summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/arm/assembler-arm-inl.h
blob: acd61feff89711daf952ae3714efc7c88a030545 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
#define V8_ARM_ASSEMBLER_ARM_INL_H_

#include "arm/assembler-arm.h"

#include "cpu.h"
#include "debug.h"


namespace v8 {
namespace internal {


int DwVfpRegister::ToAllocationIndex(DwVfpRegister reg) {
  ASSERT(!reg.is(kDoubleRegZero));
  ASSERT(!reg.is(kScratchDoubleReg));
  return reg.code();
}


void RelocInfo::apply(intptr_t delta) {
  if (RelocInfo::IsInternalReference(rmode_)) {
    // absolute code pointer inside code object moves with the code object.
    int32_t* p = reinterpret_cast<int32_t*>(pc_);
    *p += delta;  // relocate entry
  }
  // We do not use pc relative addressing on ARM, so there is
  // nothing else to do.
}


Address RelocInfo::target_address() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
  return Assembler::target_address_at(pc_);
}


Address RelocInfo::target_address_address() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
                              || rmode_ == EMBEDDED_OBJECT
                              || rmode_ == EXTERNAL_REFERENCE);
  return reinterpret_cast<Address>(Assembler::target_pointer_address_at(pc_));
}


int RelocInfo::target_address_size() {
  return kPointerSize;
}


void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
  Assembler::set_target_address_at(pc_, target);
  if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
}


Object* RelocInfo::target_object() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  return reinterpret_cast<Object*>(Assembler::target_pointer_at(pc_));
}


Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  return Handle<Object>(reinterpret_cast<Object**>(
      Assembler::target_pointer_at(pc_)));
}


Object** RelocInfo::target_object_address() {
  // Provide a "natural pointer" to the embedded object,
  // which can be de-referenced during heap iteration.
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  reconstructed_obj_ptr_ =
      reinterpret_cast<Object*>(Assembler::target_pointer_at(pc_));
  return &reconstructed_obj_ptr_;
}


void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  Assembler::set_target_pointer_at(pc_, reinterpret_cast<Address>(target));
  if (mode == UPDATE_WRITE_BARRIER &&
      host() != NULL &&
      target->IsHeapObject()) {
    host()->GetHeap()->incremental_marking()->RecordWrite(
        host(), &Memory::Object_at(pc_), HeapObject::cast(target));
  }
}


Address* RelocInfo::target_reference_address() {
  ASSERT(rmode_ == EXTERNAL_REFERENCE);
  reconstructed_adr_ptr_ = Assembler::target_address_at(pc_);
  return &reconstructed_adr_ptr_;
}


Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
  ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
  Address address = Memory::Address_at(pc_);
  return Handle<JSGlobalPropertyCell>(
      reinterpret_cast<JSGlobalPropertyCell**>(address));
}


JSGlobalPropertyCell* RelocInfo::target_cell() {
  ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
  return JSGlobalPropertyCell::FromValueAddress(Memory::Address_at(pc_));
}


void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
                                WriteBarrierMode mode) {
  ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
  Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
  Memory::Address_at(pc_) = address;
  if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    // TODO(1550) We are passing NULL as a slot because cell can never be on
    // evacuation candidate.
    host()->GetHeap()->incremental_marking()->RecordWrite(
        host(), NULL, cell);
  }
}


static const int kNoCodeAgeSequenceLength = 3;

Code* RelocInfo::code_age_stub() {
  ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
  return Code::GetCodeFromTargetAddress(
      Memory::Address_at(pc_ + Assembler::kInstrSize *
                         (kNoCodeAgeSequenceLength - 1)));
}


void RelocInfo::set_code_age_stub(Code* stub) {
  ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
  Memory::Address_at(pc_ + Assembler::kInstrSize *
                     (kNoCodeAgeSequenceLength - 1)) =
      stub->instruction_start();
}


Address RelocInfo::call_address() {
  // The 2 instructions offset assumes patched debug break slot or return
  // sequence.
  ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
  return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
}


void RelocInfo::set_call_address(Address target) {
  ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
  Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
  if (host() != NULL) {
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
}


Object* RelocInfo::call_object() {
  return *call_object_address();
}


void RelocInfo::set_call_object(Object* target) {
  *call_object_address() = target;
}


