summaryrefslogtreecommitdiff
path: root/src/mbgl/layout/symbol_layout.cpp
blob: b2f6fd450f34f2c8b6143ee48275fa2ca7c79ed0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#include <mbgl/layout/symbol_layout.hpp>
#include <mbgl/layout/merge_lines.hpp>
#include <mbgl/layout/clip_lines.hpp>
#include <mbgl/renderer/buckets/symbol_bucket.hpp>
#include <mbgl/style/filter_evaluator.hpp>
#include <mbgl/renderer/bucket_parameters.hpp>
#include <mbgl/renderer/layers/render_symbol_layer.hpp>
#include <mbgl/renderer/image_atlas.hpp>
#include <mbgl/style/layers/symbol_layer_impl.hpp>
#include <mbgl/text/get_anchors.hpp>
#include <mbgl/text/shaping.hpp>
#include <mbgl/util/constants.hpp>
#include <mbgl/util/utf.hpp>
#include <mbgl/util/token.hpp>
#include <mbgl/util/std.hpp>
#include <mbgl/util/constants.hpp>
#include <mbgl/util/string.hpp>
#include <mbgl/util/i18n.hpp>
#include <mbgl/math/clamp.hpp>
#include <mbgl/math/minmax.hpp>
#include <mbgl/math/log2.hpp>
#include <mbgl/util/platform.hpp>
#include <mbgl/util/logging.hpp>
#include <mbgl/tile/geometry_tile_data.hpp>

#include <mapbox/polylabel.hpp>

namespace mbgl {

using namespace style;

template <class Property>
static bool has(const style::SymbolLayoutProperties::PossiblyEvaluated& layout) {
    return layout.get<Property>().match(
        [&] (const typename Property::Type& t) { return !t.empty(); },
        [&] (const auto&) { return true; }
    );
}

SymbolLayout::SymbolLayout(const BucketParameters& parameters,
                           const std::vector<const RenderLayer*>& layers,
                           std::unique_ptr<GeometryTileLayer> sourceLayer_,
                           ImageDependencies& imageDependencies,
                           GlyphDependencies& glyphDependencies)
    : bucketLeaderID(layers.at(0)->getID()),
      sourceLayer(std::move(sourceLayer_)),
      overscaling(parameters.tileID.overscaleFactor()),
      zoom(parameters.tileID.overscaledZ),
      mode(parameters.mode),
      pixelRatio(parameters.pixelRatio),
      tileSize(util::tileSize * overscaling),
      tilePixelRatio(float(util::EXTENT) / tileSize),
      textSize(layers.at(0)->as<RenderSymbolLayer>()->impl().layout.get<TextSize>()),
      iconSize(layers.at(0)->as<RenderSymbolLayer>()->impl().layout.get<IconSize>())
    {

    const SymbolLayer::Impl& leader = layers.at(0)->as<RenderSymbolLayer>()->impl();

    layout = leader.layout.evaluate(PropertyEvaluationParameters(zoom));

    if (layout.get<IconRotationAlignment>() == AlignmentType::Auto) {
        if (layout.get<SymbolPlacement>() == SymbolPlacementType::Line) {
            layout.get<IconRotationAlignment>() = AlignmentType::Map;
        } else {
            layout.get<IconRotationAlignment>() = AlignmentType::Viewport;
        }
    }

    if (layout.get<TextRotationAlignment>() == AlignmentType::Auto) {
        if (layout.get<SymbolPlacement>() == SymbolPlacementType::Line) {
            layout.get<TextRotationAlignment>() = AlignmentType::Map;
        } else {
            layout.get<TextRotationAlignment>() = AlignmentType::Viewport;
        }
    }

    // If unspecified `*-pitch-alignment` inherits `*-rotation-alignment`
    if (layout.get<TextPitchAlignment>() == AlignmentType::Auto) {
        layout.get<TextPitchAlignment>() = layout.get<TextRotationAlignment>();
    }
    if (layout.get<IconPitchAlignment>() == AlignmentType::Auto) {
        layout.get<IconPitchAlignment>() = layout.get<IconRotationAlignment>();
    }

    const bool hasText = has<TextField>(layout) && has<TextFont>(layout);
    const bool hasIcon = has<IconImage>(layout);

    if (!hasText && !hasIcon) {
        return;
    }

    for (const auto& layer : layers) {
        layerPaintProperties.emplace(layer->getID(), std::make_pair(
            layer->as<RenderSymbolLayer>()->iconPaintProperties(),
            layer->as<RenderSymbolLayer>()->textPaintProperties()
        ));
    }

