summaryrefslogtreecommitdiff
path: root/src/3rdparty/assimp/code/FBXConverter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/FBXConverter.cpp')
-rw-r--r--src/3rdparty/assimp/code/FBXConverter.cpp2933
1 files changed, 2933 insertions, 0 deletions
diff --git a/src/3rdparty/assimp/code/FBXConverter.cpp b/src/3rdparty/assimp/code/FBXConverter.cpp
new file mode 100644
index 000000000..f623c3ae7
--- /dev/null
+++ b/src/3rdparty/assimp/code/FBXConverter.cpp
@@ -0,0 +1,2933 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2012, assimp team
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file FBXConverter.cpp
+ * @brief Implementation of the FBX DOM -> aiScene converter
+ */
+#include "AssimpPCH.h"
+
+#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
+
+#include <iterator>
+#include <sstream>
+#include <boost/tuple/tuple.hpp>
+
+#include "FBXParser.h"
+#include "FBXConverter.h"
+#include "FBXDocument.h"
+#include "FBXUtil.h"
+#include "FBXProperties.h"
+#include "FBXImporter.h"
+
+namespace Assimp {
+namespace FBX {
+
+ using namespace Util;
+
+
+#define MAGIC_NODE_TAG "_$AssimpFbx$"
+
+#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000L
+
+ // XXX vc9's debugger won't step into anonymous namespaces
+//namespace {
+
+/** Dummy class to encapsulate the conversion process */
+class Converter
+{
+public:
+
+ /** the different parts that make up the final local transformation of a fbx node */
+ enum TransformationComp
+ {
+ TransformationComp_Translation = 0,
+ TransformationComp_RotationOffset,
+ TransformationComp_RotationPivot,
+ TransformationComp_PreRotation,
+ TransformationComp_Rotation,
+ TransformationComp_PostRotation,
+ TransformationComp_RotationPivotInverse,
+ TransformationComp_ScalingOffset,
+ TransformationComp_ScalingPivot,
+ TransformationComp_Scaling,
+ TransformationComp_ScalingPivotInverse,
+ TransformationComp_GeometricTranslation,
+ TransformationComp_GeometricRotation,
+ TransformationComp_GeometricScaling,
+
+ TransformationComp_MAXIMUM
+ };
+
+public:
+
+ Converter(aiScene* out, const Document& doc)
+ : defaultMaterialIndex()
+ , out(out)
+ , doc(doc)
+ {
+ // animations need to be converted first since this will
+ // populate the node_anim_chain_bits map, which is needed
+ // to determine which nodes need to be generated.
+ ConvertAnimations();
+ ConvertRootNode();
+
+ if(doc.Settings().readAllMaterials) {
+ // unfortunately this means we have to evaluate all objects
+ BOOST_FOREACH(const ObjectMap::value_type& v,doc.Objects()) {
+
+ const Object* ob = v.second->Get();
+ if(!ob) {
+ continue;
+ }
+
+ const Material* mat = dynamic_cast<const Material*>(ob);
+ if(mat) {
+
+ if (materials_converted.find(mat) == materials_converted.end()) {
+ ConvertMaterial(*mat);
+ }
+ }
+ }
+ }
+
+ TransferDataToScene();
+
+ // if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE
+ // to make sure the scene passes assimp's validation. FBX files
+ // need not contain geometry (i.e. camera animations, raw armatures).
+ if (out->mNumMeshes == 0) {
+ out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
+ }
+ }
+
+
+ ~Converter()
+ {
+ std::for_each(meshes.begin(),meshes.end(),Util::delete_fun<aiMesh>());
+ std::for_each(materials.begin(),materials.end(),Util::delete_fun<aiMaterial>());
+ std::for_each(animations.begin(),animations.end(),Util::delete_fun<aiAnimation>());
+ std::for_each(lights.begin(),lights.end(),Util::delete_fun<aiLight>());
+ std::for_each(cameras.begin(),cameras.end(),Util::delete_fun<aiCamera>());
+ }
+
+
+private:
+
+ // ------------------------------------------------------------------------------------------------
+ // find scene root and trigger recursive scene conversion
+ void ConvertRootNode()
+ {
+ out->mRootNode = new aiNode();
+ out->mRootNode->mName.Set("RootNode");
+
+ // root has ID 0
+ ConvertNodes(0L, *out->mRootNode);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // collect and assign child nodes
+ void ConvertNodes(uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform = aiMatrix4x4())
+ {
+ const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced(id, "Model");
+
+ std::vector<aiNode*> nodes;
+ nodes.reserve(conns.size());
+
+ std::vector<aiNode*> nodes_chain;
+
+ try {
+ BOOST_FOREACH(const Connection* con, conns) {
+
+ // ignore object-property links
+ if(con->PropertyName().length()) {
+ continue;
+ }
+
+ const Object* const object = con->SourceObject();
+ if(!object) {
+ FBXImporter::LogWarn("failed to convert source object for Model link");
+ continue;
+ }
+
+ const Model* const model = dynamic_cast<const Model*>(object);
+
+ if(model) {
+ nodes_chain.clear();
+
+ aiMatrix4x4 new_abs_transform = parent_transform;
+
+ // even though there is only a single input node, the design of
+ // assimp (or rather: the complicated transformation chain that
+ // is employed by fbx) means that we may need multiple aiNode's
+ // to represent a fbx node's transformation.
+ GenerateTransformationNodeChain(*model,nodes_chain);
+
+ ai_assert(nodes_chain.size());
+
+ const std::string& original_name = FixNodeName(model->Name());
+
+ // check if any of the nodes in the chain has the name the fbx node
+ // is supposed to have. If there is none, add another node to
+ // preserve the name - people might have scripts etc. that rely
+ // on specific node names.
+ aiNode* name_carrier = NULL;
+ BOOST_FOREACH(aiNode* prenode, nodes_chain) {
+ if ( !strcmp(prenode->mName.C_Str(), original_name.c_str()) ) {
+ name_carrier = prenode;
+ break;
+ }
+ }
+
+ if(!name_carrier) {
+ nodes_chain.push_back(new aiNode(original_name));
+ name_carrier = nodes_chain.back();
+ }
+
+ //setup metadata on newest node
+ SetupNodeMetadata(*model, *nodes_chain.back());
+
+ // link all nodes in a row
+ aiNode* last_parent = &parent;
+ BOOST_FOREACH(aiNode* prenode, nodes_chain) {
+ ai_assert(prenode);
+
+ if(last_parent != &parent) {
+ last_parent->mNumChildren = 1;
+ last_parent->mChildren = new aiNode*[1];
+ last_parent->mChildren[0] = prenode;
+ }
+
+ prenode->mParent = last_parent;
+ last_parent = prenode;
+
+ new_abs_transform *= prenode->mTransformation;
+ }
+
+ // attach geometry
+ ConvertModel(*model, *nodes_chain.back(), new_abs_transform);
+
+ // attach sub-nodes
+ ConvertNodes(model->ID(), *nodes_chain.back(), new_abs_transform);
+
+ if(doc.Settings().readLights) {
+ ConvertLights(*model);
+ }
+
+ if(doc.Settings().readCameras) {
+ ConvertCameras(*model);
+ }
+
+ nodes.push_back(nodes_chain.front());
+ nodes_chain.clear();
+ }
+ }
+
+ if(nodes.size()) {
+ parent.mChildren = new aiNode*[nodes.size()]();
+ parent.mNumChildren = static_cast<unsigned int>(nodes.size());
+
+ std::swap_ranges(nodes.begin(),nodes.end(),parent.mChildren);
+ }
+ }
+ catch(std::exception&) {
+ Util::delete_fun<aiNode> deleter;
+ std::for_each(nodes.begin(),nodes.end(),deleter);
+ std::for_each(nodes_chain.begin(),nodes_chain.end(),deleter);
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertLights(const Model& model)
+ {
+ const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes();
+ BOOST_FOREACH(const NodeAttribute* attr, node_attrs) {
+ const Light* const light = dynamic_cast<const Light*>(attr);
+ if(light) {
+ ConvertLight(model, *light);
+ }
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertCameras(const Model& model)
+ {
+ const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes();
+ BOOST_FOREACH(const NodeAttribute* attr, node_attrs) {
+ const Camera* const cam = dynamic_cast<const Camera*>(attr);
+ if(cam) {
+ ConvertCamera(model, *cam);
+ }
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertLight(const Model& model, const Light& light)
+ {
+ lights.push_back(new aiLight());
+ aiLight* const out_light = lights.back();
+
+ out_light->mName.Set(FixNodeName(model.Name()));
+
+ const float intensity = light.Intensity();
+ const aiVector3D& col = light.Color();
+
+ out_light->mColorDiffuse = aiColor3D(col.x,col.y,col.z);
+ out_light->mColorDiffuse.r *= intensity;
+ out_light->mColorDiffuse.g *= intensity;
+ out_light->mColorDiffuse.b *= intensity;
+
+ out_light->mColorSpecular = out_light->mColorDiffuse;
+
+ switch(light.LightType())
+ {
+ case Light::Type_Point:
+ out_light->mType = aiLightSource_POINT;
+ break;
+
+ case Light::Type_Directional:
+ out_light->mType = aiLightSource_DIRECTIONAL;
+ break;
+
+ case Light::Type_Spot:
+ out_light->mType = aiLightSource_SPOT;
+ out_light->mAngleOuterCone = AI_DEG_TO_RAD(light.OuterAngle());
+ out_light->mAngleInnerCone = AI_DEG_TO_RAD(light.InnerAngle());
+ break;
+
+ case Light::Type_Area:
+ FBXImporter::LogWarn("cannot represent area light, set to UNDEFINED");
+ out_light->mType = aiLightSource_UNDEFINED;
+ break;
+
+ case Light::Type_Volume:
+ FBXImporter::LogWarn("cannot represent volume light, set to UNDEFINED");
+ out_light->mType = aiLightSource_UNDEFINED;
+ break;
+ default:
+ ai_assert(false);
+ }
+
+ // XXX: how to best convert the near and far decay ranges?
