summaryrefslogtreecommitdiff
path: root/src/mbgl/text/quads.cpp
blob: 20427924a40f3ef4ef2480063ff98e0c15acca2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include <mbgl/text/quads.hpp>
#include <mbgl/text/shaping.hpp>
#include <mbgl/geometry/anchor.hpp>
#include <mbgl/layer/symbol_layer.hpp>
#include <mbgl/util/math.hpp>
#include <cassert>

namespace mbgl {

const float globalMinScale = 0.5f; // underscale by 1 zoom level

SymbolQuads getIconQuads(Anchor& anchor, const PositionedIcon& shapedIcon,
        const std::vector<Coordinate>& line, const SymbolLayoutProperties& layout,
        const bool alongLine) {

    const float border = 1.0;
    auto left = shapedIcon.left - border;
    auto right = left + shapedIcon.image.w;
    auto top = shapedIcon.top - border;
    auto bottom = top + shapedIcon.image.h;
    vec2<float> tl{left, top};
    vec2<float> tr{right, top};
    vec2<float> br{right, bottom};
    vec2<float> bl{left, bottom};


    float angle = layout.icon.rotate * M_PI / 180.0f;
    if (alongLine) {
        assert(static_cast<unsigned int>(anchor.segment) < line.size());
        const Coordinate &prev= line[anchor.segment];
        if (anchor.y == prev.y && anchor.x == prev.x &&
            static_cast<unsigned int>(anchor.segment + 1) < line.size()) {
            const Coordinate &next= line[anchor.segment + 1];
            angle += std::atan2(anchor.y - next.y, anchor.x - next.x) + M_PI;
        } else {
            angle += std::atan2(anchor.y - prev.y, anchor.x - prev.x);
        }
    }


    if (angle) {
        // Compute the transformation matrix.
        float angle_sin = std::sin(angle);
        float angle_cos = std::cos(angle);
        std::array<float, 4> matrix = {{angle_cos, -angle_sin, angle_sin, angle_cos}};

        tl = tl.matMul(matrix);
        tr = tr.matMul(matrix);
        bl = bl.matMul(matrix);
        br = br.matMul(matrix);
    }

    SymbolQuads quads;
    quads.emplace_back(tl, tr, bl, br, shapedIcon.image, 0, anchor, globalMinScale, std::numeric_limits<float>::infinity());
    return quads;
}

struct GlyphInstance {
    explicit GlyphInstance(const vec2<float> &anchorPoint_) : anchorPoint(anchorPoint_) {}
    explicit GlyphInstance(const vec2<float> &anchorPoint_, float offset_, float minScale_, float maxScale_,
            float angle_)
        : anchorPoint(anchorPoint_), offset(offset_), minScale(minScale_), maxScale(maxScale_), angle(angle_) {}

    const vec2<float> anchorPoint;
    const float offset = 0.0f;
    const float minScale = globalMinScale;
    const float maxScale = std::numeric_limits<float>::infinity();
    const float angle = 0.0f;
};

typedef std::vector<GlyphInstance> GlyphInstances;

void getSegmentGlyphs(std::back_insert_iterator<GlyphInstances> glyphs, Anchor &anchor,
        float offset, const std::vector<Coordinate> &line, int segment, bool forward) {

    const bool upsideDown = !forward;

    if (offset < 0)
        forward = !forward;

    if (forward)
        segment++;

    assert((int)line.size() > segment);
    vec2<float> end = line[segment];
    vec2<float> newAnchorPoint = anchor;
    float prevscale = std::numeric_limits<float>::infinity();

    offset = std::fabs(offset);

    const float placementScale = anchor.scale;

    while (true) {
        const float dist = util::dist<float>(newAnchorPoint, end);
        const float scale = offset / dist;
        float angle = std::atan2(end.y - newAnchorPoint.y, end.x - newAnchorPoint.x);
        if (!forward)
            angle += M_PI;
        if (upsideDown)
            angle += M_PI;

        glyphs = GlyphInstance{
            /* anchor */ newAnchorPoint,
            /* offset */ static_cast<float>(upsideDown ? M_PI : 0.0),
            /* minScale */ scale,
            /* maxScale */ prevscale,
            /* angle */ static_cast<float>(std::fmod((angle + 2.0 * M_PI), (2.0 * M_PI)))};

        if (scale <= placementScale)
            break;

        newAnchorPoint = end;