    // Determine glyph dependencies
    const size_t featureCount = sourceLayer->featureCount();
    for (size_t i = 0; i < featureCount; ++i) {
        auto feature = sourceLayer->getFeature(i);
        if (!leader.filter(expression::EvaluationContext { this->zoom, feature.get() }))
            continue;
        
        SymbolFeature ft(std::move(feature));

        ft.index = i;

        auto getValue = [&ft](const std::string& key) -> std::string {
            auto value = ft.getValue(key);
            if (!value)
                return std::string();
            if (value->is<std::string>())
                return value->get<std::string>();
            if (value->is<bool>())
                return value->get<bool>() ? "true" : "false";
            if (value->is<int64_t>())
                return util::toString(value->get<int64_t>());
            if (value->is<uint64_t>())
                return util::toString(value->get<uint64_t>());
            if (value->is<double>())
                return util::toString(value->get<double>());
            return "null";
        };
        
        if (hasText) {
            std::string u8string = layout.evaluate<TextField>(zoom, ft);
            if (layout.get<TextField>().isConstant() && !leader.layout.get<TextField>().isExpression()) {
                u8string = util::replaceTokens(u8string, getValue);
            }
            
            auto textTransform = layout.evaluate<TextTransform>(zoom, ft);

            if (textTransform == TextTransformType::Uppercase) {
                u8string = platform::uppercase(u8string);
            } else if (textTransform == TextTransformType::Lowercase) {
                u8string = platform::lowercase(u8string);
            }

            ft.text = applyArabicShaping(util::utf8_to_utf16::convert(u8string));
            const bool canVerticalizeText = layout.get<TextRotationAlignment>() == AlignmentType::Map
                                         && layout.get<SymbolPlacement>() == SymbolPlacementType::Line
                                         && util::i18n::allowsVerticalWritingMode(*ft.text);

            FontStack fontStack = layout.evaluate<TextFont>(zoom, ft);
            GlyphIDs& dependencies = glyphDependencies[fontStack];

            // Loop through all characters of this text and collect unique codepoints.
            for (char16_t chr : *ft.text) {
                dependencies.insert(chr);
                if (canVerticalizeText) {
                    if (char16_t verticalChr = util::i18n::verticalizePunctuation(chr)) {
                        dependencies.insert(verticalChr);
                    }
                }
            }
        }

        if (hasIcon) {
            std::string icon = layout.evaluate<IconImage>(zoom, ft);
            if (layout.get<IconImage>().isConstant() && !leader.layout.get<IconImage>().isExpression()) {
                icon = util::replaceTokens(icon, getValue);
            }
            ft.icon = icon;
            imageDependencies.insert(*ft.icon);
        }

        if (ft.text || ft.icon) {
            features.push_back(std::move(ft));
        }
    }

    if (layout.get<SymbolPlacement>() == SymbolPlacementType::Line) {
        util::mergeLines(features);
    }
}

bool SymbolLayout::hasSymbolInstances() const {
    return !symbolInstances.empty();
}

void SymbolLayout::prepare(const GlyphMap& glyphMap, const GlyphPositions& glyphPositions,
                           const ImageMap& imageMap, const ImagePositions& imagePositions) {
    const bool textAlongLine = layout.get<TextRotationAlignment>() == AlignmentType::Map &&
        layout.get<SymbolPlacement>() == SymbolPlacementType::Line;

    for (auto it = features.begin(); it != features.end(); ++it) {
        auto& feature = *it;
        if (feature.geometry.empty()) continue;

        FontStack fontStack = layout.evaluate<TextFont>(zoom, feature);

        auto glyphMapIt = glyphMap.find(fontStack);
        const Glyphs& glyphs = glyphMapIt != glyphMap.end()
            ? glyphMapIt->second : Glyphs();

        auto glyphPositionsIt = glyphPositions.find(fontStack);
        const GlyphPositionMap& glyphPositionMap = glyphPositionsIt != glyphPositions.end()
            ? glyphPositionsIt->second : GlyphPositionMap();

        std::pair<Shaping, Shaping> shapedTextOrientations;
        optional<PositionedIcon> shapedIcon;