+ switch(light.DecayType())
+ {
+ case Light::Decay_None:
+ out_light->mAttenuationConstant = 1.0f;
+ break;
+ case Light::Decay_Linear:
+ out_light->mAttenuationLinear = 1.0f;
+ break;
+ case Light::Decay_Quadratic:
+ out_light->mAttenuationQuadratic = 1.0f;
+ break;
+ case Light::Decay_Cubic:
+ FBXImporter::LogWarn("cannot represent cubic attenuation, set to Quadratic");
+ out_light->mAttenuationQuadratic = 1.0f;
+ break;
+ default:
+ ai_assert(false);
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertCamera(const Model& model, const Camera& cam)
+ {
+ cameras.push_back(new aiCamera());
+ aiCamera* const out_camera = cameras.back();
+
+ out_camera->mName.Set(FixNodeName(model.Name()));
+
+ out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight();
+ out_camera->mPosition = cam.Position();
+ out_camera->mLookAt = cam.InterestPosition() - out_camera->mPosition;
+
+ // BUG HERE cam.FieldOfView() returns 1.0f every time. 1.0f is default value.
+ out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // this returns unified names usable within assimp identifiers (i.e. no space characters -
+ // while these would be allowed, they are a potential trouble spot so better not use them).
+ const char* NameTransformationComp(TransformationComp comp)
+ {
+ switch(comp)
+ {
+ case TransformationComp_Translation:
+ return "Translation";
+ case TransformationComp_RotationOffset:
+ return "RotationOffset";
+ case TransformationComp_RotationPivot:
+ return "RotationPivot";
+ case TransformationComp_PreRotation:
+ return "PreRotation";
+ case TransformationComp_Rotation:
+ return "Rotation";
+ case TransformationComp_PostRotation:
+ return "PostRotation";
+ case TransformationComp_RotationPivotInverse:
+ return "RotationPivotInverse";
+ case TransformationComp_ScalingOffset:
+ return "ScalingOffset";
+ case TransformationComp_ScalingPivot:
+ return "ScalingPivot";
+ case TransformationComp_Scaling:
+ return "Scaling";
+ case TransformationComp_ScalingPivotInverse:
+ return "ScalingPivotInverse";
+ case TransformationComp_GeometricScaling:
+ return "GeometricScaling";
+ case TransformationComp_GeometricRotation:
+ return "GeometricRotation";
+ case TransformationComp_GeometricTranslation:
+ return "GeometricTranslation";
+ case TransformationComp_MAXIMUM: // this is to silence compiler warnings
+ break;
+ }
+
+ ai_assert(false);
+ return NULL;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // note: this returns the REAL fbx property names
+ const char* NameTransformationCompProperty(TransformationComp comp)
+ {
+ switch(comp)
+ {
+ case TransformationComp_Translation:
+ return "Lcl Translation";
+ case TransformationComp_RotationOffset:
+ return "RotationOffset";
+ case TransformationComp_RotationPivot:
+ return "RotationPivot";
+ case TransformationComp_PreRotation:
+ return "PreRotation";
+ case TransformationComp_Rotation:
+ return "Lcl Rotation";
+ case TransformationComp_PostRotation:
+ return "PostRotation";
+ case TransformationComp_RotationPivotInverse:
+ return "RotationPivotInverse";
+ case TransformationComp_ScalingOffset:
+ return "ScalingOffset";
+ case TransformationComp_ScalingPivot:
+ return "ScalingPivot";
+ case TransformationComp_Scaling:
+ return "Lcl Scaling";
+ case TransformationComp_ScalingPivotInverse:
+ return "ScalingPivotInverse";
+ case TransformationComp_GeometricScaling:
+ return "GeometricScaling";
+ case TransformationComp_GeometricRotation:
+ return "GeometricRotation";
+ case TransformationComp_GeometricTranslation:
+ return "GeometricTranslation";
+ case TransformationComp_MAXIMUM: // this is to silence compiler warnings
+ break;
+ }
+
+ ai_assert(false);
+ return NULL;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ aiVector3D TransformationCompDefaultValue(TransformationComp comp)
+ {
+ // XXX a neat way to solve the never-ending special cases for scaling
+ // would be to do everything in log space!
+ return comp == TransformationComp_Scaling ? aiVector3D(1.f,1.f,1.f) : aiVector3D();
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void GetRotationMatrix(Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out)
+ {
+ if(mode == Model::RotOrder_SphericXYZ) {
+ FBXImporter::LogError("Unsupported RotationMode: SphericXYZ");
+ out = aiMatrix4x4();
+ return;
+ }
+
+ const float angle_epsilon = 1e-6f;
+
+ out = aiMatrix4x4();
+
+ bool is_id[3] = { true, true, true };
+
+ aiMatrix4x4 temp[3];
+ if(fabs(rotation.z) > angle_epsilon) {
+ aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z),temp[2]);
+ is_id[2] = false;
+ }
+ if(fabs(rotation.y) > angle_epsilon) {
+ aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y),temp[1]);
+ is_id[1] = false;
+ }
+ if(fabs(rotation.x) > angle_epsilon) {
+ aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x),temp[0]);
+ is_id[0] = false;
+ }
+
+ int order[3] = {-1, -1, -1};
+
+ // note: rotation order is inverted since we're left multiplying as is usual in assimp
+ switch(mode)
+ {
+ case Model::RotOrder_EulerXYZ:
+ order[0] = 2;
+ order[1] = 1;
+ order[2] = 0;
+ break;
+
+ case Model::RotOrder_EulerXZY:
+ order[0] = 1;
+ order[1] = 2;
+ order[2] = 0;
+ break;
+
+ case Model::RotOrder_EulerYZX:
+ order[0] = 0;
+ order[1] = 2;
+ order[2] = 1;
+ break;
+
+ case Model::RotOrder_EulerYXZ:
+ order[0] = 2;
+ order[1] = 0;
+ order[2] = 1;
+ break;
+
+ case Model::RotOrder_EulerZXY:
+ order[0] = 1;
+ order[1] = 0;
+ order[2] = 2;
+ break;
+
+ case Model::RotOrder_EulerZYX:
+ order[0] = 0;
+ order[1] = 1;
+ order[2] = 2;
+ break;
+
+ default:
+ ai_assert(false);
+ }
+
+ ai_assert((order[0] >= 0) && (order[0] <= 2));
+ ai_assert((order[1] >= 0) && (order[1] <= 2));
+ ai_assert((order[2] >= 0) && (order[2] <= 2));
+
+ if(!is_id[order[0]]) {
+ out = temp[order[0]];
+ }
+
+ if(!is_id[order[1]]) {
+ out = out * temp[order[1]];
+ }
+
+ if(!is_id[order[2]]) {
+ out = out * temp[order[2]];
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ /** checks if a node has more than just scaling, rotation and translation components */
+ bool NeedsComplexTransformationChain(const Model& model)
+ {
+ const PropertyTable& props = model.Props();
+ bool ok;
+
+ const float zero_epsilon = 1e-6f;
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ if( comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
+ comp == TransformationComp_GeometricScaling || comp == TransformationComp_GeometricRotation || comp == TransformationComp_GeometricTranslation ) {
+ continue;
+ }
+
+ const aiVector3D& v = PropertyGet<aiVector3D>(props,NameTransformationCompProperty(comp),ok);
+ if(ok && v.SquareLength() > zero_epsilon) {
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // note: name must be a FixNodeName() result
+ std::string NameTransformationChainNode(const std::string& name, TransformationComp comp)
+ {
+ return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ /** note: memory for output_nodes will be managed by the caller */
+ void GenerateTransformationNodeChain(const Model& model,
+ std::vector<aiNode*>& output_nodes)
+ {
+ const PropertyTable& props = model.Props();
+ const Model::RotOrder rot = model.RotationOrder();
+
+ bool ok;
+
+ aiMatrix4x4 chain[TransformationComp_MAXIMUM];
+ std::fill_n(chain, static_cast<unsigned int>(TransformationComp_MAXIMUM), aiMatrix4x4());
+
+ // generate transformation matrices for all the different transformation components
+ const float zero_epsilon = 1e-6f;
+ bool is_complex = false;
+
+ const aiVector3D& PreRotation = PropertyGet<aiVector3D>(props,"PreRotation",ok);
+ if(ok && PreRotation.SquareLength() > zero_epsilon) {
+ is_complex = true;
+
+ GetRotationMatrix(rot, PreRotation, chain[TransformationComp_PreRotation]);
+ }
+
+ const aiVector3D& PostRotation = PropertyGet<aiVector3D>(props,"PostRotation",ok);
+ if(ok && PostRotation.SquareLength() > zero_epsilon) {
+ is_complex = true;
+
+ GetRotationMatrix(rot, PostRotation, chain[TransformationComp_PostRotation]);
+ }
+
