summaryrefslogtreecommitdiff
path: root/src/mbgl/renderer/paint_property_binder.hpp
blob: 7773e793141f49b0b9716ad56128f723b664f8db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#pragma once

#include <mbgl/programs/attributes.hpp>
#include <mbgl/gl/attribute.hpp>
#include <mbgl/gl/uniform.hpp>
#include <mbgl/gl/context.hpp>
#include <mbgl/util/type_list.hpp>
#include <mbgl/renderer/possibly_evaluated_property_value.hpp>
#include <mbgl/renderer/paint_property_statistics.hpp>

#include <bitset>

namespace mbgl {

/*
   ZoomInterpolatedAttribute<Attr> is a 'compound' attribute, representing two values of the
   the base attribute Attr.  These two values are provided to the shader to allow interpolation
   between zoom levels, without the need to repopulate vertex buffers each frame as the map is
   being zoomed.
*/
template <class A>
using ZoomInterpolatedAttributeType = gl::Attribute<typename A::ValueType, A::Dimensions * 2>;

inline std::array<float, 1> attributeValue(float v) {
    return {{ v }};
}

/*
    Encode a four-component color value into a pair of floats.  Since csscolorparser
    uses 8-bit precision for each color component, for each float we use the upper 8
    bits for one component (e.g. (color.r * 255) * 256), and the lower 8 for another.
    
    Also note that colors come in as floats 0..1, so we scale by 255.
*/
inline std::array<float, 2> attributeValue(const Color& color) {
    return {{
        static_cast<float>(mbgl::attributes::packUint8Pair(255 * color.r, 255 * color.g)),
        static_cast<float>(mbgl::attributes::packUint8Pair(255 * color.b, 255 * color.a))
    }};
}

template <size_t N>
std::array<float, N*2> zoomInterpolatedAttributeValue(const std::array<float, N>& min, const std::array<float, N>& max) {
    std::array<float, N*2> result;
    for (size_t i = 0; i < N; i++) {
        result[i]   = min[i];
        result[i+N] = max[i];
    }
    return result;
}

/*
   PaintPropertyBinder is an abstract class serving as the interface definition for
   the strategy used for constructing, uploading, and binding paint property data as
   GLSL attributes.

   It has three concrete subclasses, one for each of the three strategies we use:

   * For _constant_ properties -- those whose value is a constant, or the constant
     result of evaluating a camera function at a particular camera position -- we
     don't need a vertex buffer, and instead use a uniform.
   * For source functions, we use a vertex buffer with a single attribute value,
     the evaluated result of the source function for the given feature.
   * For composite functions, we use a vertex buffer with two attributes: min and
     max values covering the range of zooms at which we expect the tile to be
     displayed. These values are calculated by evaluating the composite function for
     the given feature at strategically chosen zoom levels. In addition to this
     attribute data, we also use a uniform value which the shader uses to interpolate
     between the min and max value at the final displayed zoom level. The use of a
     uniform allows us to cheaply update the value on every frame.

   Note that the shader source varies depending on whether we're using a uniform or
   attribute. Like GL JS, we dynamically compile shaders at runtime to accomodate this.
*/
template <class T, class A>
class PaintPropertyBinder {
public:
    using Attribute = ZoomInterpolatedAttributeType<A>;
    using AttributeBinding = typename Attribute::Binding;

    virtual ~PaintPropertyBinder() = default;

    virtual void populateVertexVector(const GeometryTileFeature& feature, std::size_t length) = 0;
    virtual void upload(gl::Context& context) = 0;
    virtual optional<AttributeBinding> attributeBinding(const PossiblyEvaluatedPropertyValue<T>& currentValue) const = 0;
    virtual float interpolationFactor(float currentZoom) const = 0;
    virtual T uniformValue(const PossiblyEvaluatedPropertyValue<T>& currentValue) const = 0;

    static std::unique_ptr<PaintPropertyBinder> create(const PossiblyEvaluatedPropertyValue<T>& value, float zoom, T defaultValue);

    PaintPropertyStatistics<T> statistics;
};

template <class T, class A>
class ConstantPaintPropertyBinder : public PaintPropertyBinder<T, A> {
public:
    using Attribute = ZoomInterpolatedAttributeType<A>;
    using AttributeBinding = typename Attribute::Binding;

    ConstantPaintPropertyBinder(T constant_)
        : constant(std::move(constant_)) {
    }

    void populateVertexVector(const GeometryTileFeature&, std::size_t) override {}
    void upload(gl::Context&) override {}

    optional<AttributeBinding> attributeBinding(const PossiblyEvaluatedPropertyValue<T>&) const override {
        return {};
    }

    float interpolationFactor(float) const override {
        return 0.0f;
    }

    T uniformValue(const PossiblyEvaluatedPropertyValue<T>& currentValue) const override {
        return currentValue.constantOr(constant);
    }

private:
    T constant;
};

template <class T, class A>
class SourceFunctionPaintPropertyBinder : public PaintPropertyBinder<T, A> {
public:
    using BaseAttribute = A;
    using BaseAttributeValue = typename BaseAttribute::Value;
    using BaseVertex = gl::detail::Vertex<BaseAttribute>;

    using Attribute = ZoomInterpolatedAttributeType<A>;
    using AttributeBinding = typename Attribute::Binding;

