1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
|
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef QDRAWHELPER_P_H
#define QDRAWHELPER_P_H
//
// W A R N I N G
// -------------
//
// This file is not part of the Qt API. It exists purely as an
// implementation detail. This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//
#include <QtGui/private/qtguiglobal_p.h>
#include "QtCore/qmath.h"
#include "QtGui/qcolor.h"
#include "QtGui/qpainter.h"
#include "QtGui/qimage.h"
#include "QtGui/qrgba64.h"
#ifndef QT_FT_BEGIN_HEADER
#define QT_FT_BEGIN_HEADER
#define QT_FT_END_HEADER
#endif
#include "private/qpixellayout_p.h"
#include "private/qrasterdefs_p.h"
#include <private/qsimd_p.h>
#include <QtCore/qsharedpointer.h>
QT_BEGIN_NAMESPACE
#if defined(Q_CC_GNU)
# define Q_DECL_RESTRICT __restrict__
# if defined(Q_PROCESSOR_X86_32) && defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL)
# define Q_DECL_VECTORCALL __attribute__((sseregparm,regparm(3)))
# else
# define Q_DECL_VECTORCALL
# endif
#elif defined(Q_CC_MSVC)
# define Q_DECL_RESTRICT __restrict
# define Q_DECL_VECTORCALL __vectorcall
#else
# define Q_DECL_RESTRICT
# define Q_DECL_VECTORCALL
#endif
static const uint AMASK = 0xff000000;
static const uint RMASK = 0x00ff0000;
static const uint GMASK = 0x0000ff00;
static const uint BMASK = 0x000000ff;
/*******************************************************************************
* QSpan
*
* duplicate definition of FT_Span
*/
typedef QT_FT_Span QSpan;
struct QSolidData;
struct QTextureData;
struct QGradientData;
struct QLinearGradientData;
struct QRadialGradientData;
struct QConicalGradientData;
struct QSpanData;
class QGradient;
class QRasterBuffer;
class QClipData;
class QRasterPaintEngineState;
template<typename F> class QRgbaF;
typedef QRgbaF<float> QRgba32F;
typedef QT_FT_SpanFunc ProcessSpans;
typedef void (*BitmapBlitFunc)(QRasterBuffer *rasterBuffer,
int x, int y, const QRgba64 &color,
const uchar *bitmap,
int mapWidth, int mapHeight, int mapStride);
typedef void (*AlphamapBlitFunc)(QRasterBuffer *rasterBuffer,
int x, int y, const QRgba64 &color,
const uchar *bitmap,
int mapWidth, int mapHeight, int mapStride,
const QClipData *clip, bool useGammaCorrection);
typedef void (*AlphaRGBBlitFunc)(QRasterBuffer *rasterBuffer,
int x, int y, const QRgba64 &color,
const uint *rgbmask,
int mapWidth, int mapHeight, int mapStride,
const QClipData *clip, bool useGammaCorrection);
typedef void (*RectFillFunc)(QRasterBuffer *rasterBuffer,
int x, int y, int width, int height,
const QRgba64 &color);
typedef void (*SrcOverBlendFunc)(uchar *destPixels, int dbpl,
const uchar *src, int spbl,
int w, int h,
int const_alpha);
typedef void (*SrcOverScaleFunc)(uchar *destPixels, int dbpl,
const uchar *src, int spbl, int srch,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clipRect,
int const_alpha);
typedef void (*SrcOverTransformFunc)(uchar *destPixels, int dbpl,
const uchar *src, int spbl,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clipRect,
const QTransform &targetRectTransform,
int const_alpha);
struct DrawHelper {
ProcessSpans blendColor;
BitmapBlitFunc bitmapBlit;
AlphamapBlitFunc alphamapBlit;
AlphaRGBBlitFunc alphaRGBBlit;
RectFillFunc fillRect;
};
extern SrcOverBlendFunc qBlendFunctions[QImage::NImageFormats][QImage::NImageFormats];
extern SrcOverScaleFunc qScaleFunctions[QImage::NImageFormats][QImage::NImageFormats];
extern SrcOverTransformFunc qTransformFunctions[QImage::NImageFormats][QImage::NImageFormats];
extern DrawHelper qDrawHelper[QImage::NImageFormats];
struct quint24 {
quint24() = default;
quint24(uint value)
{
data[0] = uchar(value >> 16);
data[1] = uchar(value >> 8);
data[2] = uchar(value);
}
operator uint() const
{
return data[2] | (data[1] << 8) | (data[0] << 16);
}
uchar data[3];
};
void qBlendGradient(int count, const QSpan *spans, void *userData);
void qBlendTexture(int count, const QSpan *spans, void *userData);
#ifdef __SSE2__
extern void (*qt_memfill64)(quint64 *dest, quint64 value, qsizetype count);
extern void (*qt_memfill32)(quint32 *dest, quint32 value, qsizetype count);
#else
extern void qt_memfill64(quint64 *dest, quint64 value, qsizetype count);
extern void qt_memfill32(quint32 *dest, quint32 value, qsizetype count);
#endif
extern void qt_memfill24(quint24 *dest, quint24 value, qsizetype count);
extern void qt_memfill16(quint16 *dest, quint16 value, qsizetype count);
typedef void (QT_FASTCALL *CompositionFunction)(uint *Q_DECL_RESTRICT dest, const uint *Q_DECL_RESTRICT src, int length, uint const_alpha);
typedef void (QT_FASTCALL *CompositionFunction64)(QRgba64 *Q_DECL_RESTRICT dest, const QRgba64 *Q_DECL_RESTRICT src, int length, uint const_alpha);
typedef void (QT_FASTCALL *CompositionFunctionFP)(QRgba32F *Q_DECL_RESTRICT dest, const QRgba32F *Q_DECL_RESTRICT src, int length, uint const_alpha);