+ const aiVector3D& RotationPivot = PropertyGet<aiVector3D>(props,"RotationPivot",ok);
+ if(ok && RotationPivot.SquareLength() > zero_epsilon) {
+ is_complex = true;
+
+ aiMatrix4x4::Translation(RotationPivot,chain[TransformationComp_RotationPivot]);
+ aiMatrix4x4::Translation(-RotationPivot,chain[TransformationComp_RotationPivotInverse]);
+ }
+
+ const aiVector3D& RotationOffset = PropertyGet<aiVector3D>(props,"RotationOffset",ok);
+ if(ok && RotationOffset.SquareLength() > zero_epsilon) {
+ is_complex = true;
+
+ aiMatrix4x4::Translation(RotationOffset,chain[TransformationComp_RotationOffset]);
+ }
+
+ const aiVector3D& ScalingOffset = PropertyGet<aiVector3D>(props,"ScalingOffset",ok);
+ if(ok && ScalingOffset.SquareLength() > zero_epsilon) {
+ is_complex = true;
+
+ aiMatrix4x4::Translation(ScalingOffset,chain[TransformationComp_ScalingOffset]);
+ }
+
+ const aiVector3D& ScalingPivot = PropertyGet<aiVector3D>(props,"ScalingPivot",ok);
+ if(ok && ScalingPivot.SquareLength() > zero_epsilon) {
+ is_complex = true;
+
+ aiMatrix4x4::Translation(ScalingPivot,chain[TransformationComp_ScalingPivot]);
+ aiMatrix4x4::Translation(-ScalingPivot,chain[TransformationComp_ScalingPivotInverse]);
+ }
+
+ const aiVector3D& Translation = PropertyGet<aiVector3D>(props,"Lcl Translation",ok);
+ if(ok && Translation.SquareLength() > zero_epsilon) {
+ aiMatrix4x4::Translation(Translation,chain[TransformationComp_Translation]);
+ }
+
+ const aiVector3D& Scaling = PropertyGet<aiVector3D>(props,"Lcl Scaling",ok);
+ if(ok && fabs(Scaling.SquareLength()-1.0f) > zero_epsilon) {
+ aiMatrix4x4::Scaling(Scaling,chain[TransformationComp_Scaling]);
+ }
+
+ const aiVector3D& Rotation = PropertyGet<aiVector3D>(props,"Lcl Rotation",ok);
+ if(ok && Rotation.SquareLength() > zero_epsilon) {
+ GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]);
+ }
+
+ const aiVector3D& GeometricScaling = PropertyGet<aiVector3D>(props, "GeometricScaling", ok);
+ if (ok && fabs(GeometricScaling.SquareLength() - 1.0f) > zero_epsilon) {
+ aiMatrix4x4::Scaling(GeometricScaling, chain[TransformationComp_GeometricScaling]);
+ }
+
+ const aiVector3D& GeometricRotation = PropertyGet<aiVector3D>(props, "GeometricRotation", ok);
+ if (ok && GeometricRotation.SquareLength() > zero_epsilon) {
+ GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotation]);
+ }
+
+ const aiVector3D& GeometricTranslation = PropertyGet<aiVector3D>(props, "GeometricTranslation", ok);
+ if (ok && GeometricTranslation.SquareLength() > zero_epsilon){
+ aiMatrix4x4::Translation(GeometricTranslation, chain[TransformationComp_GeometricTranslation]);
+ }
+
+ // is_complex needs to be consistent with NeedsComplexTransformationChain()
+ // or the interplay between this code and the animation converter would
+ // not be guaranteed.
+ ai_assert(NeedsComplexTransformationChain(model) == is_complex);
+
+ const std::string& name = FixNodeName(model.Name());
+
+ // now, if we have more than just Translation, Scaling and Rotation,
+ // we need to generate a full node chain to accommodate for assimp's
+ // lack to express pivots and offsets.
+ if(is_complex && doc.Settings().preservePivots) {
+ FBXImporter::LogInfo("generating full transformation chain for node: " + name);
+
+ // query the anim_chain_bits dictionary to find out which chain elements
+ // have associated node animation channels. These can not be dropped
+ // even if they have identity transform in bind pose.
+ NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name);
+ const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second);
+
+ unsigned int bit = 0x1;
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ if (chain[i].IsIdentity() && (anim_chain_bitmask & bit) == 0) {
+ continue;
+ }
+
+ aiNode* nd = new aiNode();
+ output_nodes.push_back(nd);
+
+ nd->mName.Set(NameTransformationChainNode(name, comp));
+ nd->mTransformation = chain[i];
+ }
+
+ ai_assert(output_nodes.size());
+ return;
+ }
+
+ // else, we can just multiply the matrices together
+ aiNode* nd = new aiNode();
+ output_nodes.push_back(nd);
+
+ nd->mName.Set(name);
+
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
+ nd->mTransformation = nd->mTransformation * chain[i];
+ }
+ }
+
+ // ------------------------------------------------------------------------------------------------
+
+ void SetupNodeMetadata(const Model& model, aiNode& nd)
+ {
+ const PropertyTable& props = model.Props();
+ DirectPropertyMap unparsedProperties = props.GetUnparsedProperties();
+
+ // create metadata on node
+ std::size_t numStaticMetaData = 2;
+ aiMetadata* data = new aiMetadata();
+ data->mNumProperties = unparsedProperties.size() + numStaticMetaData;
+ data->mKeys = new aiString[data->mNumProperties]();
+ data->mValues = new aiMetadataEntry[data->mNumProperties]();
+ nd.mMetaData = data;
+ int index = 0;
+
+ // find user defined properties (3ds Max)
+ data->Set(index++, "UserProperties", aiString(PropertyGet<std::string>(props, "UDP3DSMAX", "")));
+ unparsedProperties.erase("UDP3DSMAX");
+ // preserve the info that a node was marked as Null node in the original file.
+ data->Set(index++, "IsNull", model.IsNull() ? true : false);
+
+ // add unparsed properties to the node's metadata
+ BOOST_FOREACH(const DirectPropertyMap::value_type& prop, unparsedProperties) {
+
+ // Interpret the property as a concrete type
+ if (const TypedProperty<bool>* interpreted = prop.second->As<TypedProperty<bool> >())
+ data->Set(index++, prop.first, interpreted->Value());
+ else if (const TypedProperty<int>* interpreted = prop.second->As<TypedProperty<int> >())
+ data->Set(index++, prop.first, interpreted->Value());
+ else if (const TypedProperty<uint64_t>* interpreted = prop.second->As<TypedProperty<uint64_t> >())
+ data->Set(index++, prop.first, interpreted->Value());
+ else if (const TypedProperty<float>* interpreted = prop.second->As<TypedProperty<float> >())
+ data->Set(index++, prop.first, interpreted->Value());
+ else if (const TypedProperty<aiString>* interpreted = prop.second->As<TypedProperty<aiString> >())
+ data->Set(index++, prop.first, interpreted->Value());
+ else if (const TypedProperty<aiVector3D>* interpreted = prop.second->As<TypedProperty<aiVector3D> >())
+ data->Set(index++, prop.first, interpreted->Value());
+ else
+ assert(false);
+ }
+ }
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertModel(const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform)
+ {
+ const std::vector<const Geometry*>& geos = model.GetGeometry();
+
+ std::vector<unsigned int> meshes;
+ meshes.reserve(geos.size());
+
+ BOOST_FOREACH(const Geometry* geo, geos) {
+
+ const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*>(geo);
+ if(mesh) {
+ const std::vector<unsigned int>& indices = ConvertMesh(*mesh, model, node_global_transform);
+ std::copy(indices.begin(),indices.end(),std::back_inserter(meshes) );
+ }
+ else {
+ FBXImporter::LogWarn("ignoring unrecognized geometry: " + geo->Name());
+ }
+ }
+
+ if(meshes.size()) {
+ nd.mMeshes = new unsigned int[meshes.size()]();
+ nd.mNumMeshes = static_cast<unsigned int>(meshes.size());
+
+ std::swap_ranges(meshes.begin(),meshes.end(),nd.mMeshes);
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // MeshGeometry -> aiMesh, return mesh index + 1 or 0 if the conversion failed
+ std::vector<unsigned int> ConvertMesh(const MeshGeometry& mesh,const Model& model,
+ const aiMatrix4x4& node_global_transform)
+ {
+ std::vector<unsigned int> temp;
+
+ MeshMap::const_iterator it = meshes_converted.find(&mesh);
+ if (it != meshes_converted.end()) {
+ std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(temp));
+ return temp;
+ }
+
+ const std::vector<aiVector3D>& vertices = mesh.GetVertices();
+ const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
+ if(vertices.empty() || faces.empty()) {
+ FBXImporter::LogWarn("ignoring empty geometry: " + mesh.Name());
+ return temp;
+ }
+
+ // one material per mesh maps easily to aiMesh. Multiple material
+ // meshes need to be split.
