summaryrefslogtreecommitdiff
path: root/src/mbgl/shaders/line.hpp
blob: 1ecef0a4470e5802aac44d70dbb3df587d6cb315 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#pragma once

// NOTE: DO NOT CHANGE THIS FILE. IT IS AUTOMATICALLY GENERATED.

#include <mbgl/gl/gl.hpp>

namespace mbgl {
namespace shaders {

class line {
public:
    static constexpr const char* name = "line";
    static constexpr const char* vertexSource = R"MBGL_SHADER(
#ifdef GL_ES
precision highp float;
#else

#if !defined(lowp)
#define lowp
#endif

#if !defined(mediump)
#define mediump
#endif

#if !defined(highp)
#define highp
#endif

#endif

float evaluate_zoom_function_1(const vec4 values, const float t) {
    if (t < 1.0) {
        return mix(values[0], values[1], t);
    } else if (t < 2.0) {
        return mix(values[1], values[2], t - 1.0);
    } else {
        return mix(values[2], values[3], t - 2.0);
    }
}
vec4 evaluate_zoom_function_4(const vec4 value0, const vec4 value1, const vec4 value2, const vec4 value3, const float t) {
    if (t < 1.0) {
        return mix(value0, value1, t);
    } else if (t < 2.0) {
        return mix(value1, value2, t - 1.0);
    } else {
        return mix(value2, value3, t - 2.0);
    }
}

// The offset depends on how many pixels are between the world origin and the edge of the tile:
// vec2 offset = mod(pixel_coord, size)
//
// At high zoom levels there are a ton of pixels between the world origin and the edge of the tile.
// The glsl spec only guarantees 16 bits of precision for highp floats. We need more than that.
//
// The pixel_coord is passed in as two 16 bit values:
// pixel_coord_upper = floor(pixel_coord / 2^16)
// pixel_coord_lower = mod(pixel_coord, 2^16)
//
// The offset is calculated in a series of steps that should preserve this precision:
vec2 get_pattern_pos(const vec2 pixel_coord_upper, const vec2 pixel_coord_lower,
    const vec2 pattern_size, const float tile_units_to_pixels, const vec2 pos) {

    vec2 offset = mod(mod(mod(pixel_coord_upper, pattern_size) * 256.0, pattern_size) * 256.0 + pixel_coord_lower, pattern_size);
    return (tile_units_to_pixels * pos + offset) / pattern_size;
}


// the distance over which the line edge fades out.
// Retina devices need a smaller distance to avoid aliasing.
#define ANTIALIASING 1.0 / DEVICE_PIXEL_RATIO / 2.0

// floor(127 / 2) == 63.0
// the maximum allowed miter limit is 2.0 at the moment. the extrude normal is
// stored in a byte (-128..127). we scale regular normals up to length 63, but
// there are also "special" normals that have a bigger length (of up to 126 in
// this case).
// #define scale 63.0
#define scale 0.015873016

attribute vec2 a_pos;
attribute vec4 a_data;

uniform mat4 u_matrix;
uniform mediump float u_ratio;
uniform mediump float u_width;
uniform vec2 u_gl_units_to_pixels;

varying vec2 v_normal;
varying vec2 v_width2;
varying float v_gamma_scale;

uniform lowp float a_color_t;
attribute lowp vec4 a_color_min;
attribute lowp vec4 a_color_max;
varying lowp vec4 color;
uniform lowp float a_blur_t;
attribute lowp float a_blur_min;
attribute lowp float a_blur_max;
varying lowp float blur;
uniform lowp float a_opacity_t;
attribute lowp float a_opacity_min;
attribute lowp float a_opacity_max;
varying lowp float opacity;
uniform lowp float a_gapwidth_t;
attribute mediump float a_gapwidth_min;
attribute mediump float a_gapwidth_max;
varying mediump float gapwidth;
uniform lowp float a_offset_t;
attribute lowp float a_offset_min;
attribute lowp float a_offset_max;
varying lowp float offset;

void main() {
    color = mix(a_color_min, a_color_max, a_color_t);
    blur = mix(a_blur_min, a_blur_max, a_blur_t);
    opacity = mix(a_opacity_min, a_opacity_max, a_opacity_t);
    gapwidth = mix(a_gapwidth_min, a_gapwidth_max, a_gapwidth_t);
    offset = mix(a_offset_min, a_offset_max, a_offset_t);

    vec2 a_extrude = a_data.xy - 128.0;
    float a_direction = mod(a_data.z, 4.0) - 1.0;