        // skip duplicate nodes
        while (newAnchorPoint == end) {
            segment += forward ? 1 : -1;
            if ((int)line.size() <= segment || segment < 0) {
                anchor.scale = scale;
                return;
            }
            end = line[segment];
        }

        vec2<float> normal = util::normal<float>(newAnchorPoint, end) * dist;
        newAnchorPoint = newAnchorPoint - normal;

        prevscale = scale;
    }
}

SymbolQuads getGlyphQuads(Anchor& anchor, const Shaping& shapedText,
        const float boxScale, const std::vector<Coordinate>& line, const SymbolLayoutProperties& layout,
        const bool alongLine, const GlyphPositions& face) {

    const float textRotate = layout.text.rotate * M_PI / 180;
    const bool keepUpright = layout.text.keepUpright;

    SymbolQuads quads;

    for (const PositionedGlyph &positionedGlyph: shapedText.positionedGlyphs) {
        auto face_it = face.find(positionedGlyph.glyph);
        if (face_it == face.end())
            continue;
        const Glyph &glyph = face_it->second;
        const Rect<uint16_t> &rect = glyph.rect;

        if (!glyph)
            continue;

        if (!rect.hasArea())
            continue;

        const float centerX = (positionedGlyph.x + glyph.metrics.advance / 2.0f) * boxScale;

        GlyphInstances glyphInstances;
        if (alongLine) {
            getSegmentGlyphs(std::back_inserter(glyphInstances), anchor, centerX, line, anchor.segment, true);
            if (keepUpright)
                getSegmentGlyphs(std::back_inserter(glyphInstances), anchor, centerX, line, anchor.segment, false);

        } else {
            glyphInstances.emplace_back(GlyphInstance{anchor});
        }

        // The rects have an addditional buffer that is not included in their size;
        const float glyphPadding = 1.0f;
        const float rectBuffer = 3.0f + glyphPadding;

        const float x1 = positionedGlyph.x + glyph.metrics.left - rectBuffer;
        const float y1 = positionedGlyph.y - glyph.metrics.top - rectBuffer;
        const float x2 = x1 + rect.w;
        const float y2 = y1 + rect.h;

        const vec2<float> otl{x1, y1};
        const vec2<float> otr{x2, y1};
        const vec2<float> obl{x1, y2};
        const vec2<float> obr{x2, y2};

        for (const GlyphInstance &instance : glyphInstances) {

            vec2<float> tl = otl;
            vec2<float> tr = otr;
            vec2<float> bl = obl;
            vec2<float> br = obr;
            const float angle = instance.angle + textRotate;

            if (angle) {
                // Compute the transformation matrix.
                float angle_sin = std::sin(angle);
                float angle_cos = std::cos(angle);
                std::array<float, 4> matrix = {{angle_cos, -angle_sin, angle_sin, angle_cos}};

                tl = tl.matMul(matrix);
                tr = tr.matMul(matrix);
                bl = bl.matMul(matrix);
                br = br.matMul(matrix);
            }

            // Prevent label from extending past the end of the line
            const float glyphMinScale = std::max(instance.minScale, anchor.scale);

            const float glyphAngle = std::fmod((anchor.angle + textRotate + instance.offset + 2 * M_PI), (2 * M_PI));
            quads.emplace_back(tl, tr, bl, br, rect, glyphAngle, instance.anchorPoint, glyphMinScale, instance.maxScale);

        }

    }

    return quads;
}
} // namespace mbgl