+ const MatIndexArray& mindices = mesh.GetMaterialIndices();
+ if (doc.Settings().readMaterials && !mindices.empty()) {
+ const MatIndexArray::value_type base = mindices[0];
+ BOOST_FOREACH(MatIndexArray::value_type index, mindices) {
+ if(index != base) {
+ return ConvertMeshMultiMaterial(mesh, model, node_global_transform);
+ }
+ }
+ }
+
+ // faster codepath, just copy the data
+ temp.push_back(ConvertMeshSingleMaterial(mesh, model, node_global_transform));
+ return temp;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ aiMesh* SetupEmptyMesh(const MeshGeometry& mesh)
+ {
+ aiMesh* const out_mesh = new aiMesh();
+ meshes.push_back(out_mesh);
+ meshes_converted[&mesh].push_back(static_cast<unsigned int>(meshes.size()-1));
+
+ // set name
+ std::string name = mesh.Name();
+ if (name.substr(0,10) == "Geometry::") {
+ name = name.substr(10);
+ }
+
+ if(name.length()) {
+ out_mesh->mName.Set(name);
+ }
+
+ return out_mesh;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ unsigned int ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model,
+ const aiMatrix4x4& node_global_transform)
+ {
+ const MatIndexArray& mindices = mesh.GetMaterialIndices();
+ aiMesh* const out_mesh = SetupEmptyMesh(mesh);
+
+ const std::vector<aiVector3D>& vertices = mesh.GetVertices();
+ const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
+
+ // copy vertices
+ out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
+ out_mesh->mVertices = new aiVector3D[vertices.size()];
+ std::copy(vertices.begin(),vertices.end(),out_mesh->mVertices);
+
+ // generate dummy faces
+ out_mesh->mNumFaces = static_cast<unsigned int>(faces.size());
+ aiFace* fac = out_mesh->mFaces = new aiFace[faces.size()]();
+
+ unsigned int cursor = 0;
+ BOOST_FOREACH(unsigned int pcount, faces) {
+ aiFace& f = *fac++;
+ f.mNumIndices = pcount;
+ f.mIndices = new unsigned int[pcount];
+ switch(pcount)
+ {
+ case 1:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
+ break;
+ case 2:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
+ break;
+ case 3:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
+ break;
+ default:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
+ break;
+ }
+ for (unsigned int i = 0; i < pcount; ++i) {
+ f.mIndices[i] = cursor++;
+ }
+ }
+
+ // copy normals
+ const std::vector<aiVector3D>& normals = mesh.GetNormals();
+ if(normals.size()) {
+ ai_assert(normals.size() == vertices.size());
+
+ out_mesh->mNormals = new aiVector3D[vertices.size()];
+ std::copy(normals.begin(),normals.end(),out_mesh->mNormals);
+ }
+
+ // copy tangents - assimp requires both tangents and bitangents (binormals)
+ // to be present, or neither of them. Compute binormals from normals
+ // and tangents if needed.
+ const std::vector<aiVector3D>& tangents = mesh.GetTangents();
+ const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
+
+ if(tangents.size()) {
+ std::vector<aiVector3D> tempBinormals;
+ if (!binormals->size()) {
+ if (normals.size()) {
+ tempBinormals.resize(normals.size());
+ for (unsigned int i = 0; i < tangents.size(); ++i) {
+ tempBinormals[i] = normals[i] ^ tangents[i];
+ }
+
+ binormals = &tempBinormals;
+ }
+ else {
+ binormals = NULL;
+ }
+ }
+
+ if(binormals) {
+ ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
+
+ out_mesh->mTangents = new aiVector3D[vertices.size()];
+ std::copy(tangents.begin(),tangents.end(),out_mesh->mTangents);
+
+ out_mesh->mBitangents = new aiVector3D[vertices.size()];
+ std::copy(binormals->begin(),binormals->end(),out_mesh->mBitangents);
+ }
+ }
+
+ // copy texture coords
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
+ if(uvs.empty()) {
+ break;
+ }
+
+ aiVector3D* out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
+ BOOST_FOREACH(const aiVector2D& v, uvs) {
+ *out_uv++ = aiVector3D(v.x,v.y,0.0f);
+ }
+
+ out_mesh->mNumUVComponents[i] = 2;
+ }
+
+ // copy vertex colors
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
+ const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
+ if(colors.empty()) {
+ break;
+ }
+
+ out_mesh->mColors[i] = new aiColor4D[vertices.size()];
+ std::copy(colors.begin(),colors.end(),out_mesh->mColors[i]);
+ }
+
+ if(!doc.Settings().readMaterials || mindices.empty()) {
+ FBXImporter::LogError("no material assigned to mesh, setting default material");
+ out_mesh->mMaterialIndex = GetDefaultMaterial();
+ }
+ else {
+ ConvertMaterialForMesh(out_mesh,model,mesh,mindices[0]);
+ }
+
+ if(doc.Settings().readWeights && mesh.DeformerSkin() != NULL) {
+ ConvertWeights(out_mesh, model, mesh, node_global_transform, NO_MATERIAL_SEPARATION);
+ }
+
+ return static_cast<unsigned int>(meshes.size() - 1);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ std::vector<unsigned int> ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model,
+ const aiMatrix4x4& node_global_transform)
+ {
+ const MatIndexArray& mindices = mesh.GetMaterialIndices();
+ ai_assert(mindices.size());
+
+ std::set<MatIndexArray::value_type> had;
+ std::vector<unsigned int> indices;
+
+ BOOST_FOREACH(MatIndexArray::value_type index, mindices) {
+ if(had.find(index) == had.end()) {
+
+ indices.push_back(ConvertMeshMultiMaterial(mesh, model, index, node_global_transform));
+ had.insert(index);
+ }
+ }
+
+ return indices;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ unsigned int ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model,
+ MatIndexArray::value_type index,
+ const aiMatrix4x4& node_global_transform)
+ {
+ aiMesh* const out_mesh = SetupEmptyMesh(mesh);
+
+ const MatIndexArray& mindices = mesh.GetMaterialIndices();
+ const std::vector<aiVector3D>& vertices = mesh.GetVertices();
+ const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
+
+ const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != NULL;
+
+ unsigned int count_faces = 0;
+ unsigned int count_vertices = 0;
+
+ // count faces
+ std::vector<unsigned int>::const_iterator itf = faces.begin();
+ for(MatIndexArray::const_iterator it = mindices.begin(),
+ end = mindices.end(); it != end; ++it, ++itf)
+ {
+ if ((*it) != index) {
+ continue;
+ }
+ ++count_faces;
+ count_vertices += *itf;
+ }
+
+ ai_assert(count_faces);
+ ai_assert(count_vertices);
+
+ // mapping from output indices to DOM indexing, needed to resolve weights
+ std::vector<unsigned int> reverseMapping;
+
+ if (process_weights) {
+ reverseMapping.resize(count_vertices);
+ }
+
+ // allocate output data arrays, but don't fill them yet
+ out_mesh->mNumVertices = count_vertices;
+ out_mesh->mVertices = new aiVector3D[count_vertices];
+
+ out_mesh->mNumFaces = count_faces;
+ aiFace* fac = out_mesh->mFaces = new aiFace[count_faces]();
+
+
+ // allocate normals
+ const std::vector<aiVector3D>& normals = mesh.GetNormals();
+ if(normals.size()) {
+ ai_assert(normals.size() == vertices.size());
+ out_mesh->mNormals = new aiVector3D[vertices.size()];
+ }
+
+ // allocate tangents, binormals.
+ const std::vector<aiVector3D>& tangents = mesh.GetTangents();
+ const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
+
+ if(tangents.size()) {
+ std::vector<aiVector3D> tempBinormals;
+ if (!binormals->size()) {
+ if (normals.size()) {
+ // XXX this computes the binormals for the entire mesh, not only
+ // the part for which we need them.
+ tempBinormals.resize(normals.size());
+ for (unsigned int i = 0; i < tangents.size(); ++i) {
+ tempBinormals[i] = normals[i] ^ tangents[i];
+ }
+
+ binormals = &tempBinormals;
+ }
+ else {
+ binormals = NULL;
+ }
+ }
+
+ if(binormals) {
+ ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
+
+ out_mesh->mTangents = new aiVector3D[vertices.size()];
+ out_mesh->mBitangents = new aiVector3D[vertices.size()];
+ }
+ }
+
+ // allocate texture coords
+ unsigned int num_uvs = 0;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) {
+ const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
+ if(uvs.empty()) {
+ break;
+ }
+
+ out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
+ out_mesh->mNumUVComponents[i] = 2;
+ }
+
+ // allocate vertex colors
+ unsigned int num_vcs = 0;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) {
+ const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
+ if(colors.empty()) {
+ break;
+ }
+
+ out_mesh->mColors[i] = new aiColor4D[vertices.size()];
+ }
+
+ unsigned int cursor = 0, in_cursor = 0;
+
+ itf = faces.begin();
+ for(MatIndexArray::const_iterator it = mindices.begin(),
+ end = mindices.end(); it != end; ++it, ++itf)
+ {
+ const unsigned int pcount = *itf;
+ if ((*it) != index) {
+ in_cursor += pcount;
+ continue;
+ }
+
+ aiFace& f = *fac++;
+
+ f.mNumIndices = pcount;
+ f.mIndices = new unsigned int[pcount];
+ switch(pcount)
+ {
+ case 1:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
+ break;
+ case 2:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
+ break;
+ case 3:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
+ break;
+ default:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
+ break;
+ }
+ for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) {
+ f.mIndices[i] = cursor;
+
+ if(reverseMapping.size()) {
+ reverseMapping[cursor] = in_cursor;
+ }
+
+ out_mesh->mVertices[cursor] = vertices[in_cursor];
+
+ if(out_mesh->mNormals) {
+ out_mesh->mNormals[cursor] = normals[in_cursor];
+ }
+
+ if(out_mesh->mTangents) {
+ out_mesh->mTangents[cursor] = tangents[in_cursor];
+ out_mesh->mBitangents[cursor] = (*binormals)[in_cursor];
+ }
+
+ for (unsigned int i = 0; i < num_uvs; ++i) {
+ const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
+ out_mesh->mTextureCoords[i][cursor] = aiVector3D(uvs[in_cursor].x,uvs[in_cursor].y, 0.0f);
+ }
+
+ for (unsigned int i = 0; i < num_vcs; ++i) {
+ const std::vector<aiColor4D>& cols = mesh.GetVertexColors(i);
+ out_mesh->mColors[i][cursor] = cols[in_cursor];
+ }
+ }
+ }
+
+ ConvertMaterialForMesh(out_mesh,model,mesh,index);
+
+ if(process_weights) {
+ ConvertWeights(out_mesh, model, mesh, node_global_transform, index, &reverseMapping);
+ }
+
+ return static_cast<unsigned int>(meshes.size() - 1);
+ }
+
+ static const unsigned int NO_MATERIAL_SEPARATION = /* std::numeric_limits<unsigned int>::max() */
+ static_cast<unsigned int>(-1);
+
+
+ // ------------------------------------------------------------------------------------------------
+ /** - if materialIndex == NO_MATERIAL_SEPARATION, materials are not taken into
+ * account when determining which weights to include.
