1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* Copyright (C) 2008 Apple Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <cmath>
#include <tuple>
namespace mbgl {
namespace util {
struct UnitBezier {
// Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1).
constexpr UnitBezier(double p1x, double p1y, double p2x, double p2y)
: cx(3.0 * p1x)
, bx(3.0 * (p2x - p1x) - (3.0 * p1x))
, ax(1.0 - (3.0 * p1x) - (3.0 * (p2x - p1x) - (3.0 * p1x)))
, cy(3.0 * p1y)
, by(3.0 * (p2y - p1y) - (3.0 * p1y))
, ay(1.0 - (3.0 * p1y) - (3.0 * (p2y - p1y) - (3.0 * p1y))) {
}
std::pair<double, double> getP1() const {
return { cx / 3.0, cy / 3.0 };
}
std::pair<double, double> getP2() const {
return {
(bx + (3.0 * cx / 3.0) + cx) / 3.0,
(by + (3.0 * cy / 3.0) + cy) / 3.0,
};
}
double sampleCurveX(double t) const {
// `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
return ((ax * t + bx) * t + cx) * t;
}
double sampleCurveY(double t) const {
return ((ay * t + by) * t + cy) * t;
}
double sampleCurveDerivativeX(double t) const {
return (3.0 * ax * t + 2.0 * bx) * t + cx;
}
// Given an x value, find a parametric value it came from.
double solveCurveX(double x, double epsilon) const {
double t0;
double t1;
double t2;
double x2;
double d2;
int i;
// First try a few iterations of Newton's method -- normally very fast.
for (t2 = x, i = 0; i < 8; ++i) {
x2 = sampleCurveX(t2) - x;
if (fabs (x2) < epsilon)
return t2;
d2 = sampleCurveDerivativeX(t2);
if (fabs(d2) < 1e-6)
break;
t2 = t2 - x2 / d2;
}
// Fall back to the bisection method for reliability.
t0 = 0.0;
t1 = 1.0;
t2 = x;
if (t2 < t0)
return t0;
if (t2 > t1)
return t1;
while (t0 < t1) {
x2 = sampleCurveX(t2);
if (fabs(x2 - x) < epsilon)
return t2;
if (x > x2)
t0 = t2;
else
t1 = t2;
t2 = (t1 - t0) * .5 + t0;
}
// Failure.
return t2;
}
double solve(double x, double epsilon) const {
return sampleCurveY(solveCurveX(x, epsilon));
}
bool operator==(const UnitBezier& rhs) const {
return std::tie(cx, bx, ax, cy, by, ay) ==
std::tie(rhs.cx, rhs.bx, rhs.ax, rhs.cy, rhs.by, rhs.ay);
}
private:
const double cx;
const double bx;
const double ax;
const double cy;
const double by;
const double ay;
};
} // namespace util
} // namespace mbgl
|