        // if feature has text, shape the text
        if (feature.text) {
            auto applyShaping = [&] (const std::u16string& text, WritingModeType writingMode) {
                const float oneEm = 24.0f;
                const Shaping result = getShaping(
                    /* string */ text,
                    /* maxWidth: ems */ layout.get<SymbolPlacement>() != SymbolPlacementType::Line ?
                        layout.evaluate<TextMaxWidth>(zoom, feature) * oneEm : 0,
                    /* lineHeight: ems */ layout.get<TextLineHeight>() * oneEm,
                    /* anchor */ layout.evaluate<TextAnchor>(zoom, feature),
                    /* justify */ layout.evaluate<TextJustify>(zoom, feature),
                    /* spacing: ems */ util::i18n::allowsLetterSpacing(*feature.text) ? layout.evaluate<TextLetterSpacing>(zoom, feature) * oneEm : 0.0f,
                    /* translate */ Point<float>(layout.evaluate<TextOffset>(zoom, feature)[0] * oneEm, layout.evaluate<TextOffset>(zoom, feature)[1] * oneEm),
                    /* verticalHeight */ oneEm,
                    /* writingMode */ writingMode,
                    /* bidirectional algorithm object */ bidi,
                    /* glyphs */ glyphs);

                return result;
            };

            shapedTextOrientations.first = applyShaping(*feature.text, WritingModeType::Horizontal);

            if (util::i18n::allowsVerticalWritingMode(*feature.text) && textAlongLine) {
                shapedTextOrientations.second = applyShaping(util::i18n::verticalizePunctuation(*feature.text), WritingModeType::Vertical);
            }
        }

        // if feature has icon, get sprite atlas position
        if (feature.icon) {
            auto image = imageMap.find(*feature.icon);
            if (image != imageMap.end()) {
                shapedIcon = PositionedIcon::shapeIcon(
                    imagePositions.at(*feature.icon),
                    layout.evaluate<IconOffset>(zoom, feature),
                    layout.evaluate<IconAnchor>(zoom, feature),
                    layout.evaluate<IconRotate>(zoom, feature) * util::DEG2RAD);
                if (image->second->sdf) {
                    sdfIcons = true;
                }
                if (image->second->pixelRatio != pixelRatio) {
                    iconsNeedLinear = true;
                } else if (layout.get<IconRotate>().constantOr(1) != 0) {
                    iconsNeedLinear = true;
                }
            }
        }

        // if either shapedText or icon position is present, add the feature
        if (shapedTextOrientations.first || shapedIcon) {
            addFeature(std::distance(features.begin(), it), feature, shapedTextOrientations, shapedIcon, glyphPositionMap);
        }
        
        feature.geometry.clear();
    }

    compareText.clear();
}

void SymbolLayout::addFeature(const std::size_t index,
                              const SymbolFeature& feature,
                              const std::pair<Shaping, Shaping>& shapedTextOrientations,
                              optional<PositionedIcon> shapedIcon,
                              const GlyphPositionMap& glyphPositionMap) {
    const float minScale = 0.5f;
    const float glyphSize = 24.0f;
    
    const float layoutTextSize = layout.evaluate<TextSize>(zoom + 1, feature);
    const float layoutIconSize = layout.evaluate<IconSize>(zoom + 1, feature);
    const std::array<float, 2> textOffset = layout.evaluate<TextOffset>(zoom, feature);
    const std::array<float, 2> iconOffset = layout.evaluate<IconOffset>(zoom, feature);
    