typedef void (QT_FASTCALL *CompositionFunctionSolid)(uint *dest, int length, uint color, uint const_alpha);
typedef void (QT_FASTCALL *CompositionFunctionSolid64)(QRgba64 *dest, int length, QRgba64 color, uint const_alpha);
typedef void (QT_FASTCALL *CompositionFunctionSolidFP)(QRgba32F *dest, int length, QRgba32F color, uint const_alpha);
struct LinearGradientValues
{
qreal dx;
qreal dy;
qreal l;
qreal off;
};
struct RadialGradientValues
{
qreal dx;
qreal dy;
qreal dr;
qreal sqrfr;
qreal a;
qreal inv2a;
bool extended;
};
struct Operator;
typedef uint* (QT_FASTCALL *DestFetchProc)(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length);
typedef QRgba64* (QT_FASTCALL *DestFetchProc64)(QRgba64 *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length);
typedef QRgba32F* (QT_FASTCALL *DestFetchProcFP)(QRgba32F *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length);
typedef void (QT_FASTCALL *DestStoreProc)(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length);
typedef void (QT_FASTCALL *DestStoreProc64)(QRasterBuffer *rasterBuffer, int x, int y, const QRgba64 *buffer, int length);
typedef void (QT_FASTCALL *DestStoreProcFP)(QRasterBuffer *rasterBuffer, int x, int y, const QRgba32F *buffer, int length);
typedef const uint* (QT_FASTCALL *SourceFetchProc)(uint *buffer, const Operator *o, const QSpanData *data, int y, int x, int length);
typedef const QRgba64* (QT_FASTCALL *SourceFetchProc64)(QRgba64 *buffer, const Operator *o, const QSpanData *data, int y, int x, int length);
typedef const QRgba32F* (QT_FASTCALL *SourceFetchProcFP)(QRgba32F *buffer, const Operator *o, const QSpanData *data, int y, int x, int length);
struct Operator
{
QPainter::CompositionMode mode;
DestFetchProc destFetch;
DestStoreProc destStore;
SourceFetchProc srcFetch;
CompositionFunctionSolid funcSolid;
CompositionFunction func;
DestFetchProc64 destFetch64;
DestStoreProc64 destStore64;
SourceFetchProc64 srcFetch64;
CompositionFunctionSolid64 funcSolid64;
CompositionFunction64 func64;
DestFetchProcFP destFetchFP;
DestStoreProcFP destStoreFP;
SourceFetchProcFP srcFetchFP;
CompositionFunctionSolidFP funcSolidFP;
CompositionFunctionFP funcFP;
union {
LinearGradientValues linear;
RadialGradientValues radial;
};
};
class QRasterPaintEngine;
struct QLinearGradientData
{
struct {
qreal x;
qreal y;
} origin;
struct {
qreal x;
qreal y;
} end;
};
struct QRadialGradientData
{
struct {
qreal x;
qreal y;
qreal radius;
} center;
struct {
qreal x;
qreal y;
qreal radius;
} focal;
};
struct QConicalGradientData
{
struct {
qreal x;
qreal y;
} center;
qreal angle;
};
struct QGradientData
{
QGradient::Spread spread;
union {
QLinearGradientData linear;
QRadialGradientData radial;
QConicalGradientData conical;
};
#define GRADIENT_STOPTABLE_SIZE 1024
#define GRADIENT_STOPTABLE_SIZE_SHIFT 10
#if QT_CONFIG(raster_64bit) || QT_CONFIG(raster_fp)
const QRgba64 *colorTable64; //[GRADIENT_STOPTABLE_SIZE];
#endif
const QRgb *colorTable32; //[GRADIENT_STOPTABLE_SIZE];
uint alphaColor : 1;
};
struct QTextureData
{
const uchar *imageData;
const uchar *scanLine(int y) const { return imageData + y*bytesPerLine; }
int width;
int height;
// clip rect
int x1;
int y1;
int x2;
int y2;
qsizetype bytesPerLine;
QImage::Format format;
const QList<QRgb> *colorTable;
bool hasAlpha;
enum Type {
Plain,
Tiled,
Pattern
};
Type type;
int const_alpha;
};
struct QSpanData
{
QSpanData() : tempImage(nullptr) {}
~QSpanData() { delete tempImage; }
QRasterBuffer *rasterBuffer;
ProcessSpans blend;
ProcessSpans unclipped_blend;
BitmapBlitFunc bitmapBlit;
AlphamapBlitFunc alphamapBlit;
AlphaRGBBlitFunc alphaRGBBlit;
RectFillFunc fillRect;
qreal m11, m12, m13, m21, m22, m23, m33, dx, dy; // inverse xform matrix
const QClipData *clip;
enum Type {
None,
Solid,
LinearGradient,
RadialGradient,
ConicalGradient,
Texture
} type : 8;
signed int txop : 8;
uint fast_matrix : 1;
bool bilinear;
QImage *tempImage;
QRgba64 solidColor;
union {
QGradientData gradient;
QTextureData texture;
};
class Pinnable {
protected:
~Pinnable() {}
}; // QSharedPointer<const void> is not supported
QSharedPointer<const Pinnable> cachedGradient;
void init(QRasterBuffer *rb, const QRasterPaintEngine *pe);
void setup(const QBrush &brush, int alpha, QPainter::CompositionMode compositionMode);
void setupMatrix(const QTransform &matrix, int bilinear);
void initTexture(const QImage *image, int alpha, QTextureData::Type = QTextureData::Plain, const QRect &sourceRect = QRect());
void adjustSpanMethods();
};
static inline uint qt_gradient_clamp(const QGradientData *data, int ipos)
{
if (ipos < 0 || ipos >= GRADIENT_STOPTABLE_SIZE) {
if (data->spread == QGradient::RepeatSpread) {
ipos = ipos % GRADIENT_STOPTABLE_SIZE;
ipos = ipos < 0 ? GRADIENT_STOPTABLE_SIZE + ipos : ipos;
} else if (data->spread == QGradient::ReflectSpread) {
const int limit = GRADIENT_STOPTABLE_SIZE * 2;
