summaryrefslogtreecommitdiff
path: root/src/mbgl/text/collision.cpp
blob: 2e0ec6dce2a039645273d183f8aa9303c29ab110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#include <mbgl/text/collision.hpp>
#include <mbgl/text/rotation_range.hpp>
#include <mbgl/util/math.hpp>


using namespace mbgl;

Box getBox(const CollisionAnchor &anchor, const CollisionRect &bbox, float minScale,
           float maxScale) {
    return Box{
        Point{
            anchor.x + util::min(bbox.tl.x / minScale, bbox.tl.x / maxScale),
            anchor.y + util::min(bbox.tl.y / minScale, bbox.tl.y / maxScale),
        },
        Point{
            anchor.x + util::max(bbox.br.x / minScale, bbox.br.x / maxScale),
            anchor.y + util::max(bbox.br.y / minScale, bbox.br.y / maxScale),
        },
    };
};

Collision::Collision(float zoom_, float tileExtent, float tileSize, float placementDepth)
      // tile pixels per screen pixels at the tile's zoom level
    : tilePixelRatio(tileExtent / tileSize),

      zoom(zoom_),

      // Calculate the maximum scale we can go down in our fake-3d rtree so that
      // placement still makes sense. This is calculated so that the minimum
      // placement zoom can be at most 25.5 (we use an unsigned integer x10 to
      // store the minimum zoom).
      //
      // We don't want to place labels all the way to 25.5. This lets too many
      // glyphs be placed, slowing down collision checking. Only place labels if
      // they will show up within the intended zoom range of the tile.
      maxPlacementScale(std::exp(std::log(2) * util::min(3.0f, placementDepth, 25.5f - zoom_))) {
    const float m = 4096;
    const float edge = m * tilePixelRatio * 2;


    PlacementBox left;
    left.anchor = CollisionAnchor{ 0.0f, 0.0f };
    left.box = CollisionRect{CollisionPoint{-edge, -edge}, CollisionPoint{0, edge}};
    left.placementRange = {{ 2.0f * M_PI, 0.0f }};
    left.placementScale = 0.5f;
    left.maxScale = std::numeric_limits<float>::infinity();
    left.padding = 0.0f;
    leftEdge = PlacementValue{
        getBox(left.anchor, left.box, left.placementScale, left.maxScale),
        left};

    PlacementBox top;
    top.anchor = CollisionAnchor{ 0.0f, 0.0f };
    top.box = CollisionRect{CollisionPoint{-edge, -edge}, CollisionPoint{edge, 0}};
    top.placementRange = {{ 2.0f * M_PI, 0.0f }};
    top.placementScale = 0.5f;
    top.maxScale = std::numeric_limits<float>::infinity();
    top.padding = 0.0f;
    topEdge = PlacementValue{
        getBox(top.anchor, top.box, top.placementScale, top.maxScale),
        top};

    PlacementBox bottom;
    bottom.anchor = CollisionAnchor{ m, m };
    bottom.box = CollisionRect{CollisionPoint{-edge, 0}, CollisionPoint{edge, edge}};
    bottom.placementRange = {{ 2.0f * M_PI, 0.0f }};
    bottom.placementScale = 0.5f;
    bottom.maxScale = std::numeric_limits<float>::infinity();
    bottom.padding = 0.0f;
    bottomEdge = PlacementValue{
        getBox(bottom.anchor, bottom.box, bottom.placementScale, bottom.maxScale),
        bottom};

    PlacementBox right;
    right.anchor = CollisionAnchor{ m, m };
    right.box = CollisionRect{CollisionPoint{0, -edge}, CollisionPoint{edge, edge}};
    right.placementRange = {{ 2.0f * M_PI, 0.0f }};
    right.placementScale = 0.5f;
    right.maxScale = std::numeric_limits<float>::infinity();
    right.padding = 0.0f;
    rightEdge = PlacementValue{
        getBox(right.anchor, right.box, right.placementScale, right.maxScale),
        right};

}

GlyphBox getMergedGlyphs(const GlyphBoxes &boxes, const CollisionAnchor &anchor) {
    GlyphBox mergedGlyphs;
    const float inf = std::numeric_limits<float>::infinity();
    mergedGlyphs.box = CollisionRect{{inf, inf}, {-inf, -inf}};
    mergedGlyphs.anchor = anchor;