Object** RelocInfo::call_object_address() {
  ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
  return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
}


bool RelocInfo::IsPatchedReturnSequence() {
  Instr current_instr = Assembler::instr_at(pc_);
  Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
#ifdef USE_BLX
  // A patched return sequence is:
  //  ldr ip, [pc, #0]
  //  blx ip
  return ((current_instr & kLdrPCMask) == kLdrPCPattern)
          && ((next_instr & kBlxRegMask) == kBlxRegPattern);
#else
  // A patched return sequence is:
  //  mov lr, pc
  //  ldr pc, [pc, #-4]
  return (current_instr == kMovLrPc)
          && ((next_instr & kLdrPCMask) == kLdrPCPattern);
#endif
}


bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
  Instr current_instr = Assembler::instr_at(pc_);
  return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
}


void RelocInfo::Visit(ObjectVisitor* visitor) {
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
    visitor->VisitEmbeddedPointer(this);
  } else if (RelocInfo::IsCodeTarget(mode)) {
    visitor->VisitCodeTarget(this);
  } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
    visitor->VisitGlobalPropertyCell(this);
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    visitor->VisitExternalReference(this);
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    visitor->VisitCodeAgeSequence(this);
#ifdef ENABLE_DEBUGGER_SUPPORT
  // TODO(isolates): Get a cached isolate below.
  } else if (((RelocInfo::IsJSReturn(mode) &&
              IsPatchedReturnSequence()) ||
             (RelocInfo::IsDebugBreakSlot(mode) &&
              IsPatchedDebugBreakSlotSequence())) &&
             Isolate::Current()->debug()->has_break_points()) {
    visitor->VisitDebugTarget(this);
#endif
  } else if (mode == RelocInfo::RUNTIME_ENTRY) {
    visitor->VisitRuntimeEntry(this);
  }
}


template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
    StaticVisitor::VisitEmbeddedPointer(heap, this);
  } else if (RelocInfo::IsCodeTarget(mode)) {
    StaticVisitor::VisitCodeTarget(heap, this);
  } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
    StaticVisitor::VisitGlobalPropertyCell(heap, this);
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    StaticVisitor::VisitExternalReference(this);
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    StaticVisitor::VisitCodeAgeSequence(heap, this);
#ifdef ENABLE_DEBUGGER_SUPPORT
  } else if (heap->isolate()->debug()->has_break_points() &&
             ((RelocInfo::IsJSReturn(mode) &&
              IsPatchedReturnSequence()) ||
             (RelocInfo::IsDebugBreakSlot(mode) &&
              IsPatchedDebugBreakSlotSequence()))) {
    StaticVisitor::VisitDebugTarget(heap, this);
#endif
  } else if (mode == RelocInfo::RUNTIME_ENTRY) {
    StaticVisitor::VisitRuntimeEntry(this);
  }
}


Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
  rm_ = no_reg;
  imm32_ = immediate;
  rmode_ = rmode;
}


Operand::Operand(const ExternalReference& f)  {
  rm_ = no_reg;
  imm32_ = reinterpret_cast<int32_t>(f.address());
  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}


Operand::Operand(Smi* value) {
  rm_ = no_reg;
  imm32_ =  reinterpret_cast<intptr_t>(value);
  rmode_ = RelocInfo::NONE;
}


Operand::Operand(Register rm) {
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = LSL;
  shift_imm_ = 0;
}


bool Operand::is_reg() const {
  return rm_.is_valid() &&
         rs_.is(no_reg) &&
         shift_op_ == LSL &&
         shift_imm_ == 0;
}


void Assembler::CheckBuffer() {
  if (buffer_space() <= kGap) {
    GrowBuffer();
  }
  if (pc_offset() >= next_buffer_check_) {
    CheckConstPool(false, true);
  }
}


void Assembler::emit(Instr x) {
  CheckBuffer();
  *reinterpret_cast<Instr*>(pc_) = x;
  pc_ += kInstrSize;
}


Address Assembler::target_pointer_address_at(Address pc) {
  Address target_pc = pc;
  Instr instr = Memory::int32_at(target_pc);
  // If we have a bx instruction, the instruction before the bx is
  // what we need to patch.
  static const int32_t kBxInstMask = 0x0ffffff0;
  static const int32_t kBxInstPattern = 0x012fff10;
  if ((instr & kBxInstMask) == kBxInstPattern) {
    target_pc -= kInstrSize;
    instr = Memory::int32_at(target_pc);
  }

#ifdef USE_BLX
  // If we have a blx instruction, the instruction before it is
  // what needs to be patched.
  if ((instr & kBlxRegMask) == kBlxRegPattern) {
    target_pc -= kInstrSize;
    instr = Memory::int32_at(target_pc);
  }
#endif

