summaryrefslogtreecommitdiff
path: root/src/mbgl/renderer/tile_pyramid.cpp
blob: 37925a54b7a5d83bcc6b0af82911af890d96acf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#include <mbgl/renderer/tile_pyramid.hpp>
#include <mbgl/renderer/render_tile.hpp>
#include <mbgl/renderer/paint_parameters.hpp>
#include <mbgl/renderer/render_source.hpp>
#include <mbgl/renderer/tile_parameters.hpp>
#include <mbgl/renderer/query.hpp>
#include <mbgl/map/transform.hpp>
#include <mbgl/math/clamp.hpp>
#include <mbgl/util/tile_cover.hpp>
#include <mbgl/util/tile_range.hpp>
#include <mbgl/util/enum.hpp>
#include <mbgl/util/logging.hpp>

#include <mbgl/algorithm/update_renderables.hpp>

#include <mapbox/geometry/envelope.hpp>

#include <cmath>
#include <algorithm>

namespace mbgl {

using namespace style;

static TileObserver nullObserver;

TilePyramid::TilePyramid()
    : observer(&nullObserver) {
}

TilePyramid::~TilePyramid() = default;

bool TilePyramid::isLoaded() const {
    for (const auto& pair : tiles) {
        if (!pair.second->isComplete()) {
            return false;
        }
    }

    return true;
}

void TilePyramid::startRender(PaintParameters& parameters) {
    for (auto& tile : renderTiles) {
        tile.startRender(parameters);
    }
}

void TilePyramid::finishRender(PaintParameters& parameters) {
    for (auto& tile : renderTiles) {
        tile.finishRender(parameters);
    }
}

std::vector<std::reference_wrapper<RenderTile>> TilePyramid::getRenderTiles() {
    return { renderTiles.begin(), renderTiles.end() };
}

Tile* TilePyramid::getTile(const OverscaledTileID& tileID){
        auto it = tiles.find(tileID);
        return it == tiles.end() ? cache.get(tileID) : it->second.get();
}

void TilePyramid::update(const std::vector<Immutable<style::LayerProperties>>& layers,
                         const bool needsRendering,
                         const bool needsRelayout,
                         const TileParameters& parameters,
                         const SourceType type,
                         const uint16_t tileSize,
                         const Range<uint8_t> zoomRange,
                         optional<LatLngBounds> bounds,
                         std::function<std::unique_ptr<Tile> (const OverscaledTileID&)> createTile) {
    // If we need a relayout, abandon any cached tiles; they're now stale.
    if (needsRelayout) {
        cache.clear();
    }

    // If we're not going to render anything, move our existing tiles into
    // the cache (if they're not stale) or abandon them, and return.
    if (!needsRendering) {
        if (!needsRelayout) {
            for (auto& entry : tiles) {
                cache.add(entry.first, std::move(entry.second));
            }
        }

        tiles.clear();
        renderTiles.clear();

        return;
    }

    handleWrapJump(parameters.transformState.getLatLng().longitude());

    // Determine the overzooming/underzooming amounts and required tiles.
    int32_t overscaledZoom = util::coveringZoomLevel(parameters.transformState.getZoom(), type, tileSize);
    int32_t tileZoom = overscaledZoom;
    int32_t panZoom = zoomRange.max;

    std::vector<UnwrappedTileID> idealTiles;
    std::vector<UnwrappedTileID> panTiles;

    if (overscaledZoom >= zoomRange.min) {
        int32_t idealZoom = std::min<int32_t>(zoomRange.max, overscaledZoom);


        // Make sure we're not reparsing overzoomed raster tiles.
        if (type == SourceType::Raster) {
            tileZoom = idealZoom;
        }