    // To reduce the number of labels that jump around when zooming we need
    // to use a text-size value that is the same for all zoom levels.
    // This calculates text-size at a high zoom level so that all tiles can
    // use the same value when calculating anchor positions.
    const float textMaxSize = layout.evaluate<TextSize>(18, feature);
    
    const float fontScale = layoutTextSize / glyphSize;
    const float textBoxScale = tilePixelRatio * fontScale;
    const float textMaxBoxScale = tilePixelRatio * textMaxSize / glyphSize;
    const float iconBoxScale = tilePixelRatio * layoutIconSize;
    const float symbolSpacing = tilePixelRatio * layout.get<SymbolSpacing>();
    const bool avoidEdges = layout.get<SymbolAvoidEdges>() && layout.get<SymbolPlacement>() != SymbolPlacementType::Line;
    const float textPadding = layout.get<TextPadding>() * tilePixelRatio;
    const float iconPadding = layout.get<IconPadding>() * tilePixelRatio;
    const float textMaxAngle = layout.get<TextMaxAngle>() * util::DEG2RAD;
    const SymbolPlacementType textPlacement = layout.get<TextRotationAlignment>() != AlignmentType::Map
                                                  ? SymbolPlacementType::Point
                                                  : layout.get<SymbolPlacement>();

    const float textRepeatDistance = symbolSpacing / 2;
    IndexedSubfeature indexedFeature(feature.index, sourceLayer->getName(), bucketLeaderID, symbolInstances.size());

    auto addSymbolInstance = [&] (const GeometryCoordinates& line, Anchor& anchor) {
        // https://github.com/mapbox/vector-tile-spec/tree/master/2.1#41-layers
        // +-------------------+ Symbols with anchors located on tile edges
        // |(0,0)             || are duplicated on neighbor tiles.
        // |                  ||
        // |                  || In continuous mode, to avoid overdraw we
        // |                  || skip symbols located on the extent edges.
        // |       Tile       || In still mode, we include the features in
        // |                  || the buffers for both tiles and clip them
        // |                  || at draw time.
        // |                  ||
        // +-------------------| In this scenario, the inner bounding box
        // +-------------------+ is called 'withinPlus0', and the outer
        //       (extent,extent) is called 'inside'.
        const bool withinPlus0 = anchor.point.x >= 0 && anchor.point.x < util::EXTENT && anchor.point.y >= 0 && anchor.point.y < util::EXTENT;
        const bool inside = withinPlus0 || anchor.point.x == util::EXTENT || anchor.point.y == util::EXTENT;

        if (avoidEdges && !inside) return;

        if (mode == MapMode::Tile || withinPlus0) {
            symbolInstances.emplace_back(anchor, line, shapedTextOrientations, shapedIcon,
                    layout.evaluate(zoom, feature), layoutTextSize,
                    symbolInstances.size(),
                    textBoxScale, textPadding, textPlacement, textOffset,
                    iconBoxScale, iconPadding, iconOffset,
                    glyphPositionMap, indexedFeature, index, feature.text.value_or(std::u16string()), overscaling);
        }
    };
    
    const auto& type = feature.getType();

    if (layout.get<SymbolPlacement>() == SymbolPlacementType::Line) {
        auto clippedLines = util::clipLines(feature.geometry, 0, 0, util::EXTENT, util::EXTENT);
        for (const auto& line : clippedLines) {
            Anchors anchors = getAnchors(line,
                                         symbolSpacing,
                                         textMaxAngle,
                                         (shapedTextOrientations.second ?: shapedTextOrientations.first).left,
                                         (shapedTextOrientations.second ?: shapedTextOrientations.first).right,
                                         (shapedIcon ? shapedIcon->left() : 0),
                                         (shapedIcon ? shapedIcon->right() : 0),
                                         glyphSize,
                                         textMaxBoxScale,
                                         overscaling);

            for (auto& anchor : anchors) {
                if (!feature.text || !anchorIsTooClose(*feature.text, textRepeatDistance, anchor)) {
                    addSymbolInstance(line, anchor);
                }
            }
        }
    } else if (type == FeatureType::Polygon) {
        for (const auto& polygon : classifyRings(feature.geometry)) {
            Polygon<double> poly;
            for (const auto& ring : polygon) {
                LinearRing<double> r;
                for (const auto& p : ring) {
                    r.push_back(convertPoint<double>(p));
                }
                poly.push_back(r);
            }

