summaryrefslogtreecommitdiff
path: root/include/mbgl/style/expression/parse/curve.hpp
blob: 537c1ef1e22427abac8a1bab3b7714e40a027a26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#pragma once

#include <map>
#include <memory>
#include <mbgl/util/optional.hpp>
#include <mbgl/style/expression/curve.hpp>
#include <mbgl/style/expression/parsing_context.hpp>
#include <mbgl/style/conversion.hpp>

namespace mbgl {
namespace style {
namespace expression {

namespace detail {

// used for storing intermediate state during parsing
struct ExponentialInterpolation { float base; std::string name = "exponential"; };
struct StepInterpolation {};

} // namespace detail

struct ParseCurve {
    template <typename V>
    static ParseResult parse(const V& value, ParsingContext ctx) {
        using namespace mbgl::style::conversion;
        assert(isArray(value));
        auto length = arrayLength(value);
        if (length < 5) {
            ctx.error("Expected at least 4 arguments, but found only " + std::to_string(length - 1) + ".");
            return ParseResult();
        }
        
        // [curve, interp, input, 2 * (n pairs)...]
        if (length % 2 != 1) {
            ctx.error("Expected an even number of arguments.");
            return ParseResult();
        }
        
        const auto& interp = arrayMember(value, 1);
        if (!isArray(interp) || arrayLength(interp) == 0) {
            ctx.error("Expected an interpolation type expression.");
            return ParseResult();
        }

        variant<detail::StepInterpolation,
                detail::ExponentialInterpolation> interpolation;
        
        const auto& interpName = toString(arrayMember(interp, 0));
        if (interpName && *interpName == "step") {
            interpolation = detail::StepInterpolation{};
        } else if (interpName && *interpName == "linear") {
            interpolation = detail::ExponentialInterpolation { 1.0f, "linear" };
        } else if (interpName && *interpName == "exponential") {
            optional<double> base;
            if (arrayLength(interp) == 2) {
                base = toDouble(arrayMember(interp, 1));
            }
            if (!base) {
                ctx.error("Exponential interpolation requires a numeric base.");
                return ParseResult();
            }
            interpolation = detail::ExponentialInterpolation { static_cast<float>(*base) };
        } else {
            ctx.error("Unknown interpolation type " + (interpName ? *interpName : ""));
            return ParseResult();
        }
        
        ParseResult input = parseExpression(arrayMember(value, 2), ParsingContext(ctx, 2, {type::Number}));
        if (!input) {
            return input;
        }
        
        std::map<float, std::unique_ptr<Expression>> stops;
        optional<type::Type> outputType = ctx.expected;
        
        double previous = - std::numeric_limits<double>::infinity();
        for (std::size_t i = 3; i + 1 < length; i += 2) {
            const optional<mbgl::Value>& labelValue = toValue(arrayMember(value, i));
            optional<double> label;
            optional<std::string> labelError;
            if (labelValue) {
                labelValue->match(
                    [&](uint64_t n) {
                        if (!Value::isSafeNumericValue(n)) {
                            labelError = {"Numeric values must be no larger than " + std::to_string(Value::max()) + "."};
                        } else {
                            label = {static_cast<double>(n)};
                        }
                    },
                    [&](int64_t n) {
                        if (!Value::isSafeNumericValue(n)) {
                            labelError = {"Numeric values must be no larger than " + std::to_string(Value::max()) + "."};
                        } else {
                            label = {static_cast<double>(n)};
                        }
                    },
                    [&](double n) {
                        if (!Value::isSafeNumericValue(n)) {
                            labelError = {"Numeric values must be no larger than " + std::to_string(Value::max()) + "."};
                        } else {
                            label = {static_cast<double>(n)};
                        }
                    },
                    [&](const auto&) {}
                );
            }
            if (!label) {
                ctx.error(labelError ? *labelError :
                    R"(Input/output pairs for "curve" expressions must be defined using literal numeric values (not computed expressions) for the input values.)",
                    i);
                return ParseResult();
            }
            
            if (*label < previous) {
                ctx.error(
                    R"(Input/output pairs for "curve" expressions must be arranged with input values in strictly ascending order.)",
                    i
                );
                return ParseResult();
            }
            previous = *label;
            
            auto output = parseExpression(arrayMember(value, i + 1), ParsingContext(ctx, i + 1, outputType));
            if (!output) {
                return ParseResult();
            }
            if (!outputType) {
                outputType = (*output)->getType();
            }

            stops.emplace(*label, std::move(*output));
        }
        
        assert(outputType);
        
        if (
            !interpolation.template is<detail::StepInterpolation>() &&
            *outputType != type::Number &&
            *outputType != type::Color &&
            !(
                outputType->is<type::Array>() &&
                outputType->get<type::Array>().itemType == type::Number
            )
        )
        {
            ctx.error("Type " + toString(*outputType) +
                " is not interpolatable, and thus cannot be used as a " +
                *interpName + " curve's output type.");
            return ParseResult();
        }
        
        return interpolation.match(
            [&](const detail::StepInterpolation&) -> ParseResult {
                return ParseResult(std::make_unique<Curve<StepInterpolator>>(
                    *outputType,
                    StepInterpolator(),
                    std::move(*input),
                    std::move(stops)
                ));
            },
            [&](const detail::ExponentialInterpolation& exponentialInterpolation) -> ParseResult {
                const float base = exponentialInterpolation.base;
                return outputType->match(
                    [&](const type::NumberType&) -> ParseResult {
                        return ParseResult(std::make_unique<Curve<ExponentialInterpolator<float>>>(
                            *outputType,
                            ExponentialInterpolator<float>(base),
                            std::move(*input),
                            std::move(stops)
                        ));
                    },
                    [&](const type::ColorType&) -> ParseResult {
                        return ParseResult(std::make_unique<Curve<ExponentialInterpolator<mbgl::Color>>>(
                            *outputType,
                            ExponentialInterpolator<mbgl::Color>(base),
                            std::move(*input),
                            std::move(stops)
                        ));
                    },
                    [&](const type::Array& arrayType) -> ParseResult {
                        if (arrayType.itemType == type::Number && arrayType.N) {
                            return ParseResult(std::make_unique<Curve<ExponentialInterpolator<std::vector<Value>>>>(
                                *outputType,
                                ExponentialInterpolator<std::vector<Value>>(base),
                                std::move(*input),
                                std::move(stops)
                            ));
                        } else {
                            assert(false); // interpolability already checked above.
                            return ParseResult();
                        }
                    },
                    [&](const auto&) {
                        assert(false); // interpolability already checked above.
                        return ParseResult();
                    }
                );
            }
        );
    }
};



} // namespace expression
} // namespace style
} // namespace mbgl