summaryrefslogtreecommitdiff
path: root/src/mbgl/renderer/sources/render_image_source.cpp
blob: dce5e4018503969dda39c313e24e964193d5fcce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <mbgl/map/transform_state.hpp>
#include <mbgl/math/log2.hpp>
#include <mbgl/renderer/buckets/raster_bucket.hpp>
#include <mbgl/renderer/paint_parameters.hpp>
#include <mbgl/renderer/render_tile.hpp>
#include <mbgl/renderer/sources/render_image_source.hpp>
#include <mbgl/renderer/tile_parameters.hpp>
#include <mbgl/renderer/render_static_data.hpp>
#include <mbgl/programs/programs.hpp>
#include <mbgl/util/tile_coordinate.hpp>
#include <mbgl/util/tile_cover.hpp>
#include <mbgl/util/logging.hpp>
#include <mbgl/util/constants.hpp>

namespace mbgl {

using namespace style;

RenderImageSource::RenderImageSource(Immutable<style::ImageSource::Impl> impl_)
    : RenderSource(impl_) {
}

RenderImageSource::~RenderImageSource() = default;

const style::ImageSource::Impl& RenderImageSource::impl() const {
    return static_cast<const style::ImageSource::Impl&>(*baseImpl);
}

bool RenderImageSource::isLoaded() const {
    return !!bucket;
}

void RenderImageSource::startRender(PaintParameters& parameters) {
    if (!isLoaded()) {
        return;
    }

    matrices.clear();

    for (size_t i = 0; i < tileIds.size(); i++) {
        mat4 matrix;
        matrix::identity(matrix);
        parameters.state.matrixFor(matrix, tileIds[i]);
        matrix::multiply(matrix, parameters.alignedProjMatrix, matrix);
        matrices.push_back(matrix);
    }

    if (bucket->needsUpload()) {
        bucket->upload(parameters.context);
    }
}

void RenderImageSource::finishRender(PaintParameters& parameters) {
    if (!isLoaded() || !(parameters.debugOptions & MapDebugOptions::TileBorders)) {
        return;
    }

    static const style::Properties<>::PossiblyEvaluated properties {};
    static const DebugProgram::PaintPropertyBinders paintAttributeData(properties, 0);

    auto& programInstance = parameters.programs.debug;

    for (auto matrix : matrices) {
        programInstance.draw(
            parameters.context,
            gl::LineStrip { 4.0f * parameters.pixelRatio },
            gl::DepthMode::disabled(),
            gl::StencilMode::disabled(),
            gl::ColorMode::unblended(),
            parameters.staticData.tileBorderIndexBuffer,
            parameters.staticData.tileBorderSegments,
            programInstance.computeAllUniformValues(
                DebugProgram::UniformValues {
                    uniforms::u_matrix::Value{ matrix },
                    uniforms::u_color::Value{ Color::red() }
                },
                paintAttributeData,
                properties,
                parameters.state.getZoom()
            ),
            programInstance.computeAllAttributeBindings(
                parameters.staticData.tileVertexBuffer,
                paintAttributeData,
                properties
            ),
            "image"
        );
    }
}

std::unordered_map<std::string, std::vector<Feature>>
RenderImageSource::queryRenderedFeatures(const ScreenLineString&,
                                         const TransformState&,
                                         const std::vector<const RenderLayer*>&,
                                         const RenderedQueryOptions&,
                                         const mat4&) const {
    return std::unordered_map<std::string, std::vector<Feature>> {};
}

std::vector<Feature> RenderImageSource::querySourceFeatures(const SourceQueryOptions&) const {
    return {};
}

void RenderImageSource::update(Immutable<style::Source::Impl> baseImpl_,
                               const std::vector<Immutable<Layer::Impl>>&,
                               const bool needsRendering,
                               const bool,
                               const TileParameters& parameters) {
    enabled = needsRendering;
    if (!needsRendering) {
        return;
    }

    auto transformState = parameters.transformState;
    std::swap(baseImpl, baseImpl_);

    auto coords = impl().getCoordinates();
    std::shared_ptr<PremultipliedImage> image = impl().getImage();

    if (!image || !image->valid()) {
        enabled = false;
        return;
    }

    // Compute the z0 tile coordinates for the given LatLngs
    TileCoordinatePoint nePoint = { -INFINITY, -INFINITY };
    TileCoordinatePoint swPoint = { INFINITY, INFINITY };
    std::vector<TileCoordinatePoint> tileCoordinates;
    for (LatLng latLng : coords) {
        auto point = TileCoordinate::fromLatLng(0, latLng).p;
        tileCoordinates.push_back(point);
        swPoint.x = std::min(swPoint.x, point.x);
        nePoint.x = std::max(nePoint.x, point.x);
        swPoint.y = std::min(swPoint.y, point.y);
        nePoint.y = std::max(nePoint.y, point.y);
   }