            // 1 pixel worth of precision, in tile coordinates
            auto poi = mapbox::polylabel(poly, double(util::EXTENT / util::tileSize));
            Anchor anchor(poi.x, poi.y, 0, minScale);
            addSymbolInstance(polygon[0], anchor);
        }
    } else if (type == FeatureType::LineString) {
        for (const auto& line : feature.geometry) {
            Anchor anchor(line[0].x, line[0].y, 0, minScale);
            addSymbolInstance(line, anchor);
        }
    } else if (type == FeatureType::Point) {
        for (const auto& points : feature.geometry) {
            for (const auto& point : points) {
                Anchor anchor(point.x, point.y, 0, minScale);
                addSymbolInstance({point}, anchor);
            }
        }
    }
}

bool SymbolLayout::anchorIsTooClose(const std::u16string& text, const float repeatDistance, const Anchor& anchor) {
    if (compareText.find(text) == compareText.end()) {
        compareText.emplace(text, Anchors());
    } else {
        auto otherAnchors = compareText.find(text)->second;
        for (const Anchor& otherAnchor : otherAnchors) {
            if (util::dist<float>(anchor.point, otherAnchor.point) < repeatDistance) {
                return true;
            }
        }
    }
    compareText[text].push_back(anchor);
    return false;
}

// Analog of `addToLineVertexArray` in JS. This version doesn't need to build up a line array like the
// JS version does, but it uses the same logic to calculate tile distances.
std::vector<float> CalculateTileDistances(const GeometryCoordinates& line, const Anchor& anchor) {
    std::vector<float> tileDistances(line.size());
    if (anchor.segment != -1) {
        auto sumForwardLength = util::dist<float>(anchor.point, line[anchor.segment + 1]);
        auto sumBackwardLength = util::dist<float>(anchor.point, line[anchor.segment]);
        for (size_t i = anchor.segment + 1; i < line.size(); i++) {
            tileDistances[i] = sumForwardLength;
            if (i < line.size() - 1) {
                sumForwardLength += util::dist<float>(line[i + 1], line[i]);
            }
        }
        for (auto i = anchor.segment; i >= 0; i--) {
            tileDistances[i] = sumBackwardLength;
            if (i > 0) {
                sumBackwardLength += util::dist<float>(line[i - 1], line[i]);
            }
        }
    }
    return tileDistances;
}

std::unique_ptr<SymbolBucket> SymbolLayout::place(const bool showCollisionBoxes) {
    const bool mayOverlap = layout.get<TextAllowOverlap>() || layout.get<IconAllowOverlap>() ||
        layout.get<TextIgnorePlacement>() || layout.get<IconIgnorePlacement>();
    
    auto bucket = std::make_unique<SymbolBucket>(layout, layerPaintProperties, textSize, iconSize, zoom, sdfIcons, iconsNeedLinear, mayOverlap, bucketLeaderID, std::move(symbolInstances));

    for (SymbolInstance &symbolInstance : bucket->symbolInstances) {

        const bool hasText = symbolInstance.hasText;
        const bool hasIcon = symbolInstance.hasIcon;

        const auto& feature = features.at(symbolInstance.featureIndex);

        // Insert final placement into collision tree and add glyphs/icons to buffers

        if (hasText) {
            const Range<float> sizeData = bucket->textSizeBinder->getVertexSizeData(feature);
            bucket->text.placedSymbols.emplace_back(symbolInstance.anchor.point, symbolInstance.anchor.segment, sizeData.min, sizeData.max,
                    symbolInstance.textOffset, symbolInstance.writingModes, symbolInstance.line, CalculateTileDistances(symbolInstance.line, symbolInstance.anchor));
            symbolInstance.placedTextIndex = bucket->text.placedSymbols.size() - 1;
            PlacedSymbol& horizontalSymbol = bucket->text.placedSymbols.back();

            bool firstHorizontal = true;
            for (const auto& symbol : symbolInstance.horizontalGlyphQuads) {
                size_t index = addSymbol(
                    bucket->text, sizeData, symbol,
                    symbolInstance.anchor, horizontalSymbol);
                if (firstHorizontal) {
                    horizontalSymbol.vertexStartIndex = index;
                    firstHorizontal = false;
                }
            }
            
            if (symbolInstance.writingModes & WritingModeType::Vertical) {
                bucket->text.placedSymbols.emplace_back(symbolInstance.anchor.point, symbolInstance.anchor.segment, sizeData.min, sizeData.max,
                        symbolInstance.textOffset, WritingModeType::Vertical, symbolInstance.line, CalculateTileDistances(symbolInstance.line, symbolInstance.anchor));
                symbolInstance.placedVerticalTextIndex = bucket->text.placedSymbols.size() - 1;
                
