1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
|
#include <mbgl/gl/context.hpp>
#include <mbgl/gl/enum.hpp>
#include <mbgl/gl/debugging_extension.hpp>
#include <mbgl/gl/vertex_array_extension.hpp>
#include <mbgl/gl/program_binary_extension.hpp>
#include <mbgl/util/traits.hpp>
#include <mbgl/util/std.hpp>
#include <mbgl/util/logging.hpp>
#include <cstring>
namespace mbgl {
namespace gl {
using namespace platform;
static_assert(underlying_type(ShaderType::Vertex) == GL_VERTEX_SHADER, "OpenGL type mismatch");
static_assert(underlying_type(ShaderType::Fragment) == GL_FRAGMENT_SHADER, "OpenGL type mismatch");
static_assert(underlying_type(DataType::Byte) == GL_BYTE, "OpenGL type mismatch");
static_assert(underlying_type(DataType::UnsignedByte) == GL_UNSIGNED_BYTE, "OpenGL type mismatch");
static_assert(underlying_type(DataType::Short) == GL_SHORT, "OpenGL type mismatch");
static_assert(underlying_type(DataType::UnsignedShort) == GL_UNSIGNED_SHORT, "OpenGL type mismatch");
static_assert(underlying_type(DataType::Integer) == GL_INT, "OpenGL type mismatch");
static_assert(underlying_type(DataType::UnsignedInteger) == GL_UNSIGNED_INT, "OpenGL type mismatch");
static_assert(underlying_type(DataType::Float) == GL_FLOAT, "OpenGL type mismatch");
#if not MBGL_USE_GLES2
static_assert(underlying_type(RenderbufferType::RGBA) == GL_RGBA8, "OpenGL type mismatch");
#else
static_assert(underlying_type(RenderbufferType::RGBA) == GL_RGBA8_OES, "OpenGL type mismatch");
#endif // MBGL_USE_GLES2
#if not MBGL_USE_GLES2
static_assert(underlying_type(RenderbufferType::DepthStencil) == GL_DEPTH24_STENCIL8, "OpenGL type mismatch");
#else
static_assert(underlying_type(RenderbufferType::DepthStencil) == GL_DEPTH24_STENCIL8_OES, "OpenGL type mismatch");
#endif // MBGL_USE_GLES2
#if not MBGL_USE_GLES2
static_assert(underlying_type(RenderbufferType::DepthComponent) == GL_DEPTH_COMPONENT, "OpenGL type mismatch");
#else
static_assert(underlying_type(RenderbufferType::DepthComponent) == GL_DEPTH_COMPONENT16, "OpenGL type mismatch");
#endif // MBGL_USE_GLES2
static_assert(std::is_same<ProgramID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<ShaderID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<BufferID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<TextureID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<VertexArrayID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<FramebufferID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<RenderbufferID, GLuint>::value, "OpenGL type mismatch");
static_assert(std::is_same<std::underlying_type_t<TextureFormat>, GLenum>::value, "OpenGL type mismatch");
static_assert(underlying_type(TextureFormat::RGBA) == GL_RGBA, "OpenGL type mismatch");
static_assert(underlying_type(TextureFormat::Alpha) == GL_ALPHA, "OpenGL type mismatch");
static_assert(std::is_same<std::underlying_type_t<TextureType>, GLenum>::value, "OpenGL type mismatch");
static_assert(underlying_type(TextureType::UnsignedByte) == GL_UNSIGNED_BYTE, "OpenGL type mismatch");
#if MBGL_USE_GLES2 && GL_HALF_FLOAT_OES
static_assert(underlying_type(TextureType::HalfFloat) == GL_HALF_FLOAT_OES, "OpenGL type mismatch");
#endif
#if !MBGL_USE_GLES2 && GL_HALF_FLOAT_ARB
static_assert(underlying_type(TextureType::HalfFloat) == GL_HALF_FLOAT_ARB, "OpenGL type mismatch");
#endif