ipos = ipos % limit;
ipos = ipos < 0 ? limit + ipos : ipos;
ipos = ipos >= GRADIENT_STOPTABLE_SIZE ? limit - 1 - ipos : ipos;
} else {
if (ipos < 0)
ipos = 0;
else if (ipos >= GRADIENT_STOPTABLE_SIZE)
ipos = GRADIENT_STOPTABLE_SIZE-1;
}
}
Q_ASSERT(ipos >= 0);
Q_ASSERT(ipos < GRADIENT_STOPTABLE_SIZE);
return ipos;
}
static inline uint qt_gradient_pixel(const QGradientData *data, qreal pos)
{
int ipos = int(pos * (GRADIENT_STOPTABLE_SIZE - 1) + qreal(0.5));
return data->colorTable32[qt_gradient_clamp(data, ipos)];
}
#if QT_CONFIG(raster_64bit)
static inline const QRgba64& qt_gradient_pixel64(const QGradientData *data, qreal pos)
{
int ipos = int(pos * (GRADIENT_STOPTABLE_SIZE - 1) + qreal(0.5));
return data->colorTable64[qt_gradient_clamp(data, ipos)];
}
#endif
static inline qreal qRadialDeterminant(qreal a, qreal b, qreal c)
{
return (b * b) - (4 * a * c);
}
template <class RadialFetchFunc, typename BlendType> static
const BlendType * QT_FASTCALL qt_fetch_radial_gradient_template(BlendType *buffer, const Operator *op,
const QSpanData *data, int y, int x, int length)
{
// avoid division by zero
if (qFuzzyIsNull(op->radial.a)) {
RadialFetchFunc::memfill(buffer, RadialFetchFunc::null(), length);
return buffer;
}
const BlendType *b = buffer;
qreal rx = data->m21 * (y + qreal(0.5))
+ data->dx + data->m11 * (x + qreal(0.5));
qreal ry = data->m22 * (y + qreal(0.5))
+ data->dy + data->m12 * (x + qreal(0.5));
bool affine = !data->m13 && !data->m23;
BlendType *end = buffer + length;
if (affine) {
rx -= data->gradient.radial.focal.x;
ry -= data->gradient.radial.focal.y;
qreal inv_a = 1 / qreal(2 * op->radial.a);
const qreal delta_rx = data->m11;
const qreal delta_ry = data->m12;
qreal b = 2*(op->radial.dr*data->gradient.radial.focal.radius + rx * op->radial.dx + ry * op->radial.dy);
qreal delta_b = 2*(delta_rx * op->radial.dx + delta_ry * op->radial.dy);
const qreal b_delta_b = 2 * b * delta_b;
const qreal delta_b_delta_b = 2 * delta_b * delta_b;
const qreal bb = b * b;
const qreal delta_bb = delta_b * delta_b;
b *= inv_a;
delta_b *= inv_a;
const qreal rxrxryry = rx * rx + ry * ry;
const qreal delta_rxrxryry = delta_rx * delta_rx + delta_ry * delta_ry;
const qreal rx_plus_ry = 2*(rx * delta_rx + ry * delta_ry);
const qreal delta_rx_plus_ry = 2 * delta_rxrxryry;
inv_a *= inv_a;
qreal det = (bb - 4 * op->radial.a * (op->radial.sqrfr - rxrxryry)) * inv_a;
qreal delta_det = (b_delta_b + delta_bb + 4 * op->radial.a * (rx_plus_ry + delta_rxrxryry)) * inv_a;
const qreal delta_delta_det = (delta_b_delta_b + 4 * op->radial.a * delta_rx_plus_ry) * inv_a;
RadialFetchFunc::fetch(buffer, end, op, data, det, delta_det, delta_delta_det, b, delta_b);
} else {
qreal rw = data->m23 * (y + qreal(0.5))
+ data->m33 + data->m13 * (x + qreal(0.5));
while (buffer < end) {
if (rw == 0) {
*buffer = RadialFetchFunc::null();
} else {
qreal invRw = 1 / rw;
qreal gx = rx * invRw - data->gradient.radial.focal.x;
qreal gy = ry * invRw - data->gradient.radial.focal.y;
qreal b = 2*(op->radial.dr*data->gradient.radial.focal.radius + gx*op->radial.dx + gy*op->radial.dy);
qreal det = qRadialDeterminant(op->radial.a, b, op->radial.sqrfr - (gx*gx + gy*gy));
BlendType result = RadialFetchFunc::null();
if (det >= 0) {
qreal detSqrt = qSqrt(det);
qreal s0 = (-b - detSqrt) * op->radial.inv2a;
qreal s1 = (-b + detSqrt) * op->radial.inv2a;
qreal s = qMax(s0, s1);
if (data->gradient.radial.focal.radius + op->radial.dr * s >= 0)
result = RadialFetchFunc::fetchSingle(data->gradient, s);
}
*buffer = result;
}
rx += data->m11;
ry += data->m12;
rw += data->m13;
++buffer;
}
}
return b;
}
template <class Simd>
class QRadialFetchSimd
{
public:
static uint null() { return 0; }
static uint fetchSingle(const QGradientData& gradient, qreal v)
{
return qt_gradient_pixel(&gradient, v);
}
static void memfill(uint *buffer, uint fill, int length)
{
qt_memfill32(buffer, fill, length);
}
static void fetch(uint *buffer, uint *end, const Operator *op, const QSpanData *data, qreal det,
qreal delta_det, qreal delta_delta_det, qreal b, qreal delta_b)
{
typename Simd::Vect_buffer_f det_vec;
typename Simd::Vect_buffer_f delta_det4_vec;
typename Simd::Vect_buffer_f b_vec;
for (int i = 0; i < 4; ++i) {
det_vec.f[i] = det;
delta_det4_vec.f[i] = 4 * delta_det;
b_vec.f[i] = b;
det += delta_det;
delta_det += delta_delta_det;
b += delta_b;
}
const typename Simd::Float32x4 v_delta_delta_det16 = Simd::v_dup(16 * delta_delta_det);
const typename Simd::Float32x4 v_delta_delta_det6 = Simd::v_dup(6 * delta_delta_det);
const typename Simd::Float32x4 v_delta_b4 = Simd::v_dup(4 * delta_b);
const typename Simd::Float32x4 v_r0 = Simd::v_dup(data->gradient.radial.focal.radius);
const typename Simd::Float32x4 v_dr = Simd::v_dup(op->radial.dr);
#if defined(__ARM_NEON__)
// NEON doesn't have SIMD sqrt, but uses rsqrt instead that can't be taken of 0.
