summaryrefslogtreecommitdiff
path: root/src/mbgl/text/collision_tile.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mbgl/text/collision_tile.cpp')
-rw-r--r--src/mbgl/text/collision_tile.cpp100
1 files changed, 66 insertions, 34 deletions
diff --git a/src/mbgl/text/collision_tile.cpp b/src/mbgl/text/collision_tile.cpp
index 368750c89f..cc9b602f08 100644
--- a/src/mbgl/text/collision_tile.cpp
+++ b/src/mbgl/text/collision_tile.cpp
@@ -20,27 +20,39 @@ CollisionTile::CollisionTile(PlacementConfig config_) : config(std::move(config_
rotationMatrix = { { angle_cos, -angle_sin, angle_sin, angle_cos } };
reverseRotationMatrix = { { angle_cos, angle_sin, -angle_sin, angle_cos } };
- // Stretch boxes in y direction to account for the map tilt.
- const float _yStretch = 1.0f / std::cos(config.pitch);
-
- // The amount the map is squished depends on the y position.
- // Sort of account for this by making all boxes a bit bigger.
- yStretch = std::pow(_yStretch, 1.3f);
+ perspectiveRatio =
+ 1.0f +
+ 0.5f * (util::division(config.cameraToTileDistance, config.cameraToCenterDistance, 1.0f) -
+ 1.0f);
+
+ minScale /= perspectiveRatio;
+ maxScale /= perspectiveRatio;
+
+ // We can only approximate here based on the y position of the tile
+ // The shaders calculate a more accurate "incidence_stretch"
+ // at render time to calculate an effective scale for collision
+ // purposes, but we still want to use the yStretch approximation
+ // here because we can't adjust the aspect ratio of the collision
+ // boxes at render time.
+ yStretch = util::max(
+ 1.0f, util::division(config.cameraToTileDistance,
+ config.cameraToCenterDistance * std::cos(config.pitch), 1.0f));
}
-
-float CollisionTile::findPlacementScale(const Point<float>& anchor, const CollisionBox& box, const Point<float>& blockingAnchor, const CollisionBox& blocking) {
+float CollisionTile::findPlacementScale(const Point<float>& anchor, const CollisionBox& box, const float boxMaxScale, const Point<float>& blockingAnchor, const CollisionBox& blocking) {
float minPlacementScale = minScale;
// Find the lowest scale at which the two boxes can fit side by side without overlapping.
// Original algorithm:
- float s1 = (blocking.x1 - box.x2) / (anchor.x - blockingAnchor.x); // scale at which new box is to the left of old box
- float s2 = (blocking.x2 - box.x1) / (anchor.x - blockingAnchor.x); // scale at which new box is to the right of old box
- float s3 = (blocking.y1 - box.y2) * yStretch / (anchor.y - blockingAnchor.y); // scale at which new box is to the top of old box
- float s4 = (blocking.y2 - box.y1) * yStretch / (anchor.y - blockingAnchor.y); // scale at which new box is to the bottom of old box
- if (std::isnan(s1) || std::isnan(s2)) s1 = s2 = 1;
- if (std::isnan(s3) || std::isnan(s4)) s3 = s4 = 1;
+ const float s1 = util::division(blocking.x1 - box.x2, anchor.x - blockingAnchor.x,
+ 1.0f); // scale at which new box is to the left of old box
+ const float s2 = util::division(blocking.x2 - box.x1, anchor.x - blockingAnchor.x,
+ 1.0f); // scale at which new box is to the right of old box
+ const float s3 = util::division((blocking.y1 - box.y2) * yStretch, anchor.y - blockingAnchor.y,
+ 1.0f); // scale at which new box is to the top of old box
+ const float s4 = util::division((blocking.y2 - box.y1) * yStretch, anchor.y - blockingAnchor.y,
+ 1.0f); // scale at which new box is to the bottom of old box
float collisionFreeScale = util::min(util::max(s1, s2), util::max(s3, s4));
@@ -50,10 +62,10 @@ float CollisionTile::findPlacementScale(const Point<float>& anchor, const Collis
collisionFreeScale = blocking.maxScale;
}
- if (collisionFreeScale > box.maxScale) {
+ if (collisionFreeScale > boxMaxScale) {
// If the box can only be shown after it is visible, then the box can never be shown.
