1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#ifndef MBGL_UTIL_MATH
#define MBGL_UTIL_MATH
#include <cmath>
#include <array>
#include <mbgl/util/vec.hpp>
namespace mbgl {
namespace util {
template <typename T>
inline T max(T a, T b) {
return b > a ? b : a;
}
template <typename T>
inline T max(T a, T b, T c) {
return max(max(a, b), c);
}
template <typename T>
inline T max(T a, T b, T c, T d) {
return max(max(a, b), max(c, d));
}
template <typename T>
inline T min(T a, T b) {
return b < a ? b : a;
}
template <typename T>
inline T min(T a, T b, T c) {
return min(min(a, b), c);
}
template <typename T>
inline T min(T a, T b, T c, T d) {
return min(min(a, b), min(c, d));
}
// Find the angle of the two vectors, solving the formula for the cross product
// a x b = |a||b|sin(θ) for θ.
template <typename T = double, typename S>
inline T angle_between(S ax, S ay, S bx, S by) {
return std::atan2((ax * by - ay * bx), ax * bx + ay * by);
}
template <typename T = double, typename S>
inline T angle_between(const vec2<S>& a, const vec2<S>& b) {
return angle_between(a.x, a.y, b.x, b.y);
}
template <typename T = double, typename S>
inline T angle_to(const vec2<S>& a, const vec2<S>& b) {
return std::atan2(a.y - b.y, a.x - b.x);
}
// Reflect an angle around 0 degrees
template <typename T>
inline std::array<T, 2> flip(const std::array<T, 2>& c) {
return {{
static_cast<T>(2 * M_PI - c[0]),
static_cast<T>(2 * M_PI - c[1])
}};
}
template <typename T, typename S1, typename S2>
inline vec2<T> normal(const S1& a, const S2& b) {
T dx = b.x - a.x;
T dy = b.y - a.y;
T c = std::sqrt(dx * dx + dy * dy);
return { dx / c, dy / c };
}
template <typename T, typename S1, typename S2>
inline T dist(const S1& a, const S2& b) {
T dx = b.x - a.x;
T dy = b.y - a.y;
T c = std::sqrt(dx * dx + dy * dy);
return c;
}
template <typename T>
inline T length(T a, T b) {
return std::sqrt(a * a + b * b);
}
// Take the magnitude of vector a.
template <typename T = double, typename S>
inline T mag(const S& a) {
return std::sqrt(a.x * a.x + a.y * a.y);
}
template <typename T>
T clamp(T value, T min, T max) {
return value < min ? min : (value > max ? max : value);
}
template <typename T>
T smoothstep(T edge0, T edge1, T x) {
T t = clamp((x - edge0) / (edge1 - edge0), T(0), T(1));
return t * t * (T(3) - T(2) * t);
}
// Computes the log2(x) rounded up to the next integer.
// (== number of bits required to store x)
uint32_t ceil_log2(uint64_t x);
}
}
#endif
|