const typename Simd::Float32x4 v_min = Simd::v_dup(std::numeric_limits<float>::epsilon());
#else
const typename Simd::Float32x4 v_min = Simd::v_dup(0.0f);
#endif
const typename Simd::Float32x4 v_max = Simd::v_dup(float(GRADIENT_STOPTABLE_SIZE-1));
const typename Simd::Float32x4 v_half = Simd::v_dup(0.5f);
const typename Simd::Int32x4 v_repeat_mask = Simd::v_dup(~(uint(0xffffff) << GRADIENT_STOPTABLE_SIZE_SHIFT));
const typename Simd::Int32x4 v_reflect_mask = Simd::v_dup(~(uint(0xffffff) << (GRADIENT_STOPTABLE_SIZE_SHIFT+1)));
const typename Simd::Int32x4 v_reflect_limit = Simd::v_dup(2 * GRADIENT_STOPTABLE_SIZE - 1);
const int extended_mask = op->radial.extended ? 0x0 : ~0x0;
#define FETCH_RADIAL_LOOP_PROLOGUE \
while (buffer < end) { \
typename Simd::Vect_buffer_i v_buffer_mask; \
v_buffer_mask.v = Simd::v_greaterOrEqual(det_vec.v, v_min); \
const typename Simd::Float32x4 v_index_local = Simd::v_sub(Simd::v_sqrt(Simd::v_max(v_min, det_vec.v)), b_vec.v); \
const typename Simd::Float32x4 v_index = Simd::v_add(Simd::v_mul(v_index_local, v_max), v_half); \
v_buffer_mask.v = Simd::v_and(v_buffer_mask.v, Simd::v_greaterOrEqual(Simd::v_add(v_r0, Simd::v_mul(v_dr, v_index_local)), v_min)); \
typename Simd::Vect_buffer_i index_vec;
#define FETCH_RADIAL_LOOP_CLAMP_REPEAT \
index_vec.v = Simd::v_and(v_repeat_mask, Simd::v_toInt(v_index));
#define FETCH_RADIAL_LOOP_CLAMP_REFLECT \
const typename Simd::Int32x4 v_index_i = Simd::v_and(v_reflect_mask, Simd::v_toInt(v_index)); \
const typename Simd::Int32x4 v_index_i_inv = Simd::v_sub(v_reflect_limit, v_index_i); \
index_vec.v = Simd::v_min_16(v_index_i, v_index_i_inv);
#define FETCH_RADIAL_LOOP_CLAMP_PAD \
index_vec.v = Simd::v_toInt(Simd::v_min(v_max, Simd::v_max(v_min, v_index)));
#define FETCH_RADIAL_LOOP_EPILOGUE \
det_vec.v = Simd::v_add(Simd::v_add(det_vec.v, delta_det4_vec.v), v_delta_delta_det6); \
delta_det4_vec.v = Simd::v_add(delta_det4_vec.v, v_delta_delta_det16); \
b_vec.v = Simd::v_add(b_vec.v, v_delta_b4); \
for (int i = 0; i < 4; ++i) \
*buffer++ = (extended_mask | v_buffer_mask.i[i]) & data->gradient.colorTable32[index_vec.i[i]]; \
}
#define FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP) \
FETCH_RADIAL_LOOP_PROLOGUE \
FETCH_RADIAL_LOOP_CLAMP \
FETCH_RADIAL_LOOP_EPILOGUE
switch (data->gradient.spread) {
case QGradient::RepeatSpread:
FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP_REPEAT)
break;
case QGradient::ReflectSpread:
FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP_REFLECT)
break;
case QGradient::PadSpread:
FETCH_RADIAL_LOOP(FETCH_RADIAL_LOOP_CLAMP_PAD)
break;
default:
Q_UNREACHABLE();
}
}
};
static inline uint INTERPOLATE_PIXEL_255(uint x, uint a, uint y, uint b) {
uint t = (x & 0xff00ff) * a + (y & 0xff00ff) * b;
t = (t + ((t >> 8) & 0xff00ff) + 0x800080) >> 8;
t &= 0xff00ff;
x = ((x >> 8) & 0xff00ff) * a + ((y >> 8) & 0xff00ff) * b;
x = (x + ((x >> 8) & 0xff00ff) + 0x800080);
x &= 0xff00ff00;
x |= t;
return x;
}
#if Q_PROCESSOR_WORDSIZE == 8 // 64-bit versions
static inline uint INTERPOLATE_PIXEL_256(uint x, uint a, uint y, uint b) {
quint64 t = (((quint64(x)) | ((quint64(x)) << 24)) & 0x00ff00ff00ff00ff) * a;
t += (((quint64(y)) | ((quint64(y)) << 24)) & 0x00ff00ff00ff00ff) * b;
t >>= 8;
t &= 0x00ff00ff00ff00ff;
return (uint(t)) | (uint(t >> 24));
}
static inline uint BYTE_MUL(uint x, uint a) {
quint64 t = (((quint64(x)) | ((quint64(x)) << 24)) & 0x00ff00ff00ff00ff) * a;
t = (t + ((t >> 8) & 0xff00ff00ff00ff) + 0x80008000800080) >> 8;
t &= 0x00ff00ff00ff00ff;
return (uint(t)) | (uint(t >> 24));
}
#else // 32-bit versions
static inline uint INTERPOLATE_PIXEL_256(uint x, uint a, uint y, uint b) {
uint t = (x & 0xff00ff) * a + (y & 0xff00ff) * b;
t >>= 8;
t &= 0xff00ff;