static_assert(underlying_type(UniformDataType::Float) == GL_FLOAT, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::FloatVec2) == GL_FLOAT_VEC2, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::FloatVec3) == GL_FLOAT_VEC3, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::FloatVec4) == GL_FLOAT_VEC4, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::Int) == GL_INT, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::IntVec2) == GL_INT_VEC2, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::IntVec3) == GL_INT_VEC3, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::IntVec4) == GL_INT_VEC4, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::Bool) == GL_BOOL, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::BoolVec2) == GL_BOOL_VEC2, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::BoolVec3) == GL_BOOL_VEC3, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::BoolVec4) == GL_BOOL_VEC4, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::FloatMat2) == GL_FLOAT_MAT2, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::FloatMat3) == GL_FLOAT_MAT3, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::FloatMat4) == GL_FLOAT_MAT4, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::Sampler2D) == GL_SAMPLER_2D, "OpenGL type mismatch");
static_assert(underlying_type(UniformDataType::SamplerCube) == GL_SAMPLER_CUBE, "OpenGL type mismatch");
static_assert(underlying_type(BufferUsage::StreamDraw) == GL_STREAM_DRAW, "OpenGL type mismatch");
static_assert(underlying_type(BufferUsage::StaticDraw) == GL_STATIC_DRAW, "OpenGL type mismatch");
static_assert(underlying_type(BufferUsage::DynamicDraw) == GL_DYNAMIC_DRAW, "OpenGL type mismatch");
static_assert(std::is_same<BinaryProgramFormat, GLenum>::value, "OpenGL type mismatch");
Context::Context()
: maximumVertexBindingCount([] {
GLint value;
MBGL_CHECK_ERROR(glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &value));
return value;
}()) {
}
Context::~Context() {
if (cleanupOnDestruction) {
reset();
}
}
void Context::initializeExtensions(const std::function<gl::ProcAddress(const char*)>& getProcAddress) {
if (const auto* extensions =
reinterpret_cast<const char*>(MBGL_CHECK_ERROR(glGetString(GL_EXTENSIONS)))) {
auto fn = [&](
std::initializer_list<std::pair<const char*, const char*>> probes) -> ProcAddress {
for (auto probe : probes) {
if (strstr(extensions, probe.first) != nullptr) {
if (ProcAddress ptr = getProcAddress(probe.second)) {
return ptr;
}
}
}
return nullptr;
};
static const std::string renderer = []() {
std::string r = reinterpret_cast<const char*>(MBGL_CHECK_ERROR(glGetString(GL_RENDERER)));
Log::Info(Event::General, "GPU Identifier: %s", r.c_str());
return r;
}();
// Block ANGLE on Direct3D since the debugging extension is causing crashes
if (!(renderer.find("ANGLE") != std::string::npos
&& renderer.find("Direct3D") != std::string::npos)) {
debugging = std::make_unique<extension::Debugging>(fn);
}
// Block Adreno 2xx, 3xx as it crashes on glBuffer(Sub)Data
// Block ARM Mali-T720 (in some MT8163 chipsets) as it crashes on glBindVertexArray
// Block ANGLE on Direct3D as the combination of Qt + Windows + ANGLE leads to crashes
if (renderer.find("Adreno (TM) 2") == std::string::npos
&& renderer.find("Adreno (TM) 3") == std::string::npos
&& (!(renderer.find("ANGLE") != std::string::npos
&& renderer.find("Direct3D") != std::string::npos))
&& renderer.find("Mali-T720") == std::string::npos
&& renderer.find("Sapphire 650") == std::string::npos
&& !disableVAOExtension) {
vertexArray = std::make_unique<extension::VertexArray>(fn);
}
#if MBGL_HAS_BINARY_PROGRAMS
programBinary = std::make_unique<extension::ProgramBinary>(fn);
#endif
#if MBGL_USE_GLES2
constexpr const char* halfFloatExtensionName = "OES_texture_half_float";
constexpr const char* halfFloatColorBufferExtensionName = "EXT_color_buffer_half_float";
#else
constexpr const char* halfFloatExtensionName = "ARB_half_float_pixel";
constexpr const char* halfFloatColorBufferExtensionName = "ARB_color_buffer_float";