    // Calculate the optimum zoom level to determine the tile ids to use for transforms
    auto dx = nePoint.x - swPoint.x;
    auto dy = nePoint.y - swPoint.y;
    auto dMax = std::max(dx, dy);
    double zoom = std::max(0.0, std::floor(-util::log2(dMax)));

    // Only enable if the long side of the image is > 2 pixels. Resulting in a
    // display of at least 2 x 1 px image
    // A tile coordinate unit represents the length of one tile (tileSize) at a given zoom.
    // To convert a tile coordinate to pixels, multiply by tileSize.
    // Here dMax is in z0 tile units, so we also scale by 2^z to match current zoom.
    enabled = dMax * std::pow(2.0, transformState.getZoom()) * util::tileSize > 2.0;
    if (!enabled) {
        return;
    }

    auto imageBounds = LatLngBounds::hull(coords[0], coords[1]);
    imageBounds.extend(coords[2]);
    imageBounds.extend(coords[3]);
    auto tileCover = util::tileCover(imageBounds, zoom);
    tileIds.clear();
    tileIds.push_back(tileCover[0]);

    bool hasVisibleTile = false;
    // Add additional wrapped tile ids if neccessary
    auto idealTiles = util::tileCover(transformState, transformState.getZoom());
    for (auto tile : idealTiles) {
        if (tile.wrap != 0 && tileCover[0].canonical.isChildOf(tile.canonical)) {
            tileIds.push_back({ tile.wrap, tileCover[0].canonical });
            hasVisibleTile = true;
        }
        else if (!hasVisibleTile) {
            for (auto coveringTile: tileCover) {
                if(coveringTile.canonical == tile.canonical ||
                    coveringTile.canonical.isChildOf(tile.canonical) ||
                    tile.canonical.isChildOf(coveringTile.canonical)) {
                    hasVisibleTile = true;
                }
            }
        }
    }

    enabled = hasVisibleTile;
    if (!enabled) {
        return;
    }

    // Calculate Geometry Coordinates based on tile cover at ideal zoom
    GeometryCoordinates geomCoords;
    for (auto tileCoords : tileCoordinates) {
        auto gc = TileCoordinate::toGeometryCoordinate(tileIds[0], tileCoords);
        geomCoords.push_back(gc);
    }
    if (!bucket) {
        bucket = std::make_unique<RasterBucket>(image);
    } else {
        bucket->clear();
        if (image != bucket->image) {
            bucket->setImage(image);
        }
    }

    // Set Bucket Vertices, Indices, and segments
    bucket->vertices.emplace_back(
        RasterProgram::layoutVertex({ geomCoords[0].x, geomCoords[0].y }, { 0, 0 }));
    bucket->vertices.emplace_back(
        RasterProgram::layoutVertex({ geomCoords[1].x, geomCoords[1].y }, { util::EXTENT, 0 }));
    bucket->vertices.emplace_back(
        RasterProgram::layoutVertex({ geomCoords[3].x, geomCoords[3].y }, { 0, util::EXTENT }));
    bucket->vertices.emplace_back(
        RasterProgram::layoutVertex({ geomCoords[2].x, geomCoords[2].y }, { util::EXTENT, util::EXTENT }));

    bucket->indices.emplace_back(0, 1, 2);
    bucket->indices.emplace_back(1, 2, 3);

    bucket->segments.emplace_back(0, 0, 4, 6);
}

void RenderImageSource::dumpDebugLogs() const {
    Log::Info(Event::General, "RenderImageSource::id: %s", impl().id.c_str());
    Log::Info(Event::General, "RenderImageSource::loaded: %s", isLoaded() ? "yes" : "no");
}

} // namespace mbgl