x = ((x >> 8) & 0xff00ff) * a + ((y >> 8) & 0xff00ff) * b;
x &= 0xff00ff00;
x |= t;
return x;
}
static inline uint BYTE_MUL(uint x, uint a) {
uint t = (x & 0xff00ff) * a;
t = (t + ((t >> 8) & 0xff00ff) + 0x800080) >> 8;
t &= 0xff00ff;
x = ((x >> 8) & 0xff00ff) * a;
x = (x + ((x >> 8) & 0xff00ff) + 0x800080);
x &= 0xff00ff00;
x |= t;
return x;
}
#endif
static inline void blend_pixel(quint32 &dst, const quint32 src)
{
if (src >= 0xff000000)
dst = src;
else if (src != 0)
dst = src + BYTE_MUL(dst, qAlpha(~src));
}
static inline void blend_pixel(quint32 &dst, const quint32 src, const int const_alpha)
{
if (const_alpha == 255)
return blend_pixel(dst, src);
if (src != 0) {
const quint32 s = BYTE_MUL(src, const_alpha);
dst = s + BYTE_MUL(dst, qAlpha(~s));
}
}
#if defined(__SSE2__)
static inline uint Q_DECL_VECTORCALL interpolate_4_pixels_sse2(__m128i vt, __m128i vb, uint distx, uint disty)
{
// First interpolate top and bottom pixels in parallel.
vt = _mm_unpacklo_epi8(vt, _mm_setzero_si128());
vb = _mm_unpacklo_epi8(vb, _mm_setzero_si128());
vt = _mm_mullo_epi16(vt, _mm_set1_epi16(256 - disty));
vb = _mm_mullo_epi16(vb, _mm_set1_epi16(disty));
__m128i vlr = _mm_add_epi16(vt, vb);
vlr = _mm_srli_epi16(vlr, 8);
// vlr now contains the result of the first two interpolate calls vlr = unpacked((xright << 64) | xleft)
// Now the last interpolate between left and right..
const __m128i vidistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(256 - distx), _MM_SHUFFLE(0, 0, 0, 0));
const __m128i vdistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(distx), _MM_SHUFFLE(0, 0, 0, 0));
const __m128i vmulx = _mm_unpacklo_epi16(vidistx, vdistx);
vlr = _mm_unpacklo_epi16(vlr, _mm_srli_si128(vlr, 8));
// vlr now contains the colors of left and right interleaved { la, ra, lr, rr, lg, rg, lb, rb }
vlr = _mm_madd_epi16(vlr, vmulx); // Multiply and horizontal add.
vlr = _mm_srli_epi32(vlr, 8);
vlr = _mm_packs_epi32(vlr, vlr);
vlr = _mm_packus_epi16(vlr, vlr);
return _mm_cvtsi128_si32(vlr);
}
static inline uint interpolate_4_pixels(uint tl, uint tr, uint bl, uint br, uint distx, uint disty)
{
__m128i vt = _mm_unpacklo_epi32(_mm_cvtsi32_si128(tl), _mm_cvtsi32_si128(tr));
__m128i vb = _mm_unpacklo_epi32(_mm_cvtsi32_si128(bl), _mm_cvtsi32_si128(br));
return interpolate_4_pixels_sse2(vt, vb, distx, disty);
}
static inline uint interpolate_4_pixels(const uint t[], const uint b[], uint distx, uint disty)
{
__m128i vt = _mm_loadl_epi64((const __m128i*)t);
__m128i vb = _mm_loadl_epi64((const __m128i*)b);
return interpolate_4_pixels_sse2(vt, vb, distx, disty);
}
static constexpr inline bool hasFastInterpolate4() { return true; }
#elif defined(__ARM_NEON__)
static inline uint interpolate_4_pixels_neon(uint32x2_t vt32, uint32x2_t vb32, uint distx, uint disty)
{
uint16x8_t vt16 = vmovl_u8(vreinterpret_u8_u32(vt32));
uint16x8_t vb16 = vmovl_u8(vreinterpret_u8_u32(vb32));
vt16 = vmulq_n_u16(vt16, 256 - disty);
vt16 = vmlaq_n_u16(vt16, vb16, disty);
vt16 = vshrq_n_u16(vt16, 8);
uint16x4_t vl16 = vget_low_u16(vt16);
uint16x4_t vr16 = vget_high_u16(vt16);
vl16 = vmul_n_u16(vl16, 256 - distx);
vl16 = vmla_n_u16(vl16, vr16, distx);
vl16 = vshr_n_u16(vl16, 8);
uint8x8_t vr = vmovn_u16(vcombine_u16(vl16, vl16));
return vget_lane_u32(vreinterpret_u32_u8(vr), 0);
}
static inline uint interpolate_4_pixels(uint tl, uint tr, uint bl, uint br, uint distx, uint disty)
{
uint32x2_t vt32 = vmov_n_u32(tl);
uint32x2_t vb32 = vmov_n_u32(bl);
vt32 = vset_lane_u32(tr, vt32, 1);
vb32 = vset_lane_u32(br, vb32, 1);
return interpolate_4_pixels_neon(vt32, vb32, distx, disty);
}
static inline uint interpolate_4_pixels(const uint t[], const uint b[], uint distx, uint disty)
{
uint32x2_t vt32 = vld1_u32(t);
uint32x2_t vb32 = vld1_u32(b);