    // We store the texture normals in the most insignificant bit
    // transform y so that 0 => -1 and 1 => 1
    // In the texture normal, x is 0 if the normal points straight up/down and 1 if it's a round cap
    // y is 1 if the normal points up, and -1 if it points down
    mediump vec2 normal = mod(a_pos, 2.0);
    normal.y = sign(normal.y - 0.5);
    v_normal = normal;


    // these transformations used to be applied in the JS and native code bases. 
    // moved them into the shader for clarity and simplicity. 
    gapwidth = gapwidth / 2.0;
    float width = u_width / 2.0;
    offset = -1.0 * offset; 

    float inset = gapwidth + (gapwidth > 0.0 ? ANTIALIASING : 0.0);
    float outset = gapwidth + width * (gapwidth > 0.0 ? 2.0 : 1.0) + ANTIALIASING;

    // Scale the extrusion vector down to a normal and then up by the line width
    // of this vertex.
    mediump vec2 dist = outset * a_extrude * scale;

    // Calculate the offset when drawing a line that is to the side of the actual line.
    // We do this by creating a vector that points towards the extrude, but rotate
    // it when we're drawing round end points (a_direction = -1 or 1) since their
    // extrude vector points in another direction.
    mediump float u = 0.5 * a_direction;
    mediump float t = 1.0 - abs(u);
    mediump vec2 offset2 = offset * a_extrude * scale * normal.y * mat2(t, -u, u, t);

    // Remove the texture normal bit to get the position
    vec2 pos = floor(a_pos * 0.5);

    vec4 projected_extrude = u_matrix * vec4(dist / u_ratio, 0.0, 0.0);
    gl_Position = u_matrix * vec4(pos + offset2 / u_ratio, 0.0, 1.0) + projected_extrude;

    // calculate how much the perspective view squishes or stretches the extrude
    float extrude_length_without_perspective = length(dist);
    float extrude_length_with_perspective = length(projected_extrude.xy / gl_Position.w * u_gl_units_to_pixels);
    v_gamma_scale = extrude_length_without_perspective / extrude_length_with_perspective;

    v_width2 = vec2(outset, inset);
}
)MBGL_SHADER";
    static constexpr const char* fragmentSource = R"MBGL_SHADER(
#ifdef GL_ES
precision mediump float;
#else

#if !defined(lowp)
#define lowp
#endif

#if !defined(mediump)
#define mediump
#endif

#if !defined(highp)
#define highp
#endif

#endif
varying lowp vec4 color;
varying lowp float blur;
varying lowp float opacity;

varying vec2 v_width2;
varying vec2 v_normal;
varying float v_gamma_scale;

void main() {
    
    
    

    // Calculate the distance of the pixel from the line in pixels.
    float dist = length(v_normal) * v_width2.s;

    // Calculate the antialiasing fade factor. This is either when fading in
    // the line in case of an offset line (v_width2.t) or when fading out
    // (v_width2.s)
    float blur2 = (blur + 1.0 / DEVICE_PIXEL_RATIO) * v_gamma_scale;
    float alpha = clamp(min(dist - (v_width2.t - blur2), v_width2.s - dist) / blur2, 0.0, 1.0);

    gl_FragColor = color * (alpha * opacity);

#ifdef OVERDRAW_INSPECTOR
    gl_FragColor = vec4(1.0);
#endif
}
)MBGL_SHADER";
};

} // namespace shaders
} // namespace mbgl