summaryrefslogtreecommitdiff
path: root/src/mbgl/map/transform_state.cpp
blob: 8c007210e079d359638b5b0d1300a37314373f75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include <mbgl/map/transform_state.hpp>
#include <mbgl/util/projection.hpp>
#include <mbgl/util/constants.hpp>
#include <mbgl/util/box.hpp>

using namespace mbgl;

#pragma mark - Matrix

void TransformState::matrixFor(mat4& matrix, const Tile::ID& id) const {
    const double tile_scale = std::pow(2, id.z);
    const double tile_size = scale * util::tileSize / tile_scale;

    matrix::identity(matrix);

    matrix::translate(matrix, matrix, 0.5f * (float)width, 0.5f * (float)height, 0);
    matrix::rotate_z(matrix, matrix, angle);
    matrix::translate(matrix, matrix, -0.5f * (float)width, -0.5f * (float)height, 0);

    matrix::translate(matrix, matrix, pixel_x() + id.x * tile_size, pixel_y() + id.y * tile_size, 0);

    // TODO: Get rid of the 8 (scaling from 4096 to tile size);
    float factor = scale / tile_scale / (4096.0f / util::tileSize);
    matrix::scale(matrix, matrix, factor, factor, 1);
}

box TransformState::cornersToBox(uint32_t z) const {
    const double ref_scale = std::pow(2, z);

    const double angle_sin = std::sin(-angle);
    const double angle_cos = std::cos(-angle);

    const double w_2 = width / 2;
    const double h_2 = height / 2;
    const double ss_0 = scale * util::tileSize;
    const double ss_1 = ref_scale / ss_0;
    const double ss_2 = ss_0 / 2.0;

    // Calculate the corners of the map view. The resulting coordinates will be
    // in fractional tile coordinates.
    box b;

    b.tl.x = ((-w_2) * angle_cos - (-h_2) * angle_sin + ss_2 - x) * ss_1;
    b.tl.y = ((-w_2) * angle_sin + (-h_2) * angle_cos + ss_2 - y) * ss_1;

    b.tr.x = ((+w_2) * angle_cos - (-h_2) * angle_sin + ss_2 - x) * ss_1;
    b.tr.y = ((+w_2) * angle_sin + (-h_2) * angle_cos + ss_2 - y) * ss_1;

    b.bl.x = ((-w_2) * angle_cos - (+h_2) * angle_sin + ss_2 - x) * ss_1;
    b.bl.y = ((-w_2) * angle_sin + (+h_2) * angle_cos + ss_2 - y) * ss_1;

    b.br.x = ((+w_2) * angle_cos - (+h_2) * angle_sin + ss_2 - x) * ss_1;
    b.br.y = ((+w_2) * angle_sin + (+h_2) * angle_cos + ss_2 - y) * ss_1;

    b.center.x = (ss_2 - x) * ss_1;
    b.center.y = (ss_2 - y) * ss_1;

    return b;
}


#pragma mark - Dimensions

bool TransformState::hasSize() const {
    return width && height;
}

uint16_t TransformState::getWidth() const {
    return width;
}

uint16_t TransformState::getHeight() const {
    return height;
}

uint16_t TransformState::getFramebufferWidth() const {
    return framebuffer[0];
}

uint16_t TransformState::getFramebufferHeight() const {
    return framebuffer[1];
}

const std::array<uint16_t, 2> TransformState::getFramebufferDimensions() const {
    return framebuffer;
}

float TransformState::getPixelRatio() const {
    return pixelRatio;
}


#pragma mark - Position

const LatLng TransformState::getLatLng() const {
    LatLng ll;

    ll.longitude = -x / Bc;
    ll.latitude  = util::RAD2DEG * (2 * std::atan(std::exp(y / Cc)) - 0.5 * M_PI);

    // adjust for world wrap
    while (ll.longitude >  180) ll.longitude -= 180;
    while (ll.longitude < -180) ll.longitude += 180;