return interpolate_4_pixels_neon(vt32, vb32, distx, disty);
}
static constexpr inline bool hasFastInterpolate4() { return true; }
#else
static inline uint interpolate_4_pixels(uint tl, uint tr, uint bl, uint br, uint distx, uint disty)
{
uint idistx = 256 - distx;
uint idisty = 256 - disty;
uint xtop = INTERPOLATE_PIXEL_256(tl, idistx, tr, distx);
uint xbot = INTERPOLATE_PIXEL_256(bl, idistx, br, distx);
return INTERPOLATE_PIXEL_256(xtop, idisty, xbot, disty);
}
static inline uint interpolate_4_pixels(const uint t[], const uint b[], uint distx, uint disty)
{
return interpolate_4_pixels(t[0], t[1], b[0], b[1], distx, disty);
}
static constexpr inline bool hasFastInterpolate4() { return false; }
#endif
static inline QRgba64 multiplyAlpha256(QRgba64 rgba64, uint alpha256)
{
return QRgba64::fromRgba64((rgba64.red() * alpha256) >> 8,
(rgba64.green() * alpha256) >> 8,
(rgba64.blue() * alpha256) >> 8,
(rgba64.alpha() * alpha256) >> 8);
}
static inline QRgba64 interpolate256(QRgba64 x, uint alpha1, QRgba64 y, uint alpha2)
{
return QRgba64::fromRgba64(multiplyAlpha256(x, alpha1) + multiplyAlpha256(y, alpha2));
}
#ifdef __SSE2__
static inline QRgba64 interpolate_4_pixels_rgb64(const QRgba64 t[], const QRgba64 b[], uint distx, uint disty)
{
__m128i vt = _mm_loadu_si128((const __m128i*)t);
if (disty) {
__m128i vb = _mm_loadu_si128((const __m128i*)b);
vt = _mm_mulhi_epu16(vt, _mm_set1_epi16(0x10000 - disty));
vb = _mm_mulhi_epu16(vb, _mm_set1_epi16(disty));
vt = _mm_add_epi16(vt, vb);
}
if (distx) {
const __m128i vdistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(distx), _MM_SHUFFLE(0, 0, 0, 0));
const __m128i vidistx = _mm_shufflelo_epi16(_mm_cvtsi32_si128(0x10000 - distx), _MM_SHUFFLE(0, 0, 0, 0));
vt = _mm_mulhi_epu16(vt, _mm_unpacklo_epi64(vidistx, vdistx));
vt = _mm_add_epi16(vt, _mm_srli_si128(vt, 8));
}
#ifdef Q_PROCESSOR_X86_64
return QRgba64::fromRgba64(_mm_cvtsi128_si64(vt));
#else
QRgba64 out;
_mm_storel_epi64((__m128i*)&out, vt);
return out;
#endif // Q_PROCESSOR_X86_64
}
#elif defined(__ARM_NEON__)
static inline QRgba64 interpolate_4_pixels_rgb64(const QRgba64 t[], const QRgba64 b[], uint distx, uint disty)
{
uint64x1x2_t vt = vld2_u64(reinterpret_cast<const uint64_t *>(t));
if (disty) {
uint64x1x2_t vb = vld2_u64(reinterpret_cast<const uint64_t *>(b));
uint32x4_t vt0 = vmull_n_u16(vreinterpret_u16_u64(vt.val[0]), 0x10000 - disty);
uint32x4_t vt1 = vmull_n_u16(vreinterpret_u16_u64(vt.val[1]), 0x10000 - disty);
vt0 = vmlal_n_u16(vt0, vreinterpret_u16_u64(vb.val[0]), disty);
vt1 = vmlal_n_u16(vt1, vreinterpret_u16_u64(vb.val[1]), disty);
vt.val[0] = vreinterpret_u64_u16(vshrn_n_u32(vt0, 16));
vt.val[1] = vreinterpret_u64_u16(vshrn_n_u32(vt1, 16));
}
if (distx) {
uint32x4_t vt0 = vmull_n_u16(vreinterpret_u16_u64(vt.val[0]), 0x10000 - distx);
vt0 = vmlal_n_u16(vt0, vreinterpret_u16_u64(vt.val[1]), distx);
vt.val[0] = vreinterpret_u64_u16(vshrn_n_u32(vt0, 16));
}
QRgba64 out;
vst1_u64(reinterpret_cast<uint64_t *>(&out), vt.val[0]);
return out;
}
#else
static inline QRgba64 interpolate_4_pixels_rgb64(const QRgba64 t[], const QRgba64 b[], uint distx, uint disty)
{
const uint dx = distx>>8;
const uint dy = disty>>8;
const uint idx = 256 - dx;
const uint idy = 256 - dy;
QRgba64 xtop = interpolate256(t[0], idx, t[1], dx);
QRgba64 xbot = interpolate256(b[0], idx, b[1], dx);
return interpolate256(xtop, idy, xbot, dy);
}
#endif // __SSE2__
#if QT_CONFIG(raster_fp)
static inline QRgba32F multiplyAlpha_rgba32f(QRgba32F c, float a)
{
return QRgba32F { c.r * a, c.g * a, c.b * a, c.a * a };
}
static inline QRgba32F interpolate_rgba32f(QRgba32F x, float alpha1, QRgba32F y, float alpha2)
{
x = multiplyAlpha_rgba32f(x, alpha1);
y = multiplyAlpha_rgba32f(y, alpha2);