    SourceFunctionPaintPropertyBinder(style::PropertyExpression<T> expression_, T defaultValue_)
        : expression(std::move(expression_)),
          defaultValue(std::move(defaultValue_)) {
    }

    void populateVertexVector(const GeometryTileFeature& feature, std::size_t length) override {
        auto evaluated = expression.evaluate(feature, defaultValue);
        this->statistics.add(evaluated);
        auto value = attributeValue(evaluated);
        for (std::size_t i = vertexVector.vertexSize(); i < length; ++i) {
            vertexVector.emplace_back(BaseVertex { value });
        }
    }

    void upload(gl::Context& context) override {
        vertexBuffer = context.createVertexBuffer(std::move(vertexVector));
    }

    optional<AttributeBinding> attributeBinding(const PossiblyEvaluatedPropertyValue<T>& currentValue) const override {
        if (currentValue.isConstant()) {
            return {};
        } else {
            return Attribute::binding(*vertexBuffer, 0, BaseAttribute::Dimensions);
        }
    }

    float interpolationFactor(float) const override {
        return 0.0f;
    }

    T uniformValue(const PossiblyEvaluatedPropertyValue<T>& currentValue) const override {
        if (currentValue.isConstant()) {
            return *currentValue.constant();
        } else {
            // Uniform values for vertex attribute arrays are unused.
            return {};
        }
    }

private:
    style::PropertyExpression<T> expression;
    T defaultValue;
    gl::VertexVector<BaseVertex> vertexVector;
    optional<gl::VertexBuffer<BaseVertex>> vertexBuffer;
};

template <class T, class A>
class CompositeFunctionPaintPropertyBinder : public PaintPropertyBinder<T, A> {
public:
    using BaseAttribute = A;
    using BaseAttributeValue = typename BaseAttribute::Value;

    using Attribute = ZoomInterpolatedAttributeType<A>;
    using AttributeValue = typename Attribute::Value;
    using AttributeBinding = typename Attribute::Binding;
    using Vertex = gl::detail::Vertex<Attribute>;

    CompositeFunctionPaintPropertyBinder(style::PropertyExpression<T> expression_, float zoom, T defaultValue_)
        : expression(std::move(expression_)),
          defaultValue(std::move(defaultValue_)),
          zoomRange({zoom, zoom + 1}) {
    }

    void populateVertexVector(const GeometryTileFeature& feature, std::size_t length) override {
        Range<T> range = expression.evaluate(zoomRange, feature, defaultValue);
        this->statistics.add(range.min);
        this->statistics.add(range.max);
        AttributeValue value = zoomInterpolatedAttributeValue(
            attributeValue(range.min),
            attributeValue(range.max));
        for (std::size_t i = vertexVector.vertexSize(); i < length; ++i) {
            vertexVector.emplace_back(Vertex { value });
        }
    }

    void upload(gl::Context& context) override {
        vertexBuffer = context.createVertexBuffer(std::move(vertexVector));
    }

    optional<AttributeBinding> attributeBinding(const PossiblyEvaluatedPropertyValue<T>& currentValue) const override {
        if (currentValue.isConstant()) {
            return {};
        } else {
            return Attribute::binding(*vertexBuffer, 0);
        }
    }

    float interpolationFactor(float currentZoom) const override {
        if (expression.useIntegerZoom) {
            return expression.interpolationFactor(zoomRange, std::floor(currentZoom));
        } else {
            return expression.interpolationFactor(zoomRange, currentZoom);
        }
    }

    T uniformValue(const PossiblyEvaluatedPropertyValue<T>& currentValue) const override {
        if (currentValue.isConstant()) {
            return *currentValue.constant();
        } else {
            // Uniform values for vertex attribute arrays are unused.
            return {};
        }
    }

private:
    style::PropertyExpression<T> expression;
    T defaultValue;
    Range<float> zoomRange;
    gl::VertexVector<Vertex> vertexVector;
    optional<gl::VertexBuffer<Vertex>> vertexBuffer;
};

template <class T, class A>
std::unique_ptr<PaintPropertyBinder<T, A>>
PaintPropertyBinder<T, A>::create(const PossiblyEvaluatedPropertyValue<T>& value, float zoom, T defaultValue) {
    return value.match(
        [&] (const T& constant) -> std::unique_ptr<PaintPropertyBinder<T, A>> {
            return std::make_unique<ConstantPaintPropertyBinder<T, A>>(constant);
        },
        [&] (const style::PropertyExpression<T>& expression) -> std::unique_ptr<PaintPropertyBinder<T, A>> {
            if (expression.isZoomConstant()) {
                return std::make_unique<SourceFunctionPaintPropertyBinder<T, A>>(expression, defaultValue);
            } else {
                return std::make_unique<CompositeFunctionPaintPropertyBinder<T, A>>(expression, zoom, defaultValue);
            }
        }
    );
}

template <class Attr>
struct ZoomInterpolatedAttribute {
    static auto name() { return Attr::name(); }
    using Type = ZoomInterpolatedAttributeType<typename Attr::Type>;
};

template <class Attr>
struct InterpolationUniform : gl::UniformScalar<InterpolationUniform<Attr>, float> {
    static auto name() {
        static const std::string name = Attr::name() + std::string("_t");
        return name.c_str();
    }
};

} // namespace mbgl