#endif
if (strstr(extensions, halfFloatExtensionName) != nullptr &&
strstr(extensions, halfFloatColorBufferExtensionName) != nullptr) {
supportsHalfFloatTextures = true;
}
if (!supportsVertexArrays()) {
Log::Warning(Event::OpenGL, "Not using Vertex Array Objects");
}
}
}
void Context::enableDebugging() {
if (!debugging || !debugging->debugMessageControl || !debugging->debugMessageCallback) {
return;
}
// This will enable all messages including performance hints
// MBGL_CHECK_ERROR(debugging->debugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, GL_TRUE));
// This will only enable high and medium severity messages
MBGL_CHECK_ERROR(debugging->debugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DEBUG_SEVERITY_HIGH, 0, nullptr, GL_TRUE));
MBGL_CHECK_ERROR(debugging->debugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DEBUG_SEVERITY_MEDIUM, 0, nullptr, GL_TRUE));
MBGL_CHECK_ERROR(debugging->debugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DEBUG_SEVERITY_NOTIFICATION, 0, nullptr, GL_FALSE));
MBGL_CHECK_ERROR(debugging->debugMessageCallback(extension::Debugging::DebugCallback, nullptr));
}
UniqueShader Context::createShader(ShaderType type, const std::string& source) {
UniqueShader result { MBGL_CHECK_ERROR(glCreateShader(static_cast<GLenum>(type))), { this } };
const GLchar* sources = source.data();
const auto lengths = static_cast<GLsizei>(source.length());
MBGL_CHECK_ERROR(glShaderSource(result, 1, &sources, &lengths));
MBGL_CHECK_ERROR(glCompileShader(result));
GLint status = 0;
MBGL_CHECK_ERROR(glGetShaderiv(result, GL_COMPILE_STATUS, &status));
if (status != 0) {
return result;
}
GLint logLength;
MBGL_CHECK_ERROR(glGetShaderiv(result, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0) {
const auto log = std::make_unique<GLchar[]>(logLength);
MBGL_CHECK_ERROR(glGetShaderInfoLog(result, logLength, &logLength, log.get()));
Log::Error(Event::Shader, "Shader failed to compile: %s", log.get());
}
throw std::runtime_error("shader failed to compile");
}
UniqueProgram Context::createProgram(ShaderID vertexShader, ShaderID fragmentShader) {
UniqueProgram result { MBGL_CHECK_ERROR(glCreateProgram()), { this } };
MBGL_CHECK_ERROR(glAttachShader(result, vertexShader));
MBGL_CHECK_ERROR(glAttachShader(result, fragmentShader));
return result;
}
#if MBGL_HAS_BINARY_PROGRAMS
UniqueProgram Context::createProgram(BinaryProgramFormat binaryFormat,
const std::string& binaryProgram) {
assert(supportsProgramBinaries());
UniqueProgram result{ MBGL_CHECK_ERROR(glCreateProgram()), { this } };
MBGL_CHECK_ERROR(programBinary->programBinary(result, static_cast<GLenum>(binaryFormat),
binaryProgram.data(),
static_cast<GLint>(binaryProgram.size())));
verifyProgramLinkage(result);
return result;
}
#else
UniqueProgram Context::createProgram(BinaryProgramFormat, const std::string&) {
throw std::runtime_error("binary programs are not supported");
}
#endif
void Context::linkProgram(ProgramID program_) {
MBGL_CHECK_ERROR(glLinkProgram(program_));
verifyProgramLinkage(program_);
}
void Context::verifyProgramLinkage(ProgramID program_) {
GLint status;
MBGL_CHECK_ERROR(glGetProgramiv(program_, GL_LINK_STATUS, &status));
if (status == GL_TRUE) {
return;
}
GLint logLength;
MBGL_CHECK_ERROR(glGetProgramiv(program_, GL_INFO_LOG_LENGTH, &logLength));
const auto log = std::make_unique<GLchar[]>(logLength);
if (logLength > 0) {
MBGL_CHECK_ERROR(glGetProgramInfoLog(program_, logLength, &logLength, log.get()));
Log::Error(Event::Shader, "Program failed to link: %s", log.get());
}
throw std::runtime_error("program failed to link");
}
UniqueBuffer Context::createVertexBuffer(const void* data, std::size_t size, const BufferUsage usage) {