// But the label can be shown after this box is not visible.
- collisionFreeScale = box.maxScale;
+ collisionFreeScale = boxMaxScale;
}
if (collisionFreeScale > minPlacementScale &&
@@ -72,13 +84,13 @@ float CollisionTile::placeFeature(const CollisionFeature& feature, bool allowOve
static const float infinity = std::numeric_limits<float>::infinity();
static const std::array<CollisionBox, 4> edges {{
// left
- CollisionBox(Point<float>(0, 0), 0, -infinity, 0, infinity, infinity),
+ CollisionBox(Point<float>(0, 0), { 0, 0 }, 0, -infinity, 0, infinity, infinity),
// right
- CollisionBox(Point<float>(util::EXTENT, 0), 0, -infinity, 0, infinity, infinity),
+ CollisionBox(Point<float>(util::EXTENT, 0), { 0, 0 }, 0, -infinity, 0, infinity, infinity),
// top
- CollisionBox(Point<float>(0, 0), -infinity, 0, infinity, 0, infinity),
+ CollisionBox(Point<float>(0, 0), { 0, 0 }, -infinity, 0, infinity, 0, infinity),
// bottom
- CollisionBox(Point<float>(0, util::EXTENT), -infinity, 0, infinity, 0, infinity)
+ CollisionBox(Point<float>(0, util::EXTENT), { 0, 0 }, -infinity, 0, infinity, 0, infinity)
}};
float minPlacementScale = minScale;
@@ -86,12 +98,14 @@ float CollisionTile::placeFeature(const CollisionFeature& feature, bool allowOve
for (auto& box : feature.boxes) {
const auto anchor = util::matrixMultiply(rotationMatrix, box.anchor);
+ const float boxMaxScale = box.adjustedMaxScale(rotationMatrix, yStretch);
+
if (!allowOverlap) {
for (auto it = tree.qbegin(bgi::intersects(getTreeBox(anchor, box))); it != tree.qend(); ++it) {
const CollisionBox& blocking = std::get<1>(*it);
Point<float> blockingAnchor = util::matrixMultiply(rotationMatrix, blocking.anchor);
- minPlacementScale = util::max(minPlacementScale, findPlacementScale(anchor, box, blockingAnchor, blocking));
+ minPlacementScale = util::max(minPlacementScale, findPlacementScale(anchor, box, boxMaxScale, blockingAnchor, blocking));
if (minPlacementScale >= maxScale) return minPlacementScale;
}
}
@@ -102,14 +116,15 @@ float CollisionTile::placeFeature(const CollisionFeature& feature, bool allowOve
const Point<float> rbl = util::matrixMultiply(reverseRotationMatrix, { box.x1, box.y2 });
const Point<float> rbr = util::matrixMultiply(reverseRotationMatrix, { box.x2, box.y2 });
CollisionBox rotatedBox(box.anchor,
+ box.offset,
util::min(rtl.x, rtr.x, rbl.x, rbr.x),
util::min(rtl.y, rtr.y, rbl.y, rbr.y),
util::max(rtl.x, rtr.x, rbl.x, rbr.x),
util::max(rtl.y, rtr.y, rbl.y, rbr.y),
- box.maxScale);
+ boxMaxScale);
for (auto& blocking : edges) {
- minPlacementScale = util::max(minPlacementScale, findPlacementScale(box.anchor, rotatedBox, blocking.anchor, blocking));
+ minPlacementScale = util::max(minPlacementScale, findPlacementScale(box.anchor, rotatedBox, boxMaxScale, blocking.anchor, blocking));
if (minPlacementScale >= maxScale) return minPlacementScale;
}
}
@@ -126,7 +141,9 @@ void CollisionTile::insertFeature(CollisionFeature& feature, float minPlacementS
if (minPlacementScale < maxScale) {
std::vector<CollisionTreeBox> treeBoxes;
for (auto& box : feature.boxes) {
- treeBoxes.emplace_back(getTreeBox(util::matrixMultiply(rotationMatrix, box.anchor), box), box, feature.indexedFeature);
+ CollisionBox adjustedBox = box;
+ box.maxScale = box.adjustedMaxScale(rotationMatrix, yStretch);
+ treeBoxes.emplace_back(getTreeBox(util::matrixMultiply(rotationMatrix, box.anchor), box), std::move(adjustedBox), feature.indexedFeature);
}
if (ignorePlacement) {
ignoredTree.insert(treeBoxes.begin(), treeBoxes.end());
@@ -157,13 +174,21 @@ void CollisionTile::insertFeature(CollisionFeature& feature, float minPlacementS
Box CollisionTile::getTreeBox(const Point<float>& anchor, const CollisionBox& box, const float scale) {
assert(box.x1 <= box.x2 && box.y1 <= box.y2);
return Box{
+ // When the 'perspectiveRatio' is high, we're effectively underzooming
+ // the tile because it's in the distance.