    CollisionRect &box = mergedGlyphs.box;
    for (const GlyphBox &glyph : boxes) {
        const CollisionRect &gbox = glyph.box;
        box.tl.x = util::min(box.tl.x, gbox.tl.x);
        box.tl.y = util::min(box.tl.y, gbox.tl.y);
        box.br.x = util::max(box.br.x, gbox.br.x);
        box.br.y = util::max(box.br.y, gbox.br.y);
        mergedGlyphs.minScale = util::max(mergedGlyphs.minScale, glyph.minScale);
    }

    return mergedGlyphs;
}

float Collision::getPlacementScale(const GlyphBoxes &glyphs, float minPlacementScale, bool avoidEdges) {

    for (const GlyphBox &glyph : glyphs) {
        const CollisionRect &box = glyph.box;
        const CollisionRect &bbox = glyph.hBox ? glyph.hBox.get() : glyph.box;
        const CollisionAnchor &anchor = glyph.anchor;
        const float pad = glyph.padding;


        if (anchor.x < 0 || anchor.x > 4096 || anchor.y < 0 || anchor.y > 4096) {
            return 0;
        }

        float minScale = std::fmax(minPlacementScale, glyph.minScale);
        float maxScale = glyph.maxScale != 0 ? glyph.maxScale : std::numeric_limits<float>::infinity();

        if (minScale >= maxScale) {
            continue;
        }

        // Compute the scaled bounding box of the unrotated glyph
        const Box searchBox = getBox(anchor, bbox, minScale, maxScale);

        std::vector<PlacementValue> blocking;
        hTree.query(bgi::intersects(searchBox), std::back_inserter(blocking));
        cTree.query(bgi::intersects(searchBox), std::back_inserter(blocking));

        if (avoidEdges) {
            if (searchBox.min_corner().get<0>() < 0) blocking.emplace_back(leftEdge);
            if (searchBox.min_corner().get<1>() < 0) blocking.emplace_back(topEdge);
            if (searchBox.max_corner().get<0>() >= 4096) blocking.emplace_back(rightEdge);
            if (searchBox.max_corner().get<1>() >= 4096) blocking.emplace_back(bottomEdge);
        }

        if (blocking.size()) {
            const CollisionAnchor &na = anchor; // new anchor
            const CollisionRect &nb = box;      // new box

            for (const PlacementValue &value : blocking) {
                const PlacementBox &placement = std::get<1>(value);
                const CollisionAnchor &oa = placement.anchor; // old anchor
                const CollisionRect &ob = placement.box;      // old box

                // If anchors are identical, we're going to skip the label.
                // NOTE: this isn't right because there can be glyphs with
                // the same anchor but differing box offsets.
                if (na == oa) {
                    return 0;
                }

                // todo: unhardcode the 8 = tileExtent/tileSize
                float padding = std::fmax(pad, placement.padding) * 8.0f;

                // Original algorithm:
                float s1 = (ob.tl.x - nb.br.x - padding) /
                           (na.x - oa.x); // scale at which new box is to the left of old box
                float s2 = (ob.br.x - nb.tl.x + padding) /
                           (na.x - oa.x); // scale at which new box is to the right of old box
                float s3 = (ob.tl.y - nb.br.y - padding) /
                           (na.y - oa.y); // scale at which new box is to the top of old box
                float s4 = (ob.br.y - nb.tl.y + padding) /
                           (na.y - oa.y); // scale at which new box is to the bottom of old box

                if (std::isnan(s1) || std::isnan(s2)) {
                    s1 = s2 = 1;
                }
                if (std::isnan(s3) || std::isnan(s4)) {
                    s3 = s4 = 1;
                }

                const float collisionFreeScale = std::fmin(std::fmax(s1, s2), std::fmax(s3, s4));