    // adjust for date line
    double w = util::tileSize * scale / 2;
    double x_ = x;
    if (x_ > w) {
        while (x_ > w) {
            x_ -= w;
            if (ll.longitude < 0) {
                ll.longitude += 180;
            } else if (ll.longitude > 0) {
                ll.longitude -= 180;
            }
        }
    } else if (x_ < -w) {
        while (x_ < -w) {
            x_ += w;
            if (ll.longitude < 0) {
                ll.longitude -= 180;
            } else if (ll.longitude > 0) {
                ll.longitude -= 180;
            }
        }
    }

    return ll;
}


#pragma mark - Zoom

float TransformState::getNormalizedZoom() const {
    return std::log(scale * util::tileSize / 512.0f) / M_LN2;
}

double TransformState::getZoom() const {
    return std::log(scale) / M_LN2;
}

int32_t TransformState::getIntegerZoom() const {
    return std::floor(getZoom());
}

double TransformState::getZoomFraction() const {
    return getZoom() - getIntegerZoom();
}

double TransformState::getScale() const {
    return scale;
}


#pragma mark - Rotation

float TransformState::getAngle() const {
    return angle;
}


#pragma mark - Projection

const vec2<double> TransformState::pixelForLatLng(const LatLng latLng) const {
    LatLng ll = getLatLng();
    double zoom = getZoom();

    const double centerX = width  / 2;
    const double centerY = height / 2;

    const double m = Projection::getMetersPerPixelAtLatitude(0, zoom);

    const double angle_sin = std::sin(-angle);
    const double angle_cos = std::cos(-angle);

    const ProjectedMeters givenMeters = Projection::projectedMetersForLatLng(latLng);

    const double givenAbsoluteX = givenMeters.easting  / m;
    const double givenAbsoluteY = givenMeters.northing / m;

    const ProjectedMeters centerMeters = Projection::projectedMetersForLatLng(ll);

    const double centerAbsoluteX = centerMeters.easting  / m;
    const double centerAbsoluteY = centerMeters.northing / m;

    const double deltaX = givenAbsoluteX - centerAbsoluteX;
    const double deltaY = givenAbsoluteY - centerAbsoluteY;

    const double translatedX = deltaX + centerX;
    const double translatedY = deltaY + centerY;

    const double rotatedX = translatedX * angle_cos - translatedY * angle_sin;
    const double rotatedY = translatedX * angle_sin + translatedY * angle_cos;

    const double rotatedCenterX = centerX * angle_cos - centerY * angle_sin;
    const double rotatedCenterY = centerX * angle_sin + centerY * angle_cos;

    double x_ = rotatedX + (centerX - rotatedCenterX);
    double y_ = rotatedY + (centerY - rotatedCenterY);

    return vec2<double>(x_, y_);
}

const LatLng TransformState::latLngForPixel(const vec2<double> pixel) const {
    LatLng ll = getLatLng();
    double zoom = getZoom();

    const double centerX = width  / 2;
    const double centerY = height / 2;

    const double m = Projection::getMetersPerPixelAtLatitude(0, zoom);

    const double angle_sin = std::sin(angle);
    const double angle_cos = std::cos(angle);

    const double unrotatedCenterX = centerX * angle_cos - centerY * angle_sin;
    const double unrotatedCenterY = centerX * angle_sin + centerY * angle_cos;

    const double unrotatedX = pixel.x * angle_cos - pixel.y * angle_sin;
    const double unrotatedY = pixel.x * angle_sin + pixel.y * angle_cos;

    const double givenX = unrotatedX + (centerX - unrotatedCenterX);
    const double givenY = unrotatedY + (centerY - unrotatedCenterY);

    const ProjectedMeters centerMeters = Projection::projectedMetersForLatLng(ll);

    const double centerAbsoluteX = centerMeters.easting  / m;
    const double centerAbsoluteY = centerMeters.northing / m;

    const double givenAbsoluteX = givenX + centerAbsoluteX - centerX;
    const double givenAbsoluteY = givenY + centerAbsoluteY - centerY;

    ProjectedMeters givenMeters = ProjectedMeters(givenAbsoluteY * m, givenAbsoluteX * m);

    // adjust for date line
    ProjectedMeters sw, ne;
    Projection::getWorldBoundsMeters(sw, ne);
    double d = ne.easting - sw.easting;
    if (ll.longitude > 0 && givenMeters.easting > centerMeters.easting) givenMeters.easting -= d;

    // adjust for world wrap
    while (givenMeters.easting < sw.easting) givenMeters.easting += d;
    while (givenMeters.easting > ne.easting) givenMeters.easting -= d;

    return Projection::latLngForProjectedMeters(givenMeters);
}


#pragma mark - Changing

bool TransformState::isChanging() const {
    return rotating || scaling || panning;
}


#pragma mark - (private helper functions)


double TransformState::pixel_x() const {
    const double center = (width - scale * util::tileSize) / 2;
    return center + x;
}

double TransformState::pixel_y() const {
    const double center = (height - scale * util::tileSize) / 2;
    return center + y;
}