+ * - outputVertStartIndices is only used when a material index is specified, it gives for
+ * each output vertex the DOM index it maps to. */
+ void ConvertWeights(aiMesh* out, const Model& model, const MeshGeometry& geo,
+ const aiMatrix4x4& node_global_transform = aiMatrix4x4(),
+ unsigned int materialIndex = NO_MATERIAL_SEPARATION,
+ std::vector<unsigned int>* outputVertStartIndices = NULL)
+ {
+ ai_assert(geo.DeformerSkin());
+
+ std::vector<size_t> out_indices;
+ std::vector<size_t> index_out_indices;
+ std::vector<size_t> count_out_indices;
+
+ const Skin& sk = *geo.DeformerSkin();
+
+ std::vector<aiBone*> bones;
+ bones.reserve(sk.Clusters().size());
+
+ const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION;
+ ai_assert(no_mat_check || outputVertStartIndices);
+
+ try {
+
+ BOOST_FOREACH(const Cluster* cluster, sk.Clusters()) {
+ ai_assert(cluster);
+
+ const WeightIndexArray& indices = cluster->GetIndices();
+
+ if(indices.empty()) {
+ continue;
+ }
+
+ const MatIndexArray& mats = geo.GetMaterialIndices();
+
+ bool ok = false;
+
+ const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
+
+ count_out_indices.clear();
+ index_out_indices.clear();
+ out_indices.clear();
+
+ // now check if *any* of these weights is contained in the output mesh,
+ // taking notes so we don't need to do it twice.
+ BOOST_FOREACH(WeightIndexArray::value_type index, indices) {
+
+ unsigned int count;
+ const unsigned int* const out_idx = geo.ToOutputVertexIndex(index, count);
+
+ index_out_indices.push_back(no_index_sentinel);
+ count_out_indices.push_back(0);
+
+ for(unsigned int i = 0; i < count; ++i) {
+ if (no_mat_check || static_cast<size_t>(mats[geo.FaceForVertexIndex(out_idx[i])]) == materialIndex) {
+
+ if (index_out_indices.back() == no_index_sentinel) {
+ index_out_indices.back() = out_indices.size();
+
+ }
+
+ if (no_mat_check) {
+ out_indices.push_back(out_idx[i]);
+ }
+ else {
+ // this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn)
+ const std::vector<unsigned int>::iterator it = std::lower_bound(
+ outputVertStartIndices->begin(),
+ outputVertStartIndices->end(),
+ out_idx[i]
+ );
+
+ out_indices.push_back(std::distance(outputVertStartIndices->begin(), it));
+ }
+
+ ++count_out_indices.back();
+ ok = true;
+ }
+ }
+ }
+
+ // if we found at least one, generate the output bones
+ // XXX this could be heavily simplified by collecting the bone
+ // data in a single step.
+ if (ok) {
+ ConvertCluster(bones, model, *cluster, out_indices, index_out_indices,
+ count_out_indices, node_global_transform);
+ }
+ }
+ }
+ catch (std::exception&) {
+ std::for_each(bones.begin(),bones.end(),Util::delete_fun<aiBone>());
+ throw;
+ }
+
+ if(bones.empty()) {
+ return;
+ }
+
+ out->mBones = new aiBone*[bones.size()]();
+ out->mNumBones = static_cast<unsigned int>(bones.size());
+
+ std::swap_ranges(bones.begin(),bones.end(),out->mBones);
+ }
+
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertCluster(std::vector<aiBone*>& bones, const Model& model, const Cluster& cl,
+ std::vector<size_t>& out_indices,
+ std::vector<size_t>& index_out_indices,
+ std::vector<size_t>& count_out_indices,
+ const aiMatrix4x4& node_global_transform)
+ {
+
+ aiBone* const bone = new aiBone();
+ bones.push_back(bone);
+
+ bone->mName = FixNodeName(cl.TargetNode()->Name());
+
+ bone->mOffsetMatrix = cl.TransformLink();
+ bone->mOffsetMatrix.Inverse();
+
+ bone->mOffsetMatrix = bone->mOffsetMatrix * node_global_transform;
+
+ bone->mNumWeights = static_cast<unsigned int>(out_indices.size());
+ aiVertexWeight* cursor = bone->mWeights = new aiVertexWeight[out_indices.size()];
+
+ const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
+ const WeightArray& weights = cl.GetWeights();
+
+ const size_t c = index_out_indices.size();
+ for (size_t i = 0; i < c; ++i) {
+ const size_t index_index = index_out_indices[i];
+
+ if (index_index == no_index_sentinel) {
+ continue;
+ }
+
+ const size_t cc = count_out_indices[i];
+ for (size_t j = 0; j < cc; ++j) {
+ aiVertexWeight& out_weight = *cursor++;
+
+ out_weight.mVertexId = static_cast<unsigned int>(out_indices[index_index + j]);
+ out_weight.mWeight = weights[i];
+ }
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo,
+ MatIndexArray::value_type materialIndex)
+ {
+ // locate source materials for this mesh
+ const std::vector<const Material*>& mats = model.GetMaterials();
+ if (static_cast<unsigned int>(materialIndex) >= mats.size() || materialIndex < 0) {
+ FBXImporter::LogError("material index out of bounds, setting default material");
+ out->mMaterialIndex = GetDefaultMaterial();
+ return;
+ }
+
+ const Material* const mat = mats[materialIndex];
+ MaterialMap::const_iterator it = materials_converted.find(mat);
+ if (it != materials_converted.end()) {
+ out->mMaterialIndex = (*it).second;
+ return;
+ }
+
+ out->mMaterialIndex = ConvertMaterial(*mat);
+ materials_converted[mat] = out->mMaterialIndex;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ unsigned int GetDefaultMaterial()
+ {
+ if (defaultMaterialIndex) {
+ return defaultMaterialIndex - 1;
+ }
+
+ aiMaterial* out_mat = new aiMaterial();
+ materials.push_back(out_mat);
+
+ const aiColor3D diffuse = aiColor3D(0.8f,0.8f,0.8f);
+ out_mat->AddProperty(&diffuse,1,AI_MATKEY_COLOR_DIFFUSE);
+
+ aiString s;
+ s.Set(AI_DEFAULT_MATERIAL_NAME);
+
+ out_mat->AddProperty(&s,AI_MATKEY_NAME);
+
+ defaultMaterialIndex = static_cast<unsigned int>(materials.size());
+ return defaultMaterialIndex - 1;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // Material -> aiMaterial
+ unsigned int ConvertMaterial(const Material& material)
+ {
+ const PropertyTable& props = material.Props();
+
+ // generate empty output material
+ aiMaterial* out_mat = new aiMaterial();
+ materials_converted[&material] = static_cast<unsigned int>(materials.size());
+
+ materials.push_back(out_mat);
+
+ aiString str;
+
+ // stip Material:: prefix
+ std::string name = material.Name();
+ if(name.substr(0,10) == "Material::") {
+ name = name.substr(10);
+ }
+
+ // set material name if not empty - this could happen
+ // and there should be no key for it in this case.