return QRgba32F { x.r + y.r, x.g + y.g, x.b + y.b, x.a + y.a };
}
#ifdef __SSE2__
static inline __m128 Q_DECL_VECTORCALL interpolate_rgba32f(__m128 x, __m128 alpha1, __m128 y, __m128 alpha2)
{
return _mm_add_ps(_mm_mul_ps(x, alpha1), _mm_mul_ps(y, alpha2));
}
#endif
static inline QRgba32F interpolate_4_pixels_rgba32f(const QRgba32F t[], const QRgba32F b[], uint distx, uint disty)
{
constexpr float f = 1.0f / 65536.0f;
const float dx = distx * f;
const float dy = disty * f;
const float idx = 1.0f - dx;
const float idy = 1.0f - dy;
#ifdef __SSE2__
const __m128 vtl = _mm_load_ps((const float *)&t[0]);
const __m128 vtr = _mm_load_ps((const float *)&t[1]);
const __m128 vbl = _mm_load_ps((const float *)&b[0]);
const __m128 vbr = _mm_load_ps((const float *)&b[1]);
const __m128 vdx = _mm_set1_ps(dx);
const __m128 vidx = _mm_set1_ps(idx);
__m128 vt = interpolate_rgba32f(vtl, vidx, vtr, vdx);
__m128 vb = interpolate_rgba32f(vbl, vidx, vbr, vdx);
const __m128 vdy = _mm_set1_ps(dy);
const __m128 vidy = _mm_set1_ps(idy);
vt = interpolate_rgba32f(vt, vidy, vb, vdy);
QRgba32F res;
_mm_store_ps((float*)&res, vt);
return res;
#else
QRgba32F xtop = interpolate_rgba32f(t[0], idx, t[1], dx);
QRgba32F xbot = interpolate_rgba32f(b[0], idx, b[1], dx);
xtop = interpolate_rgba32f(xtop, idy, xbot, dy);
return xtop;
#endif
}
#endif // QT_CONFIG(raster_fp)
static inline uint BYTE_MUL_RGB16(uint x, uint a) {
a += 1;
uint t = (((x & 0x07e0)*a) >> 8) & 0x07e0;
t |= (((x & 0xf81f)*(a>>2)) >> 6) & 0xf81f;
return t;
}
static inline uint BYTE_MUL_RGB16_32(uint x, uint a) {
uint t = (((x & 0xf81f07e0) >> 5)*a) & 0xf81f07e0;
t |= (((x & 0x07e0f81f)*a) >> 5) & 0x07e0f81f;
return t;
}
// qt_div_255 is a fast rounded division by 255 using an approximation that is accurate for all positive 16-bit integers
static constexpr inline int qt_div_255(int x) { return (x + (x>>8) + 0x80) >> 8; }
static constexpr inline uint qt_div_257_floor(uint x) { return (x - (x >> 8)) >> 8; }
static constexpr inline uint qt_div_257(uint x) { return qt_div_257_floor(x + 128); }
static constexpr inline uint qt_div_65535(uint x) { return (x + (x>>16) + 0x8000U) >> 16; }
template <class T> inline void qt_memfill_template(T *dest, T color, qsizetype count)
{
if (!count)
return;
qsizetype n = (count + 7) / 8;
switch (count & 0x07)
{
case 0: do { *dest++ = color; Q_FALLTHROUGH();
case 7: *dest++ = color; Q_FALLTHROUGH();
case 6: *dest++ = color; Q_FALLTHROUGH();
case 5: *dest++ = color; Q_FALLTHROUGH();
case 4: *dest++ = color; Q_FALLTHROUGH();
case 3: *dest++ = color; Q_FALLTHROUGH();
case 2: *dest++ = color; Q_FALLTHROUGH();
case 1: *dest++ = color;
} while (--n > 0);
}
}
template <class T> inline void qt_memfill(T *dest, T value, qsizetype count)
{
qt_memfill_template(dest, value, count);
}
template<> inline void qt_memfill(quint64 *dest, quint64 color, qsizetype count)
{
qt_memfill64(dest, color, count);
}
template<> inline void qt_memfill(quint32 *dest, quint32 color, qsizetype count)
{
qt_memfill32(dest, color, count);
}
template<> inline void qt_memfill(quint24 *dest, quint24 color, qsizetype count)
{
qt_memfill24(dest, color, count);
}
template<> inline void qt_memfill(quint16 *dest, quint16 color, qsizetype count)
{
qt_memfill16(dest, color, count);
}
template<> inline void qt_memfill(quint8 *dest, quint8 color, qsizetype count)
{
memset(dest, color, count);
}
template <class T> static
inline void qt_rectfill(T *dest, T value,
int x, int y, int width, int height, qsizetype stride)
{
char *d = reinterpret_cast<char*>(dest + x) + y * stride;
if (uint(stride) == (width * sizeof(T))) {
qt_memfill(reinterpret_cast<T*>(d), value, qsizetype(width) * height);
} else {
for (int j = 0; j < height; ++j) {
dest = reinterpret_cast<T*>(d);