        // Only attempt prefetching in continuous mode.
        if (parameters.mode == MapMode::Continuous && type != style::SourceType::GeoJSON && type != style::SourceType::Annotations) {
            // Request lower zoom level tiles (if configured to do so) in an attempt
            // to show something on the screen faster at the cost of a little of bandwidth.
            if (parameters.prefetchZoomDelta) {
                panZoom = std::max<int32_t>(tileZoom - parameters.prefetchZoomDelta, zoomRange.min);
            }

            if (panZoom < idealZoom) {
                panTiles = util::tileCover(parameters.transformState, panZoom);
            }
        }

        idealTiles = util::tileCover(parameters.transformState, idealZoom);
    }

    // Stores a list of all the tiles that we're definitely going to retain. There are two
    // kinds of tiles we need: the ideal tiles determined by the tile cover. They may not yet be in
    // use because they're still loading. In addition to that, we also need to retain all tiles that
    // we're actively using, e.g. as a replacement for tile that aren't loaded yet.
    std::set<OverscaledTileID> retain;
    std::set<UnwrappedTileID> rendered;

    auto retainTileFn = [&](Tile& tile, TileNecessity necessity) -> void {
        if (retain.emplace(tile.id).second) {
            tile.setNecessity(necessity);
        }

        if (needsRelayout) {
            tile.setLayers(layers);
        }
    };
    auto getTileFn = [&](const OverscaledTileID& tileID) -> Tile* {
        auto it = tiles.find(tileID);
        return it == tiles.end() ? nullptr : it->second.get();
    };

    // The min and max zoom for TileRange are based on the updateRenderables algorithm.
    // Tiles are created at the ideal tile zoom or at lower zoom levels. Child
    // tiles are used from the cache, but not created.
    optional<util::TileRange> tileRange = {};
    if (bounds) {
        tileRange = util::TileRange::fromLatLngBounds(*bounds, zoomRange.min, std::min(tileZoom, (int32_t)zoomRange.max));
    }
    auto createTileFn = [&](const OverscaledTileID& tileID) -> Tile* {
        if (tileRange && !tileRange->contains(tileID.canonical)) {
            return nullptr;
        }
        std::unique_ptr<Tile> tile = cache.pop(tileID);
        if (!tile) {
            tile = createTile(tileID);
            if (tile) {
                tile->setObserver(observer);
                tile->setLayers(layers);
            }
        }
        if (!tile) {
            return nullptr;
        }
        return tiles.emplace(tileID, std::move(tile)).first->second.get();
    };

    std::map<UnwrappedTileID, Tile*> previouslyRenderedTiles;
    for (auto& renderTile : renderTiles) {
        previouslyRenderedTiles[renderTile.id] = &renderTile.tile;
    }

    auto renderTileFn = [&](const UnwrappedTileID& tileID, Tile& tile) {
        addRenderTile(tileID, tile);
        rendered.emplace(tileID);
        previouslyRenderedTiles.erase(tileID); // Still rendering this tile, no need for special fading logic.
        tile.markRenderedIdeal();
    };

    renderTiles.clear();

    if (!panTiles.empty()) {
        algorithm::updateRenderables(getTileFn, createTileFn, retainTileFn,
                [](const UnwrappedTileID&, Tile&) {}, panTiles, zoomRange, panZoom);
    }

    algorithm::updateRenderables(getTileFn, createTileFn, retainTileFn, renderTileFn,
                                 idealTiles, zoomRange, tileZoom);
    
    for (auto previouslyRenderedTile : previouslyRenderedTiles) {
        Tile& tile = *previouslyRenderedTile.second;
        tile.markRenderedPreviously();
        if (tile.holdForFade()) {
            // Since it was rendered in the last frame, we know we have it
            // Don't mark the tile "Required" to avoid triggering a new network request
            retainTileFn(tile, TileNecessity::Optional);
            addRenderTile(previouslyRenderedTile.first, tile);
            rendered.emplace(previouslyRenderedTile.first);
        }
    }

    if (type != SourceType::Annotations) {
        size_t conservativeCacheSize =
            std::max((float)parameters.transformState.getSize().width / tileSize, 1.0f) *
            std::max((float)parameters.transformState.getSize().height / tileSize, 1.0f) *
            (parameters.transformState.getMaxZoom() - parameters.transformState.getMinZoom() + 1) *
            0.5;
        cache.setSize(conservativeCacheSize);
    }