+ if(name.length()) {
+ str.Set(name);
+ out_mat->AddProperty(&str,AI_MATKEY_NAME);
+ }
+
+ // shading stuff and colors
+ SetShadingPropertiesCommon(out_mat,props);
+
+ // texture assignments
+ SetTextureProperties(out_mat,material.Textures());
+ SetTextureProperties(out_mat,material.LayeredTextures());
+
+ return static_cast<unsigned int>(materials.size() - 1);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures,
+ const std::string& propName,
+ aiTextureType target)
+ {
+ TextureMap::const_iterator it = textures.find(propName);
+ if(it == textures.end()) {
+ return;
+ }
+
+ const Texture* const tex = (*it).second;
+ if(tex !=0 )
+ {
+ aiString path;
+ path.Set(tex->RelativeFilename());
+
+ out_mat->AddProperty(&path,_AI_MATKEY_TEXTURE_BASE,target,0);
+
+ aiUVTransform uvTrafo;
+ // XXX handle all kinds of UV transformations
+ uvTrafo.mScaling = tex->UVScaling();
+ uvTrafo.mTranslation = tex->UVTranslation();
+ out_mat->AddProperty(&uvTrafo,1,_AI_MATKEY_UVTRANSFORM_BASE,target,0);
+
+ const PropertyTable& props = tex->Props();
+
+ int uvIndex = 0;
+
+ bool ok;
+ const std::string& uvSet = PropertyGet<std::string>(props,"UVSet",ok);
+ if(ok) {
+ // "default" is the name which usually appears in the FbxFileTexture template
+ if(uvSet != "default" && uvSet.length()) {
+ // this is a bit awkward - we need to find a mesh that uses this
+ // material and scan its UV channels for the given UV name because
+ // assimp references UV channels by index, not by name.
+
+ // XXX: the case that UV channels may appear in different orders
+ // in meshes is unhandled. A possible solution would be to sort
+ // the UV channels alphabetically, but this would have the side
+ // effect that the primary (first) UV channel would sometimes
+ // be moved, causing trouble when users read only the first
+ // UV channel and ignore UV channel assignments altogether.
+
+ const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
+ std::find(materials.begin(),materials.end(),out_mat)
+ ));
+
+ uvIndex = -1;
+ BOOST_FOREACH(const MeshMap::value_type& v,meshes_converted) {
+ const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> (v.first);
+ if(!mesh) {
+ continue;
+ }
+
+ const MatIndexArray& mats = mesh->GetMaterialIndices();
+ if(std::find(mats.begin(),mats.end(),matIndex) == mats.end()) {
+ continue;
+ }
+
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if(mesh->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string& name = mesh->GetTextureCoordChannelName(i);
+ if(name == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if(index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
+ continue;
+ }
+
+ if(uvIndex == -1) {
+ uvIndex = index;
+ }
+ else {
+ FBXImporter::LogWarn("the UV channel named " + uvSet +
+ " appears at different positions in meshes, results will be wrong");
+ }
+ }
+
+ if(uvIndex == -1) {
+ FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
+ uvIndex = 0;
+ }
+ }
+ }
+
+ out_mat->AddProperty(&uvIndex,1,_AI_MATKEY_UVWSRC_BASE,target,0);
+ }
+ }
+
+ // ------------------------------------------------------------------------------------------------
+ void TrySetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures,
+ const std::string& propName,
+ aiTextureType target)
+ {
+ LayeredTextureMap::const_iterator it = layeredTextures.find(propName);
+ if(it == layeredTextures.end()) {
+ return;
+ }
+
+ const Texture* const tex = (*it).second->getTexture();
+
+ aiString path;
+ path.Set(tex->RelativeFilename());
+
+ out_mat->AddProperty(&path,_AI_MATKEY_TEXTURE_BASE,target,0);
+
+ aiUVTransform uvTrafo;
+ // XXX handle all kinds of UV transformations
+ uvTrafo.mScaling = tex->UVScaling();
+ uvTrafo.mTranslation = tex->UVTranslation();
+ out_mat->AddProperty(&uvTrafo,1,_AI_MATKEY_UVTRANSFORM_BASE,target,0);
+
+ const PropertyTable& props = tex->Props();
+
+ int uvIndex = 0;
+
+ bool ok;
+ const std::string& uvSet = PropertyGet<std::string>(props,"UVSet",ok);
+ if(ok) {
+ // "default" is the name which usually appears in the FbxFileTexture template
+ if(uvSet != "default" && uvSet.length()) {
+ // this is a bit awkward - we need to find a mesh that uses this
+ // material and scan its UV channels for the given UV name because
+ // assimp references UV channels by index, not by name.
+
+ // XXX: the case that UV channels may appear in different orders
+ // in meshes is unhandled. A possible solution would be to sort
+ // the UV channels alphabetically, but this would have the side
+ // effect that the primary (first) UV channel would sometimes
+ // be moved, causing trouble when users read only the first
+ // UV channel and ignore UV channel assignments altogether.
+
+ const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
+ std::find(materials.begin(),materials.end(),out_mat)
+ ));
+
+ uvIndex = -1;
+ BOOST_FOREACH(const MeshMap::value_type& v,meshes_converted) {
+ const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> (v.first);
+ if(!mesh) {
+ continue;
+ }
+
+ const MatIndexArray& mats = mesh->GetMaterialIndices();
+ if(std::find(mats.begin(),mats.end(),matIndex) == mats.end()) {
+ continue;
+ }
+
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if(mesh->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string& name = mesh->GetTextureCoordChannelName(i);
+ if(name == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if(index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
+ continue;
+ }
+
+ if(uvIndex == -1) {
+ uvIndex = index;
+ }
+ else {
+ FBXImporter::LogWarn("the UV channel named " + uvSet +
+ " appears at different positions in meshes, results will be wrong");
+ }
+ }
+
+ if(uvIndex == -1) {
+ FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
+ uvIndex = 0;
+ }
+ }
+ }
+
+ out_mat->AddProperty(&uvIndex,1,_AI_MATKEY_UVWSRC_BASE,target,0);
+ }
+
+ // ------------------------------------------------------------------------------------------------
+ void SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures)
+ {
+ TrySetTextureProperties(out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE);
+ TrySetTextureProperties(out_mat, textures, "AmbientColor", aiTextureType_AMBIENT);
+ TrySetTextureProperties(out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE);
+ TrySetTextureProperties(out_mat, textures, "SpecularColor", aiTextureType_SPECULAR);
+ TrySetTextureProperties(out_mat, textures, "TransparentColor", aiTextureType_OPACITY);
+ TrySetTextureProperties(out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION);
+ TrySetTextureProperties(out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT);
+ TrySetTextureProperties(out_mat, textures, "NormalMap", aiTextureType_NORMALS);
+ TrySetTextureProperties(out_mat, textures, "Bump", aiTextureType_HEIGHT);
+ TrySetTextureProperties(out_mat, textures, "ShininessExponent", aiTextureType_SHININESS);
+ }
+
+ // ------------------------------------------------------------------------------------------------
+ void SetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures)
+ {
+ TrySetTextureProperties(out_mat, layeredTextures, "DiffuseColor", aiTextureType_DIFFUSE);
+ TrySetTextureProperties(out_mat, layeredTextures, "AmbientColor", aiTextureType_AMBIENT);
+ TrySetTextureProperties(out_mat, layeredTextures, "EmissiveColor", aiTextureType_EMISSIVE);
+ TrySetTextureProperties(out_mat, layeredTextures, "SpecularColor", aiTextureType_SPECULAR);
+ TrySetTextureProperties(out_mat, layeredTextures, "TransparentColor", aiTextureType_OPACITY);
+ TrySetTextureProperties(out_mat, layeredTextures, "ReflectionColor", aiTextureType_REFLECTION);
+ TrySetTextureProperties(out_mat, layeredTextures, "DisplacementColor", aiTextureType_DISPLACEMENT);
+ TrySetTextureProperties(out_mat, layeredTextures, "NormalMap", aiTextureType_NORMALS);
+ TrySetTextureProperties(out_mat, layeredTextures, "Bump", aiTextureType_HEIGHT);
+ TrySetTextureProperties(out_mat, layeredTextures, "ShininessExponent", aiTextureType_SHININESS);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ aiColor3D GetColorPropertyFromMaterial(const PropertyTable& props, const std::string& baseName,
+ bool& result)
+ {
+ result = true;
+
+ bool ok;
+ const aiVector3D& Diffuse = PropertyGet<aiVector3D>(props,baseName,ok);
+ if(ok) {
+ return aiColor3D(Diffuse.x,Diffuse.y,Diffuse.z);
+ }
+ else {
+ aiVector3D DiffuseColor = PropertyGet<aiVector3D>(props,baseName + "Color",ok);
+ if(ok) {
+ float DiffuseFactor = PropertyGet<float>(props,baseName + "Factor",ok);
+ if(ok) {
+ DiffuseColor *= DiffuseFactor;
+ }
+
+ return aiColor3D(DiffuseColor.x,DiffuseColor.y,DiffuseColor.z);
+ }
+ }
+ result = false;
+ return aiColor3D(0.0f,0.0f,0.0f);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props)
+ {
+ // set shading properties. There are various, redundant ways in which FBX materials
+ // specify their shading settings (depending on shading models, prop
+ // template etc.). No idea which one is right in a particular context.
+ // Just try to make sense of it - there's no spec to verify this against,
+ // so why should we.