+ // In order to detect collisions that only happen while underzoomed,
+ // we have to query a larger portion of the grid.
+ // This extra work is offset by having a lower 'maxScale' bound
+ // Note that this adjustment ONLY affects the bounding boxes
+ // in the grid. It doesn't affect the boxes used for the
+ // minPlacementScale calculations.
CollisionPoint{
- anchor.x + box.x1 / scale,
- anchor.y + box.y1 / scale * yStretch
+ anchor.x + box.x1 / scale * perspectiveRatio,
+ anchor.y + box.y1 / scale * yStretch * perspectiveRatio,
},
CollisionPoint{
- anchor.x + box.x2 / scale,
- anchor.y + box.y2 / scale * yStretch
+ anchor.x + box.x2 / scale * perspectiveRatio,
+ anchor.y + box.y2 / scale * yStretch * perspectiveRatio
}
};
}
@@ -190,23 +215,30 @@ std::vector<IndexedSubfeature> CollisionTile::queryRenderedSymbols(const Geometr
return seenFeatures.find(feature.index) == seenFeatures.end();
};
+ // "perspectiveRatio" is a tile-based approximation of how much larger symbols will
+ // be in the distance. It won't line up exactly with the actually rendered symbols
+ // Being exact would require running the collision detection logic in symbol_sdf.vertex
+ // in the CPU
+ const float perspectiveScale = scale / perspectiveRatio;
+
// Account for the rounding done when updating symbol shader variables.
- const float roundedScale = std::pow(2.0f, std::ceil(util::log2(scale) * 10.0f) / 10.0f);
+ const float roundedScale = std::pow(2.0f, std::ceil(util::log2(perspectiveScale) * 10.0f) / 10.0f);
// Check if feature is rendered (collision free) at current scale.
auto visibleAtScale = [&] (const CollisionTreeBox& treeBox) -> bool {
const CollisionBox& box = std::get<1>(treeBox);
- return roundedScale >= box.placementScale && roundedScale <= box.maxScale;
+ return roundedScale >= box.placementScale && roundedScale <= box.adjustedMaxScale(rotationMatrix, yStretch);
};
// Check if query polygon intersects with the feature box at current scale.
auto intersectsAtScale = [&] (const CollisionTreeBox& treeBox) -> bool {
const CollisionBox& collisionBox = std::get<1>(treeBox);
const auto anchor = util::matrixMultiply(rotationMatrix, collisionBox.anchor);
- const int16_t x1 = anchor.x + collisionBox.x1 / scale;
- const int16_t y1 = anchor.y + collisionBox.y1 / scale * yStretch;
- const int16_t x2 = anchor.x + collisionBox.x2 / scale;
- const int16_t y2 = anchor.y + collisionBox.y2 / scale * yStretch;
+
+ const int16_t x1 = anchor.x + (collisionBox.x1 / perspectiveScale);
+ const int16_t y1 = anchor.y + (collisionBox.y1 / perspectiveScale) * yStretch;
+ const int16_t x2 = anchor.x + (collisionBox.x2 / perspectiveScale);
+ const int16_t y2 = anchor.y + (collisionBox.y2 / perspectiveScale) * yStretch;
auto bbox = GeometryCoordinates {
{ x1, y1 }, { x2, y1 }, { x2, y2 }, { x1, y2 }
};