shaping.top + height;
shaping.left += -anchorAlign.horizontalAlign * maxLineLength;
shaping.right = shaping.left + maxLineLength;
}
const Shaping getShaping(const TaggedString& formattedString,
const float maxWidth,
const float lineHeight,
const style::SymbolAnchorType textAnchor,
const style::TextJustifyType textJustify,
const float spacing,
const Point<float>& translate,
const WritingModeType writingMode,
BiDi& bidi,
const GlyphMap& glyphs) {
std::vector<TaggedString> reorderedLines;
if (formattedString.sectionCount() == 1) {
auto untaggedLines = bidi.processText(formattedString.rawText(),
determineLineBreaks(formattedString, spacing, maxWidth, writingMode, glyphs));
for (const auto& line : untaggedLines) {
reorderedLines.emplace_back(line, formattedString.sectionAt(0));
}
} else {
auto processedLines = bidi.processStyledText(formattedString.getStyledText(),
determineLineBreaks(formattedString, spacing, maxWidth, writingMode, glyphs));
for (const auto& line : processedLines) {
reorderedLines.emplace_back(line, formattedString.getSections());
}
}
Shaping shaping(translate.x, translate.y, writingMode, reorderedLines.size());
shapeLines(shaping, reorderedLines, spacing, lineHeight, textAnchor,
textJustify, writingMode, glyphs);
return shaping;
}
} // namespace mbgl
|