+ bool ok;
+ const aiColor3D& Diffuse = GetColorPropertyFromMaterial(props,"Diffuse",ok);
+ if(ok) {
+ out_mat->AddProperty(&Diffuse,1,AI_MATKEY_COLOR_DIFFUSE);
+ }
+
+ const aiColor3D& Emissive = GetColorPropertyFromMaterial(props,"Emissive",ok);
+ if(ok) {
+ out_mat->AddProperty(&Emissive,1,AI_MATKEY_COLOR_EMISSIVE);
+ }
+
+ const aiColor3D& Ambient = GetColorPropertyFromMaterial(props,"Ambient",ok);
+ if(ok) {
+ out_mat->AddProperty(&Ambient,1,AI_MATKEY_COLOR_AMBIENT);
+ }
+
+ const aiColor3D& Specular = GetColorPropertyFromMaterial(props,"Specular",ok);
+ if(ok) {
+ out_mat->AddProperty(&Specular,1,AI_MATKEY_COLOR_SPECULAR);
+ }
+
+ const float Opacity = PropertyGet<float>(props,"Opacity",ok);
+ if(ok) {
+ out_mat->AddProperty(&Opacity,1,AI_MATKEY_OPACITY);
+ }
+
+ const float Reflectivity = PropertyGet<float>(props,"Reflectivity",ok);
+ if(ok) {
+ out_mat->AddProperty(&Reflectivity,1,AI_MATKEY_REFLECTIVITY);
+ }
+
+ const float Shininess = PropertyGet<float>(props,"Shininess",ok);
+ if(ok) {
+ out_mat->AddProperty(&Shininess,1,AI_MATKEY_SHININESS_STRENGTH);
+ }
+
+ const float ShininessExponent = PropertyGet<float>(props,"ShininessExponent",ok);
+ if(ok) {
+ out_mat->AddProperty(&ShininessExponent,1,AI_MATKEY_SHININESS);
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // get the number of fps for a FrameRate enumerated value
+ static double FrameRateToDouble(FileGlobalSettings::FrameRate fp, double customFPSVal = -1.0)
+ {
+ switch(fp) {
+ case FileGlobalSettings::FrameRate_DEFAULT:
+ return 1.0;
+
+ case FileGlobalSettings::FrameRate_120:
+ return 120.0;
+
+ case FileGlobalSettings::FrameRate_100:
+ return 100.0;
+
+ case FileGlobalSettings::FrameRate_60:
+ return 60.0;
+
+ case FileGlobalSettings::FrameRate_50:
+ return 50.0;
+
+ case FileGlobalSettings::FrameRate_48:
+ return 48.0;
+
+ case FileGlobalSettings::FrameRate_30:
+ case FileGlobalSettings::FrameRate_30_DROP:
+ return 30.0;
+
+ case FileGlobalSettings::FrameRate_NTSC_DROP_FRAME:
+ case FileGlobalSettings::FrameRate_NTSC_FULL_FRAME:
+ return 29.9700262;
+
+ case FileGlobalSettings::FrameRate_PAL:
+ return 25.0;
+
+ case FileGlobalSettings::FrameRate_CINEMA:
+ return 24.0;
+
+ case FileGlobalSettings::FrameRate_1000:
+ return 1000.0;
+
+ case FileGlobalSettings::FrameRate_CINEMA_ND:
+ return 23.976;
+
+ case FileGlobalSettings::FrameRate_CUSTOM:
+ return customFPSVal;
+
+ case FileGlobalSettings::FrameRate_MAX: // this is to silence compiler warnings
+ break;
+ }
+
+ ai_assert(false);
+ return -1.0f;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // convert animation data to aiAnimation et al
+ void ConvertAnimations()
+ {
+ // first of all determine framerate
+ const FileGlobalSettings::FrameRate fps = doc.GlobalSettings().TimeMode();
+ const float custom = doc.GlobalSettings().CustomFrameRate();
+ anim_fps = FrameRateToDouble(fps, custom);
+
+ const std::vector<const AnimationStack*>& animations = doc.AnimationStacks();
+ BOOST_FOREACH(const AnimationStack* stack, animations) {
+ ConvertAnimationStack(*stack);
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // rename a node already partially converted. fixed_name is a string previously returned by
+ // FixNodeName, new_name specifies the string FixNodeName should return on all further invocations
+ // which would previously have returned the old value.
+ //
+ // this also updates names in node animations, cameras and light sources and is thus slow.
+ //
+ // NOTE: the caller is responsible for ensuring that the new name is unique and does
+ // not collide with any other identifiers. The best way to ensure this is to only
+ // append to the old name, which is guaranteed to match these requirements.
+ void RenameNode(const std::string& fixed_name, const std::string& new_name)
+ {
+ ai_assert(node_names.find(fixed_name) != node_names.end());
+ ai_assert(node_names.find(new_name) == node_names.end());
+
+ renamed_nodes[fixed_name] = new_name;
+
+ const aiString fn(fixed_name);
+
+ BOOST_FOREACH(aiCamera* cam, cameras) {
+ if (cam->mName == fn) {
+ cam->mName.Set(new_name);
+ break;
+ }
+ }
+
+ BOOST_FOREACH(aiLight* light, lights) {
+ if (light->mName == fn) {
+ light->mName.Set(new_name);
+ break;
+ }
+ }
+
+ BOOST_FOREACH(aiAnimation* anim, animations) {
+ for (unsigned int i = 0; i < anim->mNumChannels; ++i) {
+ aiNodeAnim* const na = anim->mChannels[i];
+ if (na->mNodeName == fn) {
+ na->mNodeName.Set(new_name);
+ break;
+ }
+ }
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // takes a fbx node name and returns the identifier to be used in the assimp output scene.
+ // the function is guaranteed to provide consistent results over multiple invocations
+ // UNLESS RenameNode() is called for a particular node name.
+ std::string FixNodeName(const std::string& name)
+ {
+ // strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
+ // this causes ambiguities, well possible between empty identifiers,
+ // such as "Model::" and ""). Make sure the behaviour is consistent
+ // across multiple calls to FixNodeName().
+ if(name.substr(0,7) == "Model::") {
+ std::string temp = name.substr(7);
+
+ const NodeNameMap::const_iterator it = node_names.find(temp);
+ if (it != node_names.end()) {
+ if (!(*it).second) {
+ return FixNodeName(name + "_");
+ }
+ }
+ node_names[temp] = true;
+
+ const NameNameMap::const_iterator rit = renamed_nodes.find(temp);
+ return rit == renamed_nodes.end() ? temp : (*rit).second;
+ }
+
+ const NodeNameMap::const_iterator it = node_names.find(name);
+ if (it != node_names.end()) {
+ if ((*it).second) {
+ return FixNodeName(name + "_");
+ }
+ }
+ node_names[name] = false;
+
+ const NameNameMap::const_iterator rit = renamed_nodes.find(name);
+ return rit == renamed_nodes.end() ? name : (*rit).second;
+ }
+
+
+ typedef std::map<const AnimationCurveNode*, const AnimationLayer*> LayerMap;
+
+ // XXX: better use multi_map ..
+ typedef std::map<std::string, std::vector<const AnimationCurveNode*> > NodeMap;
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertAnimationStack(const AnimationStack& st)
+ {
+ const AnimationLayerList& layers = st.Layers();
+ if(layers.empty()) {
+ return;
+ }
+
+ aiAnimation* const anim = new aiAnimation();
+ animations.push_back(anim);
+
+ // strip AnimationStack:: prefix
+ std::string name = st.Name();
+ if(name.substr(0,16) == "AnimationStack::") {
+ name = name.substr(16);
+ }
+
+ anim->mName.Set(name);
+
+ // need to find all nodes for which we need to generate node animations -
+ // it may happen that we need to merge multiple layers, though.
+ NodeMap node_map;
+
+ // reverse mapping from curves to layers, much faster than querying
+ // the FBX DOM for it.
+ LayerMap layer_map;
+
+ const char* prop_whitelist[] = {
+ "Lcl Scaling",
+ "Lcl Rotation",
+ "Lcl Translation"
+ };
+
+ BOOST_FOREACH(const AnimationLayer* layer, layers) {
+ ai_assert(layer);
+
+ const AnimationCurveNodeList& nodes = layer->Nodes(prop_whitelist, 3);
+ BOOST_FOREACH(const AnimationCurveNode* node, nodes) {
+ ai_assert(node);
+
+ const Model* const model = dynamic_cast<const Model*>(node->Target());
+ // this can happen - it could also be a NodeAttribute (i.e. for camera animations)
+ if(!model) {
+ continue;
+ }
+
+ const std::string& name = FixNodeName(model->Name());
+ node_map[name].push_back(node);
+
+ layer_map[node] = layer;
+ }
+ }
+
+ // generate node animations
+ std::vector<aiNodeAnim*> node_anims;
+
+ double min_time = 1e10;
+ double max_time = -1e10;
+
+ try {
+ BOOST_FOREACH(const NodeMap::value_type& kv, node_map) {
+ GenerateNodeAnimations(node_anims,
+ kv.first,
+ kv.second,
+ layer_map,
+ max_time,
+ min_time);
+ }
+ }
+ catch(std::exception&) {
+ std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>());
+ throw;
+ }
+
+ if(node_anims.size()) {
+ anim->mChannels = new aiNodeAnim*[node_anims.size()]();
+ anim->mNumChannels = static_cast<unsigned int>(node_anims.size());
+
+ std::swap_ranges(node_anims.begin(),node_anims.end(),anim->mChannels);
+ }
+ else {
+ // empty animations would fail validation, so drop them
+ delete anim;
+ animations.pop_back();
+ FBXImporter::LogInfo("ignoring empty AnimationStack (using IK?): " + name);
+ return;
+ }
+
+ // for some mysterious reason, mDuration is simply the maximum key -- the
+ // validator always assumes animations to start at zero.