                PlacedSymbol& verticalSymbol = bucket->text.placedSymbols.back();
                bool firstVertical = true;
                
                for (const auto& symbol : symbolInstance.verticalGlyphQuads) {
                    size_t index = addSymbol(
                        bucket->text, sizeData, symbol,
                        symbolInstance.anchor, verticalSymbol);
                    
                    if (firstVertical) {
                        verticalSymbol.vertexStartIndex = index;
                        firstVertical = false;
                    }
                }
            }
        }

        if (hasIcon) {
            if (symbolInstance.iconQuad) {
                const Range<float> sizeData = bucket->iconSizeBinder->getVertexSizeData(feature);
                bucket->icon.placedSymbols.emplace_back(symbolInstance.anchor.point, symbolInstance.anchor.segment, sizeData.min, sizeData.max,
                        symbolInstance.iconOffset, WritingModeType::None, symbolInstance.line, std::vector<float>());
                symbolInstance.placedIconIndex = bucket->icon.placedSymbols.size() - 1;
                PlacedSymbol& iconSymbol = bucket->icon.placedSymbols.back();
                iconSymbol.vertexStartIndex = addSymbol(
                                                        bucket->icon, sizeData, *symbolInstance.iconQuad,
                                                        symbolInstance.anchor, iconSymbol);
            }
        }
        
        for (auto& pair : bucket->paintPropertyBinders) {
            pair.second.first.populateVertexVectors(feature, bucket->icon.vertices.vertexSize());
            pair.second.second.populateVertexVectors(feature, bucket->text.vertices.vertexSize());
        }
    }

    if (showCollisionBoxes) {
        addToDebugBuffers(*bucket);
    }

    return bucket;
}

template <typename Buffer>
size_t SymbolLayout::addSymbol(Buffer& buffer,
                             const Range<float> sizeData,
                             const SymbolQuad& symbol,
                             const Anchor& labelAnchor,
                             PlacedSymbol& placedSymbol) {
    constexpr const uint16_t vertexLength = 4;

    const auto &tl = symbol.tl;
    const auto &tr = symbol.tr;
    const auto &bl = symbol.bl;
    const auto &br = symbol.br;
    const auto &tex = symbol.tex;

    if (buffer.segments.empty() || buffer.segments.back().vertexLength + vertexLength > std::numeric_limits<uint16_t>::max()) {
        buffer.segments.emplace_back(buffer.vertices.vertexSize(), buffer.triangles.indexSize());
    }

    // We're generating triangle fans, so we always start with the first
    // coordinate in this polygon.
    auto& segment = buffer.segments.back();
    assert(segment.vertexLength <= std::numeric_limits<uint16_t>::max());
    uint16_t index = segment.vertexLength;

    // coordinates (2 triangles)
    buffer.vertices.emplace_back(SymbolLayoutAttributes::vertex(labelAnchor.point, tl, symbol.glyphOffset.y, tex.x, tex.y, sizeData));
    buffer.vertices.emplace_back(SymbolLayoutAttributes::vertex(labelAnchor.point, tr, symbol.glyphOffset.y, tex.x + tex.w, tex.y, sizeData));
    buffer.vertices.emplace_back(SymbolLayoutAttributes::vertex(labelAnchor.point, bl, symbol.glyphOffset.y, tex.x, tex.y + tex.h, sizeData));
    buffer.vertices.emplace_back(SymbolLayoutAttributes::vertex(labelAnchor.point, br, symbol.glyphOffset.y, tex.x + tex.w, tex.y + tex.h, sizeData));
    
    // Dynamic/Opacity vertices are initialized so that the vertex count always agrees with
    // the layout vertex buffer, but they will always be updated before rendering happens
    auto dynamicVertex = SymbolDynamicLayoutAttributes::vertex(labelAnchor.point, 0);
    buffer.dynamicVertices.emplace_back(dynamicVertex);
    buffer.dynamicVertices.emplace_back(dynamicVertex);
    buffer.dynamicVertices.emplace_back(dynamicVertex);
    buffer.dynamicVertices.emplace_back(dynamicVertex);
    
    auto opacityVertex = SymbolOpacityAttributes::vertex(1.0, 1.0);
    buffer.opacityVertices.emplace_back(opacityVertex);
    buffer.opacityVertices.emplace_back(opacityVertex);
    buffer.opacityVertices.emplace_back(opacityVertex);
    buffer.opacityVertices.emplace_back(opacityVertex);