BufferID id = 0;
MBGL_CHECK_ERROR(glGenBuffers(1, &id));
UniqueBuffer result { std::move(id), { this } };
vertexBuffer = result;
MBGL_CHECK_ERROR(glBufferData(GL_ARRAY_BUFFER, size, data, static_cast<GLenum>(usage)));
return result;
}
void Context::updateVertexBuffer(UniqueBuffer& buffer, const void* data, std::size_t size) {
vertexBuffer = buffer;
MBGL_CHECK_ERROR(glBufferSubData(GL_ARRAY_BUFFER, 0, size, data));
}
UniqueBuffer Context::createIndexBuffer(const void* data, std::size_t size, const BufferUsage usage) {
BufferID id = 0;
MBGL_CHECK_ERROR(glGenBuffers(1, &id));
UniqueBuffer result { std::move(id), { this } };
bindVertexArray = 0;
globalVertexArrayState.indexBuffer = result;
MBGL_CHECK_ERROR(glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, data, static_cast<GLenum>(usage)));
return result;
}
void Context::updateIndexBuffer(UniqueBuffer& buffer, const void* data, std::size_t size) {
// Be sure to unbind any existing vertex array object before binding the index buffer
// so that we don't mess up another VAO
bindVertexArray = 0;
globalVertexArrayState.indexBuffer = buffer;
MBGL_CHECK_ERROR(glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, size, data));
}
UniqueTexture Context::createTexture() {
if (pooledTextures.empty()) {
pooledTextures.resize(TextureMax);
MBGL_CHECK_ERROR(glGenTextures(TextureMax, pooledTextures.data()));
}
TextureID id = pooledTextures.back();
pooledTextures.pop_back();
return UniqueTexture{ std::move(id), { this } };
}
bool Context::supportsVertexArrays() const {
return vertexArray &&
vertexArray->genVertexArrays &&
vertexArray->bindVertexArray &&
vertexArray->deleteVertexArrays;
}
#if MBGL_HAS_BINARY_PROGRAMS
bool Context::supportsProgramBinaries() const {
if (!programBinary || !programBinary->programBinary || !programBinary->getProgramBinary) {
return false;
}
// Blacklist Adreno 3xx, 4xx, and 5xx GPUs due to known bugs:
// https://bugs.chromium.org/p/chromium/issues/detail?id=510637
// https://chromium.googlesource.com/chromium/src/gpu/+/master/config/gpu_driver_bug_list.json#2316
// Blacklist Vivante GC4000 due to bugs when linking loaded programs:
// https://github.com/mapbox/mapbox-gl-native/issues/10704
const std::string renderer = reinterpret_cast<const char*>(MBGL_CHECK_ERROR(glGetString(GL_RENDERER)));
if (renderer.find("Adreno (TM) 3") != std::string::npos
|| renderer.find("Adreno (TM) 4") != std::string::npos
|| renderer.find("Adreno (TM) 5") != std::string::npos
|| renderer.find("Vivante GC4000") != std::string::npos) {
return false;
}
return true;
}
optional<std::pair<BinaryProgramFormat, std::string>>
Context::getBinaryProgram(ProgramID program_) const {
if (!supportsProgramBinaries()) {
return {};
}
GLint binaryLength;
MBGL_CHECK_ERROR(glGetProgramiv(program_, GL_PROGRAM_BINARY_LENGTH, &binaryLength));
std::string binary;
binary.resize(binaryLength);
GLenum binaryFormat;
MBGL_CHECK_ERROR(programBinary->getProgramBinary(
program_, binaryLength, &binaryLength, &binaryFormat, const_cast<char*>(binary.data())));
if (size_t(binaryLength) != binary.size()) {
return {};
}
return { { binaryFormat, std::move(binary) } };
}
#else
optional<std::pair<BinaryProgramFormat, std::string>> Context::getBinaryProgram(ProgramID) const {
return {};
}
#endif
VertexArray Context::createVertexArray() {
if (supportsVertexArrays()) {
VertexArrayID id = 0;
MBGL_CHECK_ERROR(vertexArray->genVertexArrays(1, &id));
UniqueVertexArray vao(std::move(id), { this });
return { UniqueVertexArrayState(new VertexArrayState(std::move(vao)), VertexArrayStateDeleter { true })};
} else {
// On GL implementations which do not support vertex arrays, attribute bindings are global state.