    // Remove stale tiles. This goes through the (sorted!) tiles map and retain set in lockstep
    // and removes items from tiles that don't have the corresponding key in the retain set.
    {
        auto tilesIt = tiles.begin();
        auto retainIt = retain.begin();
        while (tilesIt != tiles.end()) {
            if (retainIt == retain.end() || tilesIt->first < *retainIt) {
                if (!needsRelayout) {
                    tilesIt->second->setNecessity(TileNecessity::Optional);
                    cache.add(tilesIt->first, std::move(tilesIt->second));
                }
                tiles.erase(tilesIt++);
            } else {
                if (!(*retainIt < tilesIt->first)) {
                    ++tilesIt;
                }
                ++retainIt;
            }
        }
    }

    for (auto& pair : tiles) {
        pair.second->setShowCollisionBoxes(parameters.debugOptions & MapDebugOptions::Collision);
    }

    // Initialize render tiles fields and update the tile contained layer render data.
    for (RenderTile& renderTile : renderTiles) {
        Tile& tile = renderTile.tile;
        if (!tile.isRenderable()) continue;

        const bool holdForFade = tile.holdForFade();
        for (const auto& layerProperties : layers) {
            const auto* typeInfo = layerProperties->baseImpl->getTypeInfo();
            if (holdForFade && typeInfo->fadingTiles == LayerTypeInfo::FadingTiles::NotRequired) {
                continue;
            }
            // Update layer properties for complete tiles; for incomplete just check the presence.
            bool layerRenderableInTile = tile.isComplete() ? tile.updateLayerProperties(layerProperties)
                                                           : static_cast<bool>(tile.getBucket(*layerProperties->baseImpl));
            if (layerRenderableInTile) {
                renderTile.used = true;
                renderTile.needsClipping = (renderTile.needsClipping || typeInfo->clipping == LayerTypeInfo::Clipping::Required);
            }
        }
    }
}

void TilePyramid::handleWrapJump(float lng) {
    // On top of the regular z/x/y values, TileIDs have a `wrap` value that specify
    // which cppy of the world the tile belongs to. For example, at `lng: 10` you
    // might render z/x/y/0 while at `lng: 370` you would render z/x/y/1.
    //
    // When lng values get wrapped (going from `lng: 370` to `long: 10`) you expect
    // to see the same thing on the screen (370 degrees and 10 degrees is the same
    // place in the world) but all the TileIDs will have different wrap values.
    //
    // In order to make this transition seamless, we calculate the rounded difference of
    // "worlds" between the last frame and the current frame. If the map panned by
    // a world, then we can assign all the tiles new TileIDs with updated wrap values.
    // For example, assign z/x/y/1 a new id: z/x/y/0. It is the same tile, just rendered
    // in a different position.
    //
    // This enables us to reuse the tiles at more ideal locations and prevent flickering.

    const float lngDifference = lng - prevLng;
    const float worldDifference = lngDifference / 360;
    const int wrapDelta = ::round(worldDifference);
    prevLng = lng;

    if (wrapDelta) {
        std::map<OverscaledTileID, std::unique_ptr<Tile>> newTiles;
        for (auto& tile : tiles) {
            auto newID = tile.second->id.unwrapTo(tile.second->id.wrap + wrapDelta);
            tile.second->id = newID;
            newTiles.emplace(newID, std::move(tile.second));
        }
        tiles = std::move(newTiles);

        for (auto& renderTile : renderTiles) {
            renderTile.id = renderTile.id.unwrapTo(renderTile.id.wrap + wrapDelta);
        }
    }
}


std::unordered_map<std::string, std::vector<Feature>> TilePyramid::queryRenderedFeatures(const ScreenLineString& geometry,
                                           const TransformState& transformState,
                                           const std::vector<const RenderLayer*>& layers,
                                           const RenderedQueryOptions& options,
                                           const mat4& projMatrix) const {
    std::unordered_map<std::string, std::vector<Feature>> result;
    if (renderTiles.empty() || geometry.empty()) {
        return result;
    }

