summaryrefslogtreecommitdiff
path: root/src/mbgl/shaders/heatmap.cpp
blob: 52bc493fe24d8d3cf6fc727aadfc38e4ad3b3d95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// NOTE: DO NOT CHANGE THIS FILE. IT IS AUTOMATICALLY GENERATED.

#include <mbgl/shaders/heatmap.hpp>

namespace mbgl {
namespace shaders {

const char* heatmap::name = "heatmap";
const char* heatmap::vertexSource = R"MBGL_SHADER(

#ifndef HAS_UNIFORM_u_weight
uniform lowp float a_weight_t;
attribute highp vec2 a_weight;
varying highp float weight;
#else
uniform highp float u_weight;
#endif


uniform mat4 u_matrix;
uniform float u_extrude_scale;
uniform float u_radius;
uniform float u_opacity;
uniform float u_intensity;

attribute vec2 a_pos;

varying vec2 v_extrude;

// Effective "0" in the kernel density texture to adjust the kernel size to;
// this empirically chosen number minimizes artifacts on overlapping kernels
// for typical heatmap cases (assuming clustered source)
const highp float ZERO = 1.0 / 255.0 / 16.0;

// Gaussian kernel coefficient: 1 / sqrt(2 * PI)
#define GAUSS_COEF 0.3989422804014327

void main(void) {

#ifndef HAS_UNIFORM_u_weight
    weight = unpack_mix_vec2(a_weight, a_weight_t);
#else
    highp float weight = u_weight;
#endif


    // unencode the extrusion vector that we snuck into the a_pos vector
    vec2 unscaled_extrude = vec2(mod(a_pos, 2.0) * 2.0 - 1.0);

    // This 'extrude' comes in ranging from [-1, -1], to [1, 1].  We'll use
    // it to produce the vertices of a square mesh framing the point feature
    // we're adding to the kernel density texture.  We'll also pass it as
    // a varying, so that the fragment shader can determine the distance of
    // each fragment from the point feature.
    // Before we do so, we need to scale it up sufficiently so that the
    // kernel falls effectively to zero at the edge of the mesh.
    // That is, we want to know S such that
    // weight * u_intensity * GAUSS_COEF * exp(-0.5 * 3.0^2 * S^2) == ZERO
    // Which solves to:
    // S = sqrt(-2.0 * log(ZERO / (weight * u_intensity * GAUSS_COEF))) / 3.0
    float S = sqrt(-2.0 * log(ZERO / weight / u_intensity / GAUSS_COEF)) / 3.0;

    // Pass the varying in units of u_radius
    v_extrude = S * unscaled_extrude;

    // Scale by u_radius and the zoom-based scale factor to produce actual
    // mesh position
    vec2 extrude = v_extrude * u_radius * u_extrude_scale;

    // multiply a_pos by 0.5, since we had it * 2 in order to sneak
    // in extrusion data
    vec4 pos = vec4(floor(a_pos * 0.5) + extrude, 0, 1);

    gl_Position = u_matrix * pos;
}

)MBGL_SHADER";
const char* heatmap::fragmentSource = R"MBGL_SHADER(

#ifndef HAS_UNIFORM_u_weight
varying highp float weight;
#else
uniform highp float u_weight;
#endif


uniform highp float u_intensity;
uniform highp float u_radius;
varying vec2 v_extrude;

// Gaussian kernel coefficient: 1 / sqrt(2 * PI)
#define GAUSS_COEF 0.3989422804014327

void main() {

#ifdef HAS_UNIFORM_u_weight
    highp float weight = u_weight;
#endif


    // Kernel density estimation with a Gaussian kernel of size 5x5
    float d = -0.5 * 3.0 * 3.0 * dot(v_extrude, v_extrude);
    float val = weight * u_intensity * GAUSS_COEF * exp(d);

    gl_FragColor = vec4(val, 1.0, 1.0, 1.0);

#ifdef OVERDRAW_INSPECTOR
    gl_FragColor = vec4(1.0);
#endif
}

)MBGL_SHADER";

} // namespace shaders
} // namespace mbgl