// So return a VertexArray which shares our global state tracking and whose deleter is a no-op.
return { UniqueVertexArrayState(&globalVertexArrayState, VertexArrayStateDeleter { false }) };
}
}
UniqueFramebuffer Context::createFramebuffer() {
FramebufferID id = 0;
MBGL_CHECK_ERROR(glGenFramebuffers(1, &id));
return UniqueFramebuffer{ std::move(id), { this } };
}
UniqueRenderbuffer Context::createRenderbuffer(const RenderbufferType type, const Size size) {
RenderbufferID id = 0;
MBGL_CHECK_ERROR(glGenRenderbuffers(1, &id));
UniqueRenderbuffer renderbuffer{ std::move(id), { this } };
bindRenderbuffer = renderbuffer;
MBGL_CHECK_ERROR(
glRenderbufferStorage(GL_RENDERBUFFER, static_cast<GLenum>(type), size.width, size.height));
bindRenderbuffer = 0;
return renderbuffer;
}
std::unique_ptr<uint8_t[]> Context::readFramebuffer(const Size size, const TextureFormat format, const bool flip) {
const size_t stride = size.width * (format == TextureFormat::RGBA ? 4 : 1);
auto data = std::make_unique<uint8_t[]>(stride * size.height);
// When reading data from the framebuffer, make sure that we are storing the values
// tightly packed into the buffer to avoid buffer overruns.
pixelStorePack = { 1 };
MBGL_CHECK_ERROR(glReadPixels(0, 0, size.width, size.height, static_cast<GLenum>(format),
GL_UNSIGNED_BYTE, data.get()));
if (flip) {
auto tmp = std::make_unique<uint8_t[]>(stride);
uint8_t* rgba = data.get();
for (int i = 0, j = size.height - 1; i < j; i++, j--) {
std::memcpy(tmp.get(), rgba + i * stride, stride);
std::memcpy(rgba + i * stride, rgba + j * stride, stride);
std::memcpy(rgba + j * stride, tmp.get(), stride);
}
}
return data;
}
#if not MBGL_USE_GLES2
void Context::drawPixels(const Size size, const void* data, TextureFormat format) {
pixelStoreUnpack = { 1 };
if (format != TextureFormat::RGBA) {
format = static_cast<TextureFormat>(GL_LUMINANCE);
}
MBGL_CHECK_ERROR(glDrawPixels(size.width, size.height, static_cast<GLenum>(format),
GL_UNSIGNED_BYTE, data));
}
#endif // MBGL_USE_GLES2
namespace {
void checkFramebuffer() {
GLenum status = MBGL_CHECK_ERROR(glCheckFramebufferStatus(GL_FRAMEBUFFER));
if (status != GL_FRAMEBUFFER_COMPLETE) {
switch (status) {
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
throw std::runtime_error("Couldn't create framebuffer: incomplete attachment");
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
throw std::runtime_error("Couldn't create framebuffer: incomplete missing attachment");
#ifdef GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:
throw std::runtime_error("Couldn't create framebuffer: incomplete draw buffer");
#endif
#ifdef GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:
throw std::runtime_error("Couldn't create framebuffer: incomplete read buffer");
#endif
#ifdef GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS:
throw std::runtime_error("Couldn't create framebuffer: incomplete dimensions");
#endif
case GL_FRAMEBUFFER_UNSUPPORTED:
throw std::runtime_error("Couldn't create framebuffer: unsupported");
default:
throw std::runtime_error("Couldn't create framebuffer: other");
}
}
}
void bindDepthStencilRenderbuffer(
const Renderbuffer<RenderbufferType::DepthStencil>& depthStencil) {
#ifdef GL_DEPTH_STENCIL_ATTACHMENT
MBGL_CHECK_ERROR(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, depthStencil.renderbuffer));
#else
MBGL_CHECK_ERROR(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER,
depthStencil.renderbuffer));
MBGL_CHECK_ERROR(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, depthStencil.renderbuffer));
#endif
}
} // namespace
Framebuffer
Context::createFramebuffer(const Renderbuffer<RenderbufferType::RGBA>& color,
const Renderbuffer<RenderbufferType::DepthStencil>& depthStencil) {
if (color.size != depthStencil.size) {
throw std::runtime_error("Renderbuffer size mismatch");
}
auto fbo = createFramebuffer();
bindFramebuffer = fbo;
MBGL_CHECK_ERROR(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER, color.renderbuffer));
bindDepthStencilRenderbuffer(depthStencil);
checkFramebuffer();