qt_memfill(dest, value, width);
d += stride;
}
}
}
inline ushort qConvertRgb32To16(uint c)
{
return (((c) >> 3) & 0x001f)
| (((c) >> 5) & 0x07e0)
| (((c) >> 8) & 0xf800);
}
inline QRgb qConvertRgb16To32(uint c)
{
return 0xff000000
| ((((c) << 3) & 0xf8) | (((c) >> 2) & 0x7))
| ((((c) << 5) & 0xfc00) | (((c) >> 1) & 0x300))
| ((((c) << 8) & 0xf80000) | (((c) << 3) & 0x70000));
}
const uint qt_bayer_matrix[16][16] = {
{ 0x1, 0xc0, 0x30, 0xf0, 0xc, 0xcc, 0x3c, 0xfc,
0x3, 0xc3, 0x33, 0xf3, 0xf, 0xcf, 0x3f, 0xff},
{ 0x80, 0x40, 0xb0, 0x70, 0x8c, 0x4c, 0xbc, 0x7c,
0x83, 0x43, 0xb3, 0x73, 0x8f, 0x4f, 0xbf, 0x7f},
{ 0x20, 0xe0, 0x10, 0xd0, 0x2c, 0xec, 0x1c, 0xdc,
0x23, 0xe3, 0x13, 0xd3, 0x2f, 0xef, 0x1f, 0xdf},
{ 0xa0, 0x60, 0x90, 0x50, 0xac, 0x6c, 0x9c, 0x5c,
0xa3, 0x63, 0x93, 0x53, 0xaf, 0x6f, 0x9f, 0x5f},
{ 0x8, 0xc8, 0x38, 0xf8, 0x4, 0xc4, 0x34, 0xf4,
0xb, 0xcb, 0x3b, 0xfb, 0x7, 0xc7, 0x37, 0xf7},
{ 0x88, 0x48, 0xb8, 0x78, 0x84, 0x44, 0xb4, 0x74,
0x8b, 0x4b, 0xbb, 0x7b, 0x87, 0x47, 0xb7, 0x77},
{ 0x28, 0xe8, 0x18, 0xd8, 0x24, 0xe4, 0x14, 0xd4,
0x2b, 0xeb, 0x1b, 0xdb, 0x27, 0xe7, 0x17, 0xd7},
{ 0xa8, 0x68, 0x98, 0x58, 0xa4, 0x64, 0x94, 0x54,
0xab, 0x6b, 0x9b, 0x5b, 0xa7, 0x67, 0x97, 0x57},
{ 0x2, 0xc2, 0x32, 0xf2, 0xe, 0xce, 0x3e, 0xfe,
0x1, 0xc1, 0x31, 0xf1, 0xd, 0xcd, 0x3d, 0xfd},
{ 0x82, 0x42, 0xb2, 0x72, 0x8e, 0x4e, 0xbe, 0x7e,
0x81, 0x41, 0xb1, 0x71, 0x8d, 0x4d, 0xbd, 0x7d},
{ 0x22, 0xe2, 0x12, 0xd2, 0x2e, 0xee, 0x1e, 0xde,
0x21, 0xe1, 0x11, 0xd1, 0x2d, 0xed, 0x1d, 0xdd},
{ 0xa2, 0x62, 0x92, 0x52, 0xae, 0x6e, 0x9e, 0x5e,
0xa1, 0x61, 0x91, 0x51, 0xad, 0x6d, 0x9d, 0x5d},
{ 0xa, 0xca, 0x3a, 0xfa, 0x6, 0xc6, 0x36, 0xf6,
0x9, 0xc9, 0x39, 0xf9, 0x5, 0xc5, 0x35, 0xf5},
{ 0x8a, 0x4a, 0xba, 0x7a, 0x86, 0x46, 0xb6, 0x76,
0x89, 0x49, 0xb9, 0x79, 0x85, 0x45, 0xb5, 0x75},
{ 0x2a, 0xea, 0x1a, 0xda, 0x26, 0xe6, 0x16, 0xd6,
0x29, 0xe9, 0x19, 0xd9, 0x25, 0xe5, 0x15, 0xd5},
{ 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56,
0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55}
};
#define ARGB_COMBINE_ALPHA(argb, alpha) \
((((argb >> 24) * alpha) >> 8) << 24) | (argb & 0x00ffffff)
#if Q_PROCESSOR_WORDSIZE == 8 // 64-bit versions
#define AMIX(mask) (qMin(((quint64(s)&mask) + (quint64(d)&mask)), quint64(mask)))
#define MIX(mask) (qMin(((quint64(s)&mask) + (quint64(d)&mask)), quint64(mask)))
#else // 32 bits
// The mask for alpha can overflow over 32 bits
#define AMIX(mask) quint32(qMin(((quint64(s)&mask) + (quint64(d)&mask)), quint64(mask)))
#define MIX(mask) (qMin(((quint32(s)&mask) + (quint32(d)&mask)), quint32(mask)))
#endif
inline uint comp_func_Plus_one_pixel_const_alpha(uint d, const uint s, const uint const_alpha, const uint one_minus_const_alpha)
{
const uint result = uint(AMIX(AMASK) | MIX(RMASK) | MIX(GMASK) | MIX(BMASK));
return INTERPOLATE_PIXEL_255(result, const_alpha, d, one_minus_const_alpha);
}
inline uint comp_func_Plus_one_pixel(uint d, const uint s)
{
const uint result = uint(AMIX(AMASK) | MIX(RMASK) | MIX(GMASK) | MIX(BMASK));
return result;
}
#undef MIX
#undef AMIX
// must be multiple of 4 for easier SIMD implementations
static constexpr int BufferSize = 2048;
// A buffer of intermediate results used by simple bilinear scaling.
struct IntermediateBuffer
{
// The idea is first to do the interpolation between the row s1 and the row s2
// into this intermediate buffer, then later interpolate between two pixel of this buffer.
//
// buffer_rb is a buffer of red-blue component of the pixel, in the form 0x00RR00BB
// buffer_ag is the alpha-green component of the pixel, in the form 0x00AA00GG
// +1 for the last pixel to interpolate with, and +1 for rounding errors.
quint32 buffer_rb[BufferSize+2];
quint32 buffer_ag[BufferSize+2];
};
QT_END_NAMESPACE
#endif // QDRAWHELPER_P_H
|