1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
#pragma once
#include <mbgl/util/optional.hpp>
#include <mbgl/util/variant.hpp>
#include <mbgl/util/color.hpp>
#include <mbgl/style/expression/type.hpp>
#include <mbgl/style/expression/value.hpp>
#include <mbgl/style/expression/parsing_context.hpp>
#include <array>
#include <vector>
#include <memory>
namespace mbgl {
class GeometryTileFeature;
namespace style {
namespace expression {
class EvaluationError {
public:
std::string message;
};
class EvaluationContext {
public:
EvaluationContext(float zoom_) : zoom(zoom_), feature(nullptr) {}
EvaluationContext(GeometryTileFeature const * feature_) : zoom(optional<float>()), feature(feature_) {}
EvaluationContext(float zoom_, GeometryTileFeature const * feature_) :
zoom(zoom_), feature(feature_)
{}
EvaluationContext(optional<float> zoom_, GeometryTileFeature const * feature_, optional<double> heatmapDensity_) :
zoom(std::move(zoom_)), feature(feature_), heatmapDensity(std::move(heatmapDensity_))
{}
optional<float> zoom;
GeometryTileFeature const * feature;
optional<double> heatmapDensity;
};
template <typename T>
class Result : private variant<EvaluationError, T> {
public:
using variant<EvaluationError, T>::variant;
using Value = T;
Result() = default;
explicit operator bool () const {
return this->template is<T>();
}
// optional does some type trait magic for this one, so this might
// be problematic as is.
const T* operator->() const {
assert(this->template is<T>());
return std::addressof(this->template get<T>());
}
T* operator->() {
assert(this->template is<T>());
return std::addressof(this->template get<T>());
}
T& operator*() {
assert(this->template is<T>());
return this->template get<T>();
}
const T& operator*() const {
assert(this->template is<T>());
return this->template get<T>();
}
const EvaluationError& error() const {
assert(this->template is<EvaluationError>());
return this->template get<EvaluationError>();
}
};
class EvaluationResult : public Result<Value> {
public:
using Result::Result; // NOLINT
EvaluationResult() = default;
EvaluationResult(const std::array<double, 4>& arr) :
Result(toExpressionValue(arr))
{}
// used only for the special (private) "error" expression
EvaluationResult(const type::ErrorType&) {
assert(false);
}
};
/*
Expression is an abstract class that serves as an interface and base class
for particular expression implementations.
CompoundExpression implements the majority of expressions in the spec by
inferring the argument and output from a simple function (const T0& arg0,
const T1& arg1, ...) -> Result<U> where T0, T1, ..., U are member types of
mbgl::style::expression::Value.
The other Expression subclasses (Let, Curve, Match, etc.) exist in order to
implement expressions that need specialized parsing, type checking, or
evaluation logic that can't be handled by CompoundExpression's inference
mechanism.
Each Expression subclass also provides a static
ParseResult ExpressionClass::parse(const V&, ParsingContext),
which handles parsing a style-spec JSON representation of the expression.
*/
class Expression {
public:
Expression(type::Type type_) : type(std::move(type_)) {}
virtual ~Expression() = default;
virtual EvaluationResult evaluate(const EvaluationContext& params) const = 0;
virtual void eachChild(const std::function<void(const Expression&)>&) const = 0;
virtual bool operator==(const Expression&) const = 0;
bool operator!=(const Expression& rhs) const {
return !operator==(rhs);
}
type::Type getType() const { return type; };
EvaluationResult evaluate(optional<float> zoom, const Feature& feature, optional<double> heatmapDensity) const;
/**
* Statically analyze the expression, attempting to enumerate possible outputs. Returns
* an array of values plus the sentinel null optional value, used to indicate that the
* complete set of outputs is statically undecidable.
*/
virtual std::vector<optional<Value>> possibleOutputs() const = 0;
virtual mbgl::Value serialize() const {
std::vector<mbgl::Value> serialized;
serialized.emplace_back(getOperator());
eachChild([&](const Expression &child) {
serialized.emplace_back(child.serialize());
});
return serialized;
};
virtual std::string getOperator() const = 0;
protected:
template <typename T>
static bool childrenEqual(const T& lhs, const T& rhs) {
if (lhs.size() != rhs.size()) return false;
for (auto leftChild = lhs.begin(), rightChild = rhs.begin();
leftChild != lhs.end();
leftChild++, rightChild++)
{
if (!Expression::childEqual(*leftChild, *rightChild)) return false;
}
return true;
}
static bool childEqual(const std::unique_ptr<Expression>& lhs, const std::unique_ptr<Expression>& rhs) {
return *lhs == *rhs;
}
template <typename T>
static bool childEqual(const std::pair<T, std::unique_ptr<Expression>>& lhs,
const std::pair<T, std::unique_ptr<Expression>>& rhs) {
return lhs.first == rhs.first && *(lhs.second) == *(rhs.second);
}
template <typename T>
static bool childEqual(const std::pair<T, std::shared_ptr<Expression>>& lhs,
const std::pair<T, std::shared_ptr<Expression>>& rhs) {
return lhs.first == rhs.first && *(lhs.second) == *(rhs.second);
}
static bool childEqual(const std::pair<std::unique_ptr<Expression>, std::unique_ptr<Expression>>& lhs,
const std::pair<std::unique_ptr<Expression>, std::unique_ptr<Expression>>& rhs) {
return *(lhs.first) == *(rhs.first) && *(lhs.second) == *(rhs.second);
}
private:
type::Type type;
};
} // namespace expression
} // namespace style
} // namespace mbgl
|