return { color.size, std::move(fbo) };
}
Framebuffer Context::createFramebuffer(const Renderbuffer<RenderbufferType::RGBA>& color) {
auto fbo = createFramebuffer();
bindFramebuffer = fbo;
MBGL_CHECK_ERROR(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER, color.renderbuffer));
checkFramebuffer();
return { color.size, std::move(fbo) };
}
Framebuffer
Context::createFramebuffer(const Texture& color,
const Renderbuffer<RenderbufferType::DepthStencil>& depthStencil) {
if (color.size != depthStencil.size) {
throw std::runtime_error("Renderbuffer size mismatch");
}
auto fbo = createFramebuffer();
bindFramebuffer = fbo;
MBGL_CHECK_ERROR(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color.texture, 0));
bindDepthStencilRenderbuffer(depthStencil);
checkFramebuffer();
return { color.size, std::move(fbo) };
}
Framebuffer Context::createFramebuffer(const Texture& color) {
auto fbo = createFramebuffer();
bindFramebuffer = fbo;
MBGL_CHECK_ERROR(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color.texture, 0));
checkFramebuffer();
return { color.size, std::move(fbo) };
}
Framebuffer
Context::createFramebuffer(const Texture& color,
const Renderbuffer<RenderbufferType::DepthComponent>& depthTarget) {
if (color.size != depthTarget.size) {
throw std::runtime_error("Renderbuffer size mismatch");
}
auto fbo = createFramebuffer();
bindFramebuffer = fbo;
MBGL_CHECK_ERROR(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color.texture, 0));
MBGL_CHECK_ERROR(glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthTarget.renderbuffer));
checkFramebuffer();
return { depthTarget.size, std::move(fbo) };
}
UniqueTexture
Context::createTexture(const Size size, const void* data, TextureFormat format, TextureUnit unit, TextureType type) {
auto obj = createTexture();
pixelStoreUnpack = { 1 };
updateTexture(obj, size, data, format, unit, type);
// We are using clamp to edge here since OpenGL ES doesn't allow GL_REPEAT on NPOT textures.
// We use those when the pixelRatio isn't a power of two, e.g. on iPhone 6 Plus.
MBGL_CHECK_ERROR(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
MBGL_CHECK_ERROR(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
MBGL_CHECK_ERROR(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
MBGL_CHECK_ERROR(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
return obj;
}
void Context::updateTexture(
TextureID id, const Size size, const void* data, TextureFormat format, TextureUnit unit, TextureType type) {
activeTextureUnit = unit;
texture[unit] = id;
MBGL_CHECK_ERROR(glTexImage2D(GL_TEXTURE_2D, 0, static_cast<GLenum>(format), size.width,
size.height, 0, static_cast<GLenum>(format), static_cast<GLenum>(type),
data));
}
void Context::bindTexture(Texture& obj,
TextureUnit unit,
TextureFilter filter,
TextureMipMap mipmap,
TextureWrap wrapX,
TextureWrap wrapY) {
if (filter != obj.filter || mipmap != obj.mipmap || wrapX != obj.wrapX || wrapY != obj.wrapY) {
activeTextureUnit = unit;
texture[unit] = obj.texture;
if (filter != obj.filter || mipmap != obj.mipmap) {
MBGL_CHECK_ERROR(glTexParameteri(
GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
filter == TextureFilter::Linear
? (mipmap == TextureMipMap::Yes ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR)
: (mipmap == TextureMipMap::Yes ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST)));
MBGL_CHECK_ERROR(
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
filter == TextureFilter::Linear ? GL_LINEAR : GL_NEAREST));
obj.filter = filter;
obj.mipmap = mipmap;
}
if (wrapX != obj.wrapX) {
MBGL_CHECK_ERROR(
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
wrapX == TextureWrap::Clamp ? GL_CLAMP_TO_EDGE : GL_REPEAT));
obj.wrapX = wrapX;
}
if (wrapY != obj.wrapY) {
MBGL_CHECK_ERROR(
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
wrapY == TextureWrap::Clamp ? GL_CLAMP_TO_EDGE : GL_REPEAT));
obj.wrapY = wrapY;
}
} else if (texture[unit] != obj.texture) {
// We are checking first to avoid setting the active texture without a subsequent
// texture bind.