    LineString<double> queryGeometry;

    for (const auto& p : geometry) {
        queryGeometry.push_back(TileCoordinate::fromScreenCoordinate(
            transformState, 0, { p.x, transformState.getSize().height - p.y }).p);
    }

    mapbox::geometry::box<double> box = mapbox::geometry::envelope(queryGeometry);
    // TODO: Find out why we need a special sorting algorithm here.
    std::vector<std::reference_wrapper<const RenderTile>> sortedTiles{ renderTiles.begin(),
                                                                       renderTiles.end() };
    std::sort(sortedTiles.begin(), sortedTiles.end(), [](const RenderTile& a, const RenderTile& b) {
        return std::tie(a.id.canonical.z, a.id.canonical.y, a.id.wrap, a.id.canonical.x) <
            std::tie(b.id.canonical.z, b.id.canonical.y, b.id.wrap, b.id.canonical.x);
    });

    auto maxPitchScaleFactor = transformState.maxPitchScaleFactor();

    for (const RenderTile& renderTile : sortedTiles) {
        const float scale = std::pow(2, transformState.getZoom() - renderTile.id.canonical.z);
        auto queryPadding = maxPitchScaleFactor * renderTile.tile.getQueryPadding(layers) * util::EXTENT / util::tileSize / scale;

        GeometryCoordinate tileSpaceBoundsMin = TileCoordinate::toGeometryCoordinate(renderTile.id, box.min);
        if (tileSpaceBoundsMin.x - queryPadding >= util::EXTENT || tileSpaceBoundsMin.y - queryPadding >= util::EXTENT) {
            continue;
        }

        GeometryCoordinate tileSpaceBoundsMax = TileCoordinate::toGeometryCoordinate(renderTile.id, box.max);
        if (tileSpaceBoundsMax.x + queryPadding < 0 || tileSpaceBoundsMax.y + queryPadding < 0) {
            continue;
        }

        GeometryCoordinates tileSpaceQueryGeometry;
        tileSpaceQueryGeometry.reserve(queryGeometry.size());
        for (const auto& c : queryGeometry) {
            tileSpaceQueryGeometry.push_back(TileCoordinate::toGeometryCoordinate(renderTile.id, c));
        }

        renderTile.tile.queryRenderedFeatures(result,
                                              tileSpaceQueryGeometry,
                                              transformState,
                                              layers,
                                              options,
                                              projMatrix);
    }

    return result;
}

std::vector<Feature> TilePyramid::querySourceFeatures(const SourceQueryOptions& options) const {
    std::vector<Feature> result;

    for (const auto& pair : tiles) {
        pair.second->querySourceFeatures(result, options);
    }

    return result;
}

void TilePyramid::setCacheSize(size_t size) {
    cache.setSize(size);
}

void TilePyramid::reduceMemoryUse() {
    cache.clear();
}

void TilePyramid::setObserver(TileObserver* observer_) {
    observer = observer_;
}

void TilePyramid::dumpDebugLogs() const {
    for (const auto& pair : tiles) {
        pair.second->dumpDebugLogs();
    }
}

void TilePyramid::clearAll() {
    tiles.clear();
    renderTiles.clear();
    cache.clear();
}

void TilePyramid::addRenderTile(const UnwrappedTileID& tileID, Tile& tile) {
    auto it = std::lower_bound(renderTiles.begin(), renderTiles.end(), tileID,
        [](const RenderTile& a, const UnwrappedTileID& id) { return a.id < id; });
    renderTiles.emplace(it, tileID, tile);
}

} // namespace mbgl