  ASSERT(IsLdrPcImmediateOffset(instr));
  int offset = instr & 0xfff;  // offset_12 is unsigned
  if ((instr & (1 << 23)) == 0) offset = -offset;  // U bit defines offset sign
  // Verify that the constant pool comes after the instruction referencing it.
  ASSERT(offset >= -4);
  return target_pc + offset + 8;
}


Address Assembler::target_pointer_at(Address pc) {
  if (IsMovW(Memory::int32_at(pc))) {
    ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
    Instruction* instr = Instruction::At(pc);
    Instruction* next_instr = Instruction::At(pc + kInstrSize);
    return reinterpret_cast<Address>(
        (next_instr->ImmedMovwMovtValue() << 16) |
        instr->ImmedMovwMovtValue());
  }
  return Memory::Address_at(target_pointer_address_at(pc));
}


Address Assembler::target_address_from_return_address(Address pc) {
  // Returns the address of the call target from the return address that will
  // be returned to after a call.
#ifdef USE_BLX
  // Call sequence on V7 or later is :
  //  movw  ip, #... @ call address low 16
  //  movt  ip, #... @ call address high 16
  //  blx   ip
  //                      @ return address
  // Or pre-V7 or cases that need frequent patching:
  //  ldr   ip, [pc, #...] @ call address
  //  blx   ip
  //                      @ return address
  Address candidate = pc - 2 * Assembler::kInstrSize;
  Instr candidate_instr(Memory::int32_at(candidate));
  if (IsLdrPcImmediateOffset(candidate_instr)) {
    return candidate;
  }
  candidate = pc - 3 * Assembler::kInstrSize;
  ASSERT(IsMovW(Memory::int32_at(candidate)) &&
         IsMovT(Memory::int32_at(candidate + kInstrSize)));
  return candidate;
#else
  // Call sequence is:
  //  mov  lr, pc
  //  ldr  pc, [pc, #...] @ call address
  //                      @ return address
  return pc - kInstrSize;
#endif
}


Address Assembler::return_address_from_call_start(Address pc) {
#ifdef USE_BLX
  if (IsLdrPcImmediateOffset(Memory::int32_at(pc))) {
    return pc + kInstrSize * 2;
  } else {
    ASSERT(IsMovW(Memory::int32_at(pc)));
    ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
    return pc + kInstrSize * 3;
  }
#else
  return pc + kInstrSize;
#endif
}


void Assembler::deserialization_set_special_target_at(
    Address constant_pool_entry, Address target) {
  Memory::Address_at(constant_pool_entry) = target;
}


void Assembler::set_external_target_at(Address constant_pool_entry,
                                       Address target) {
  Memory::Address_at(constant_pool_entry) = target;
}


static Instr EncodeMovwImmediate(uint32_t immediate) {
  ASSERT(immediate < 0x10000);
  return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
}


void Assembler::set_target_pointer_at(Address pc, Address target) {
  if (IsMovW(Memory::int32_at(pc))) {
    ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
    uint32_t intermediate = instr_ptr[0];
    intermediate &= ~EncodeMovwImmediate(0xFFFF);
    intermediate |= EncodeMovwImmediate(immediate & 0xFFFF);
    instr_ptr[0] = intermediate;
    intermediate = instr_ptr[1];
    intermediate &= ~EncodeMovwImmediate(0xFFFF);
    intermediate |= EncodeMovwImmediate(immediate >> 16);
    instr_ptr[1] = intermediate;
    ASSERT(IsMovW(Memory::int32_at(pc)));
    ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
    CPU::FlushICache(pc, 2 * kInstrSize);
  } else {
    ASSERT(IsLdrPcImmediateOffset(Memory::int32_at(pc)));
    Memory::Address_at(target_pointer_address_at(pc)) = target;
    // Intuitively, we would think it is necessary to always flush the
    // instruction cache after patching a target address in the code as follows:
    //   CPU::FlushICache(pc, sizeof(target));
    // However, on ARM, no instruction is actually patched in the case
    // of embedded constants of the form:
    // ldr   ip, [pc, #...]
    // since the instruction accessing this address in the constant pool remains
    // unchanged.
  }
}


Address Assembler::target_address_at(Address pc) {
  return target_pointer_at(pc);
}


void Assembler::set_target_address_at(Address pc, Address target) {
  set_target_pointer_at(pc, target);
}


} }  // namespace v8::internal

#endif  // V8_ARM_ASSEMBLER_ARM_INL_H_