    // add the two triangles, referencing the four coordinates we just inserted.
    buffer.triangles.emplace_back(index + 0, index + 1, index + 2);
    buffer.triangles.emplace_back(index + 1, index + 2, index + 3);

    segment.vertexLength += vertexLength;
    segment.indexLength += 6;

    placedSymbol.glyphOffsets.push_back(symbol.glyphOffset.x);
    
    return index;
}

void SymbolLayout::addToDebugBuffers(SymbolBucket& bucket) {

    if (!hasSymbolInstances()) {
        return;
    }

    for (const SymbolInstance &symbolInstance : symbolInstances) {
        auto populateCollisionBox = [&](const auto& feature) {
            SymbolBucket::CollisionBuffer& collisionBuffer = feature.alongLine ?
                static_cast<SymbolBucket::CollisionBuffer&>(bucket.collisionCircle) :
                static_cast<SymbolBucket::CollisionBuffer&>(bucket.collisionBox);
            for (const CollisionBox &box : feature.boxes) {
                auto& anchor = box.anchor;

                Point<float> tl{box.x1, box.y1};
                Point<float> tr{box.x2, box.y1};
                Point<float> bl{box.x1, box.y2};
                Point<float> br{box.x2, box.y2};

                static constexpr std::size_t vertexLength = 4;
                const std::size_t indexLength = feature.alongLine ? 6 : 8;

                if (collisionBuffer.segments.empty() || collisionBuffer.segments.back().vertexLength + vertexLength > std::numeric_limits<uint16_t>::max()) {
                    collisionBuffer.segments.emplace_back(collisionBuffer.vertices.vertexSize(),
                      feature.alongLine? bucket.collisionCircle.triangles.indexSize() : bucket.collisionBox.lines.indexSize());
                }

                auto& segment = collisionBuffer.segments.back();
                uint16_t index = segment.vertexLength;

                collisionBuffer.vertices.emplace_back(CollisionBoxProgram::vertex(anchor, symbolInstance.anchor.point, tl));
                collisionBuffer.vertices.emplace_back(CollisionBoxProgram::vertex(anchor, symbolInstance.anchor.point, tr));
                collisionBuffer.vertices.emplace_back(CollisionBoxProgram::vertex(anchor, symbolInstance.anchor.point, br));
                collisionBuffer.vertices.emplace_back(CollisionBoxProgram::vertex(anchor, symbolInstance.anchor.point, bl));

                // Dynamic vertices are initialized so that the vertex count always agrees with
                // the layout vertex buffer, but they will always be updated before rendering happens
                auto dynamicVertex = CollisionBoxDynamicAttributes::vertex(false, false);
                collisionBuffer.dynamicVertices.emplace_back(dynamicVertex);
                collisionBuffer.dynamicVertices.emplace_back(dynamicVertex);
                collisionBuffer.dynamicVertices.emplace_back(dynamicVertex);
                collisionBuffer.dynamicVertices.emplace_back(dynamicVertex);

                if (feature.alongLine) {
                    bucket.collisionCircle.triangles.emplace_back(index, index + 1, index + 2);
                    bucket.collisionCircle.triangles.emplace_back(index, index + 2, index + 3);
                } else {
                    bucket.collisionBox.lines.emplace_back(index + 0, index + 1);
                    bucket.collisionBox.lines.emplace_back(index + 1, index + 2);
                    bucket.collisionBox.lines.emplace_back(index + 2, index + 3);
                    bucket.collisionBox.lines.emplace_back(index + 3, index + 0);
                }

                segment.vertexLength += vertexLength;
                segment.indexLength += indexLength;
            }
        };
        populateCollisionBox(symbolInstance.textCollisionFeature);
        populateCollisionBox(symbolInstance.iconCollisionFeature);
    }
}

} // namespace mbgl