activeTextureUnit = unit;
texture[unit] = obj.texture;
}
}
void Context::reset() {
std::copy(pooledTextures.begin(), pooledTextures.end(), std::back_inserter(abandonedTextures));
pooledTextures.resize(0);
performCleanup();
}
void Context::setDirtyState() {
// Note: does not set viewport/scissorTest/bindFramebuffer to dirty
// since they are handled separately in the view object.
stencilFunc.setDirty();
stencilMask.setDirty();
stencilTest.setDirty();
stencilOp.setDirty();
depthRange.setDirty();
depthMask.setDirty();
depthTest.setDirty();
depthFunc.setDirty();
blend.setDirty();
blendEquation.setDirty();
blendFunc.setDirty();
blendColor.setDirty();
colorMask.setDirty();
clearDepth.setDirty();
clearColor.setDirty();
clearStencil.setDirty();
cullFace.setDirty();
cullFaceSide.setDirty();
frontFace.setDirty();
program.setDirty();
lineWidth.setDirty();
activeTextureUnit.setDirty();
pixelStorePack.setDirty();
pixelStoreUnpack.setDirty();
#if not MBGL_USE_GLES2
pointSize.setDirty();
pixelZoom.setDirty();
rasterPos.setDirty();
pixelTransferDepth.setDirty();
pixelTransferStencil.setDirty();
#endif // MBGL_USE_GLES2
for (auto& tex : texture) {
tex.setDirty();
}
vertexBuffer.setDirty();
bindVertexArray.setDirty();
globalVertexArrayState.setDirty();
}
void Context::clear(optional<mbgl::Color> color,
optional<float> depth,
optional<int32_t> stencil) {
GLbitfield mask = 0;
if (color) {
mask |= GL_COLOR_BUFFER_BIT;
clearColor = *color;
colorMask = value::ColorMask::Default;
}
if (depth) {
mask |= GL_DEPTH_BUFFER_BIT;
clearDepth = *depth;
depthMask = value::DepthMask::Default;
}
if (stencil) {
mask |= GL_STENCIL_BUFFER_BIT;
clearStencil = *stencil;
stencilMask = value::StencilMask::Default;
}
MBGL_CHECK_ERROR(glClear(mask));
}
void Context::setCullFaceMode(const CullFaceMode& mode) {
cullFace = mode.cullFace;
// These shouldn't need to be updated when face culling is disabled, but we
// might end up having the same isssues with Adreno 2xx GPUs as noted in
// Context::setDepthMode.
cullFaceSide = mode.side;
frontFace = mode.frontFace;
}
#if not MBGL_USE_GLES2
void Context::setDrawMode(const gfx::Points& points) {
pointSize = points.pointSize;
}
#else
void Context::setDrawMode(const gfx::Points&) {
}
#endif // MBGL_USE_GLES2
void Context::setDrawMode(const gfx::Lines& lines) {
lineWidth = lines.lineWidth;
}
void Context::setDrawMode(const gfx::LineStrip& lineStrip) {
lineWidth = lineStrip.lineWidth;
}
void Context::setDrawMode(const gfx::Triangles&) {
}
void Context::setDrawMode(const gfx::TriangleStrip&) {
}
void Context::setDepthMode(const DepthMode& depth) {
if (depth.func == DepthMode::Always && !depth.mask) {
depthTest = false;
// Workaround for rendering errors on Adreno 2xx GPUs. Depth-related state should
// not matter when the depth test is disabled, but on these GPUs it apparently does.