                // Only update label's min scale if the glyph was
                // restricted by a collision
                if (collisionFreeScale > minPlacementScale &&
                    collisionFreeScale > minScale &&
                    collisionFreeScale < maxScale &&
                    collisionFreeScale < placement.maxScale) {
                    minPlacementScale = collisionFreeScale;
                }

                if (minPlacementScale > maxPlacementScale) {
                    return 0;
                }
            }
        }
    }

    return minPlacementScale;
}

PlacementRange Collision::getPlacementRange(const GlyphBoxes &glyphs, float placementScale,
                                            bool horizontal) {
    PlacementRange placementRange = {{2.0f * M_PI, 0}};

    for (const GlyphBox &glyph : glyphs) {
        const CollisionRect &bbox = glyph.hBox ? glyph.hBox.get() : glyph.box;
        const CollisionAnchor &anchor = glyph.anchor;

        float minPlacedX = anchor.x + bbox.tl.x / placementScale;
        float minPlacedY = anchor.y + bbox.tl.y / placementScale;
        float maxPlacedX = anchor.x + bbox.br.x / placementScale;
        float maxPlacedY = anchor.y + bbox.br.y / placementScale;

        Box query_box{Point{minPlacedX, minPlacedY}, Point{maxPlacedX, maxPlacedY}};

        std::vector<PlacementValue> blocking;
        hTree.query(bgi::intersects(query_box), std::back_inserter(blocking));

        if (horizontal) {
            cTree.query(bgi::intersects(query_box), std::back_inserter(blocking));
        }

        for (const PlacementValue &value : blocking) {
            const Box &s = std::get<0>(value);
            const PlacementBox &b = std::get<1>(value);
            const CollisionRect &bbox2 = b.hBox ? b.hBox.get() : b.box;

            float x1, x2, y1, y2, intersectX, intersectY;

            // Adjust and compare bboxes to see if the glyphs might intersect
            if (placementScale > b.placementScale) {
                x1 = b.anchor.x + bbox2.tl.x / placementScale;
                y1 = b.anchor.y + bbox2.tl.y / placementScale;
                x2 = b.anchor.x + bbox2.br.x / placementScale;
                y2 = b.anchor.y + bbox2.br.y / placementScale;
                intersectX = x1 < maxPlacedX && x2 > minPlacedX;
                intersectY = y1 < maxPlacedY && y2 > minPlacedY;
            } else {
                x1 = anchor.x + bbox.tl.x / b.placementScale;
                y1 = anchor.y + bbox.tl.y / b.placementScale;
                x2 = anchor.x + bbox.br.x / b.placementScale;
                y2 = anchor.y + bbox.br.y / b.placementScale;

                intersectX = x1 < s.max_corner().get<0>() && x2 > s.min_corner().get<0>();
                intersectY = y1 < s.max_corner().get<1>() && y2 > s.min_corner().get<1>();
            }

            // If they can't intersect, skip more expensive rotation calculation
            if (!(intersectX && intersectY))
                continue;

            float scale = std::fmax(placementScale, b.placementScale);
            // TODO? glyph.box or glyph.bbox?
            CollisionRange range = rotationRange(glyph, b, scale);

            placementRange[0] = std::fmin(placementRange[0], range[0]);
            placementRange[1] = std::fmax(placementRange[1], range[1]);
        }
    }

    return placementRange;
};

void Collision::insert(const GlyphBoxes &glyphs, const CollisionAnchor &anchor,
                       float placementScale, const PlacementRange &placementRange,
                       bool horizontal) {
    assert(placementScale != std::numeric_limits<float>::infinity());

    std::vector<PlacementValue> allBounds;
    allBounds.reserve(glyphs.size());

    for (const GlyphBox &glyph : glyphs) {
        const CollisionRect &box = glyph.box;
        const CollisionRect &bbox = glyph.hBox ? glyph.hBox.get() : glyph.box;

        const float minScale = util::max(placementScale, glyph.minScale);
        const float maxScale = glyph.maxScale != 0 ? glyph.maxScale : std::numeric_limits<float>::infinity();

        const Box bounds = getBox(anchor, bbox, minScale, maxScale);

        PlacementBox placement;
        placement.anchor = anchor;
        placement.box = box;
        if (glyph.hBox) {
            placement.hBox = bbox;
        }
        placement.placementRange = placementRange;
        placement.placementScale = minScale;
        placement.maxScale = maxScale;
        placement.padding = glyph.padding;

        allBounds.emplace_back(bounds, placement);
    }

    // Bulk-insert all glyph boxes
    if (horizontal) {
        hTree.insert(allBounds.begin(), allBounds.end());
    } else {
        cTree.insert(allBounds.begin(), allBounds.end());
    }
}