1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
#pragma once
#include <mbgl/util/constants.hpp>
#include <mbgl/util/geo.hpp>
#include <mbgl/util/geometry.hpp>
#include <mbgl/math/clamp.hpp>
namespace mbgl {
class ProjectedMeters {
private:
double _northing; // Distance measured northwards.
double _easting; // Distance measured eastwards.
public:
ProjectedMeters(double n_ = 0, double e_ = 0)
: _northing(n_), _easting(e_) {
if (std::isnan(_northing)) {
throw std::domain_error("northing must not be NaN");
}
if (std::isnan(_easting)) {
throw std::domain_error("easting must not be NaN");
}
}
double northing() const { return _northing; }
double easting() const { return _easting; }
friend bool operator==(const ProjectedMeters& a, const ProjectedMeters& b) {
return a._northing == b._northing && a._easting == b._easting;
}
friend bool operator!=(const ProjectedMeters& a, const ProjectedMeters& b) {
return !(a == b);
}
};
// Spherical Mercator projection
// http://docs.openlayers.org/library/spherical_mercator.html
class Projection {
public:
// Map pixel width at given scale.
static double worldSize(double scale) {
return scale * util::tileSize;
}
static double getMetersPerPixelAtLatitude(double lat, double zoom) {
const double constrainedZoom = util::clamp(zoom, util::MIN_ZOOM, util::MAX_ZOOM);
const double constrainedScale = std::pow(2.0, constrainedZoom);
const double constrainedLatitude = util::clamp(lat, -util::LATITUDE_MAX, util::LATITUDE_MAX);
return std::cos(constrainedLatitude * util::DEG2RAD) * util::M2PI * util::EARTH_RADIUS_M / worldSize(constrainedScale);
}
static ProjectedMeters projectedMetersForLatLng(const LatLng& latLng) {
const double constrainedLatitude = util::clamp(latLng.latitude(), -util::LATITUDE_MAX, util::LATITUDE_MAX);
const double constrainedLongitude = util::clamp(latLng.longitude(), -util::LONGITUDE_MAX, util::LONGITUDE_MAX);
const double m = 1 - 1e-15;
const double f = util::clamp(std::sin(util::DEG2RAD * constrainedLatitude), -m, m);
const double easting = util::EARTH_RADIUS_M * constrainedLongitude * util::DEG2RAD;
const double northing = 0.5 * util::EARTH_RADIUS_M * std::log((1 + f) / (1 - f));
return ProjectedMeters(northing, easting);
}
static LatLng latLngForProjectedMeters(const ProjectedMeters& projectedMeters) {
double latitude = (2 * std::atan(std::exp(projectedMeters.northing() / util::EARTH_RADIUS_M)) - (M_PI / 2.0)) * util::RAD2DEG;
double longitude = projectedMeters.easting() * util::RAD2DEG / util::EARTH_RADIUS_M;
latitude = util::clamp(latitude, -util::LATITUDE_MAX, util::LATITUDE_MAX);
longitude = util::clamp(longitude, -util::LONGITUDE_MAX, util::LONGITUDE_MAX);
return LatLng(latitude, longitude);
}
static Point<double> project(const LatLng& latLng, double scale) {
return project_(latLng, worldSize(scale));
}
//Returns point on tile
static Point<double> project(const LatLng& latLng, int32_t zoom) {
return project_(latLng, 1 << zoom);
}
static LatLng unproject(const Point<double>& p, double scale, LatLng::WrapMode wrapMode = LatLng::Unwrapped) {
auto p2 = p * util::DEGREES_MAX / worldSize(scale);
return LatLng {
util::DEGREES_MAX / M_PI * std::atan(std::exp((util::LONGITUDE_MAX - p2.y) * util::DEG2RAD)) - 90.0,
p2.x - util::LONGITUDE_MAX,
wrapMode
};
}
private:
static Point<double> project_(const LatLng& latLng, double worldSize) {
return Point<double> {
util::LONGITUDE_MAX + latLng.longitude(),
util::LONGITUDE_MAX - util::RAD2DEG * std::log(std::tan(M_PI / 4 + latLng.latitude() * M_PI / util::DEGREES_MAX))
} * worldSize / util::DEGREES_MAX;
}
};
} // namespace mbgl
|