// https://github.com/mapbox/mapbox-gl-native/issues/9164
depthFunc = depth.func;
depthMask = depth.mask;
depthRange = depth.range;
} else {
depthTest = true;
depthFunc = depth.func;
depthMask = depth.mask;
depthRange = depth.range;
}
}
void Context::setStencilMode(const StencilMode& stencil) {
if (stencil.test.is<StencilMode::Always>() && !stencil.mask) {
stencilTest = false;
} else {
stencilTest = true;
stencilMask = stencil.mask;
stencilOp = { stencil.fail, stencil.depthFail, stencil.pass };
apply_visitor([&] (const auto& test) {
stencilFunc = { test.func, stencil.ref, test.mask };
}, stencil.test);
}
}
void Context::setColorMode(const gfx::ColorMode& color) {
if (color.blendFunction.is<gfx::ColorMode::Replace>()) {
blend = false;
} else {
blend = true;
blendColor = color.blendColor;
apply_visitor([&] (const auto& blendFunction) {
blendEquation = gfx::ColorBlendEquationType(blendFunction.equation);
blendFunc = { blendFunction.srcFactor, blendFunction.dstFactor };
}, color.blendFunction);
}
colorMask = color.mask;
}
void Context::draw(gfx::PrimitiveType primitiveType,
std::size_t indexOffset,
std::size_t indexLength) {
MBGL_CHECK_ERROR(glDrawElements(
Enum<gfx::PrimitiveType>::to(primitiveType),
static_cast<GLsizei>(indexLength),
GL_UNSIGNED_SHORT,
reinterpret_cast<GLvoid*>(sizeof(uint16_t) * indexOffset)));
}
void Context::performCleanup() {
for (auto id : abandonedPrograms) {
if (program == id) {
program.setDirty();
}
MBGL_CHECK_ERROR(glDeleteProgram(id));
}
abandonedPrograms.clear();
for (auto id : abandonedShaders) {
MBGL_CHECK_ERROR(glDeleteShader(id));
}
abandonedShaders.clear();
if (!abandonedBuffers.empty()) {
for (const auto id : abandonedBuffers) {
if (vertexBuffer == id) {
vertexBuffer.setDirty();
} else if (globalVertexArrayState.indexBuffer == id) {
globalVertexArrayState.indexBuffer.setDirty();
}
}
MBGL_CHECK_ERROR(glDeleteBuffers(int(abandonedBuffers.size()), abandonedBuffers.data()));
abandonedBuffers.clear();
}
if (!abandonedTextures.empty()) {
for (const auto id : abandonedTextures) {
for (auto& binding : texture) {
if (binding == id) {
binding.setDirty();
}
}
}
MBGL_CHECK_ERROR(glDeleteTextures(int(abandonedTextures.size()), abandonedTextures.data()));
abandonedTextures.clear();
}
if (!abandonedVertexArrays.empty()) {
assert(supportsVertexArrays());
for (const auto id : abandonedVertexArrays) {
if (bindVertexArray == id) {
bindVertexArray.setDirty();
}
}
MBGL_CHECK_ERROR(vertexArray->deleteVertexArrays(int(abandonedVertexArrays.size()),
abandonedVertexArrays.data()));
abandonedVertexArrays.clear();
}
if (!abandonedFramebuffers.empty()) {
for (const auto id : abandonedFramebuffers) {
if (bindFramebuffer == id) {
bindFramebuffer.setDirty();
}
}
MBGL_CHECK_ERROR(
glDeleteFramebuffers(int(abandonedFramebuffers.size()), abandonedFramebuffers.data()));
abandonedFramebuffers.clear();
}
if (!abandonedRenderbuffers.empty()) {
MBGL_CHECK_ERROR(glDeleteRenderbuffers(int(abandonedRenderbuffers.size()),
abandonedRenderbuffers.data()));
abandonedRenderbuffers.clear();
}
}
} // namespace gl
} // namespace mbgl
|