summaryrefslogtreecommitdiff
path: root/include/mbgl/style/function/composite_function.hpp
blob: 614c345c25f90c9e5236a33a740dfa492b40f423 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#pragma once

#include <mbgl/style/expression/expression.hpp>
#include <mbgl/style/expression/interpolate.hpp>
#include <mbgl/style/expression/step.hpp>
#include <mbgl/style/expression/find_zoom_curve.hpp>
#include <mbgl/style/expression/value.hpp>
#include <mbgl/style/expression/is_constant.hpp>
#include <mbgl/style/function/convert.hpp>
#include <mbgl/style/function/composite_exponential_stops.hpp>
#include <mbgl/style/function/composite_interval_stops.hpp>
#include <mbgl/style/function/composite_categorical_stops.hpp>
#include <mbgl/util/interpolate.hpp>
#include <mbgl/util/range.hpp>
#include <mbgl/util/variant.hpp>

#include <string>
#include <tuple>

namespace mbgl {

class GeometryTileFeature;

namespace style {

// A CompositeFunction consists of an outer zoom function whose stop range values are
// "inner" source functions. It provides the GL Native implementation of
// "zoom-and-property" functions from the style spec.

template <class T>
class CompositeFunction {
public:
    using InnerStops = std::conditional_t<
        util::Interpolatable<T>::value,
        variant<
            ExponentialStops<T>,
            IntervalStops<T>,
            CategoricalStops<T>>,
        variant<
            IntervalStops<T>,
            CategoricalStops<T>>>;

    using Stops = std::conditional_t<
        util::Interpolatable<T>::value,
        variant<
            CompositeExponentialStops<T>,
            CompositeIntervalStops<T>,
            CompositeCategoricalStops<T>>,
        variant<
            CompositeIntervalStops<T>,
            CompositeCategoricalStops<T>>>;

    CompositeFunction(std::unique_ptr<expression::Expression> expression_)
    :   isExpression(true),
        expression(std::move(expression_)),
        zoomCurve(expression::findZoomCurveChecked(expression.get()))
    {
        assert(!expression::isZoomConstant(*expression));
        assert(!expression::isFeatureConstant(*expression));
    }

    CompositeFunction(const std::string& property, const Stops& stops, optional<T> defaultValue_ = {})
    :   isExpression(false),
        defaultValue(std::move(defaultValue_)),
        expression(stops.match([&] (const auto& s) {
            return expression::Convert::toExpression(property, s);
        })),
        zoomCurve(expression::findZoomCurveChecked(expression.get()))
    {}

    // Return the range obtained by evaluating the function at each of the zoom levels in zoomRange
    template <class Feature>
    Range<T> evaluate(const Range<float>& zoomRange, const Feature& feature, T finalDefaultValue) {
        return Range<T> {
            evaluate(zoomRange.min, feature, finalDefaultValue),
            evaluate(zoomRange.max, feature, finalDefaultValue)
        };
    }

    template <class Feature>
    T evaluate(float zoom, const Feature& feature, T finalDefaultValue) const {
        const expression::EvaluationResult result = expression->evaluate(expression::EvaluationContext({zoom}, &feature));
        if (result) {
            const optional<T> typed = expression::fromExpressionValue<T>(*result);
            return typed ? *typed : defaultValue ? *defaultValue : finalDefaultValue;
        }
        return defaultValue ? *defaultValue : finalDefaultValue;
    }
    
    float interpolationFactor(const Range<float>& inputLevels, const float inputValue) const {
        return zoomCurve.match(
            [&](const expression::InterpolateBase* z) {
                return z->interpolationFactor(Range<double> { inputLevels.min, inputLevels.max }, inputValue);
            },
            [&](const expression::Step*) { return 0.0f; }
        );
    }
    
    Range<float> getCoveringStops(const float lower, const float upper) const {
        return zoomCurve.match(
            [&](auto z) { return z->getCoveringStops(lower, upper); }
        );
    }

    std::vector<optional<T>> possibleOutputs() const {
        return expression::fromExpressionValues<T>(expression->possibleOutputs());
    }

    friend bool operator==(const CompositeFunction& lhs,
                           const CompositeFunction& rhs) {
        return *lhs.expression == *rhs.expression;
    }

    const expression::Expression& getExpression() const { return *expression; }

    bool useIntegerZoom = false;
    bool isExpression;
    
private:
    optional<T> defaultValue;
    std::shared_ptr<expression::Expression> expression;
    const variant<const expression::InterpolateBase*, const expression::Step*> zoomCurve;
};

} // namespace style
} // namespace mbgl