+ anim->mDuration = max_time /*- min_time */;
+ anim->mTicksPerSecond = anim_fps;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void GenerateNodeAnimations(std::vector<aiNodeAnim*>& node_anims,
+ const std::string& fixed_name,
+ const std::vector<const AnimationCurveNode*>& curves,
+ const LayerMap& layer_map,
+ double& max_time,
+ double& min_time)
+ {
+
+ NodeMap node_property_map;
+ ai_assert(curves.size());
+
+ // sanity check whether the input is ok
+#ifdef ASSIMP_BUILD_DEBUG
+ { const Object* target = NULL;
+ BOOST_FOREACH(const AnimationCurveNode* node, curves) {
+ if(!target) {
+ target = node->Target();
+ }
+ ai_assert(node->Target() == target);
+ }}
+#endif
+
+ const AnimationCurveNode* curve_node = NULL;
+ BOOST_FOREACH(const AnimationCurveNode* node, curves) {
+ ai_assert(node);
+
+ if (node->TargetProperty().empty()) {
+ FBXImporter::LogWarn("target property for animation curve not set: " + node->Name());
+ continue;
+ }
+
+ curve_node = node;
+ if (node->Curves().empty()) {
+ FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode: " + node->Name());
+ continue;
+ }
+
+ node_property_map[node->TargetProperty()].push_back(node);
+ }
+
+ ai_assert(curve_node);
+ ai_assert(curve_node->TargetAsModel());
+
+ const Model& target = *curve_node->TargetAsModel();
+
+ // check for all possible transformation components
+ NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
+
+ bool has_any = false;
+ bool has_complex = false;
+
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ // inverse pivots don't exist in the input, we just generate them
+ if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
+ chain[i] = node_property_map.end();
+ continue;
+ }
+
+ chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
+ if (chain[i] != node_property_map.end()) {
+
+ // check if this curves contains redundant information by looking
+ // up the corresponding node's transformation chain.
+ if (doc.Settings().optimizeEmptyAnimationCurves &&
+ IsRedundantAnimationData(target, comp, (*chain[i]).second)) {
+
+ FBXImporter::LogDebug("dropping redundant animation channel for node " + target.Name());
+ continue;
+ }
+
+ has_any = true;
+
+ if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation &&
+ comp != TransformationComp_GeometricScaling && comp != TransformationComp_GeometricRotation && comp != TransformationComp_GeometricTranslation )
+ {
+ has_complex = true;
+ }
+ }
+ }
+
+ if (!has_any) {
+ FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
+ return;
+ }
+
+ // this needs to play nicely with GenerateTransformationNodeChain() which will
+ // be invoked _later_ (animations come first). If this node has only rotation,
+ // scaling and translation _and_ there are no animated other components either,
+ // we can use a single node and also a single node animation channel.
+ if (!has_complex && !NeedsComplexTransformationChain(target)) {
+
+ aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
+ node_property_map.end(),
+ layer_map,
+ max_time,
+ min_time,
+ true // input is TRS order, assimp is SRT
+ );
+
+ ai_assert(nd);
+ node_anims.push_back(nd);
+ return;
+ }
+
+ // otherwise, things get gruesome and we need separate animation channels
+ // for each part of the transformation chain. Remember which channels
+ // we generated and pass this information to the node conversion
+ // code to avoid nodes that have identity transform, but non-identity
+ // animations, being dropped.
+ unsigned int flags = 0, bit = 0x1;
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ if (chain[i] != node_property_map.end()) {
+ flags |= bit;
+
+ ai_assert(comp != TransformationComp_RotationPivotInverse);
+ ai_assert(comp != TransformationComp_ScalingPivotInverse);
+
+ const std::string& chain_name = NameTransformationChainNode(fixed_name, comp);
+
+ aiNodeAnim* na;
+ switch(comp)
+ {
+ case TransformationComp_Rotation:
+ case TransformationComp_PreRotation:
+ case TransformationComp_PostRotation:
+ case TransformationComp_GeometricRotation:
+ na = GenerateRotationNodeAnim(chain_name,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ max_time,
+ min_time);
+
+ break;
+
+ case TransformationComp_RotationOffset:
+ case TransformationComp_RotationPivot:
+ case TransformationComp_ScalingOffset:
+ case TransformationComp_ScalingPivot:
+ case TransformationComp_Translation:
+ case TransformationComp_GeometricTranslation:
+ na = GenerateTranslationNodeAnim(chain_name,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ max_time,
+ min_time);
+
+ // pivoting requires us to generate an implicit inverse channel to undo the pivot translation
+ if (comp == TransformationComp_RotationPivot) {
+ const std::string& invName = NameTransformationChainNode(fixed_name,
+ TransformationComp_RotationPivotInverse);
+
+ aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ max_time,
+ min_time,
+ true);
+
+ ai_assert(inv);
+ node_anims.push_back(inv);
+
+ ai_assert(TransformationComp_RotationPivotInverse > i);
+ flags |= bit << (TransformationComp_RotationPivotInverse - i);
+ }
+ else if (comp == TransformationComp_ScalingPivot) {
+ const std::string& invName = NameTransformationChainNode(fixed_name,
+ TransformationComp_ScalingPivotInverse);
+
+ aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ max_time,
+ min_time,
+ true);
+
+ ai_assert(inv);
+ node_anims.push_back(inv);
+
+ ai_assert(TransformationComp_RotationPivotInverse > i);
+ flags |= bit << (TransformationComp_RotationPivotInverse - i);
+ }
+
+ break;
+
+ case TransformationComp_Scaling:
+ case TransformationComp_GeometricScaling:
+ na = GenerateScalingNodeAnim(chain_name,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ max_time,
+ min_time);
+
+ break;
+
+ default:
+ ai_assert(false);
+ }
+
+ ai_assert(na);
+ node_anims.push_back(na);
+ continue;
+ }
+ }
+
+ node_anim_chain_bits[fixed_name] = flags;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ bool IsRedundantAnimationData(const Model& target,
+ TransformationComp comp,
+ const std::vector<const AnimationCurveNode*>& curves)
+ {
+ ai_assert(curves.size());
+
+ // look for animation nodes with
+ // * sub channels for all relevant components set
+ // * one key/value pair per component
+ // * combined values match up the corresponding value in the bind pose node transformation
+ // only such nodes are 'redundant' for this function.
+
+ if (curves.size() > 1) {
+ return false;
+ }
+
+ const AnimationCurveNode& nd = *curves.front();
+ const AnimationCurveMap& sub_curves = nd.Curves();
+
+ const AnimationCurveMap::const_iterator dx = sub_curves.find("d|X");
+ const AnimationCurveMap::const_iterator dy = sub_curves.find("d|Y");
+ const AnimationCurveMap::const_iterator dz = sub_curves.find("d|Z");
+
+ if (dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end()) {
+ return false;
+ }
+
+ const KeyValueList& vx = (*dx).second->GetValues();
+ const KeyValueList& vy = (*dy).second->GetValues();
+ const KeyValueList& vz = (*dz).second->GetValues();
+
+ if(vx.size() != 1 || vy.size() != 1 || vz.size() != 1) {
+ return false;
+ }
+
+ const aiVector3D dyn_val = aiVector3D(vx[0], vy[0], vz[0]);
+ const aiVector3D& static_val = PropertyGet<aiVector3D>(target.Props(),
+ NameTransformationCompProperty(comp),
+ TransformationCompDefaultValue(comp)
+ );
+
+ const float epsilon = 1e-6f;
+ return (dyn_val - static_val).SquareLength() < epsilon;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ aiNodeAnim* GenerateRotationNodeAnim(const std::string& name,
+ const Model& target,
+ const std::vector<const AnimationCurveNode*>& curves,
+ const LayerMap& layer_map,
+ double& max_time,
+ double& min_time)
+ {
+ ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ ConvertRotationKeys(na, curves, layer_map, max_time,min_time, target.RotationOrder());
+
+ // dummy scaling key
+ na->mScalingKeys = new aiVectorKey[1];
+ na->mNumScalingKeys = 1;
+
+ na->mScalingKeys[0].mTime = 0.;
+ na->mScalingKeys[0].mValue = aiVector3D(1.0f,1.0f,1.0f);
+
+ // dummy position key
+ na->mPositionKeys = new aiVectorKey[1];
+ na->mNumPositionKeys = 1;
+
+ na->mPositionKeys[0].mTime = 0.;
+ na->mPositionKeys[0].mValue = aiVector3D();
+
+ return na.dismiss();
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ aiNodeAnim* GenerateScalingNodeAnim(const std::string& name,
+ const Model& target,
+ const std::vector<const AnimationCurveNode*>& curves,
+ const LayerMap& layer_map,
+ double& max_time,
+ double& min_time)
+ {
+ ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ ConvertScaleKeys(na, curves, layer_map, max_time,min_time);
+
+ // dummy rotation key
+ na->mRotationKeys = new aiQuatKey[1];
+ na->mNumRotationKeys = 1;
+
+ na->mRotationKeys[0].mTime = 0.;
+ na->mRotationKeys[0].mValue = aiQuaternion();
+
+ // dummy position key
+ na->mPositionKeys = new aiVectorKey[1];
+ na->mNumPositionKeys = 1;
+
+ na->mPositionKeys[0].mTime = 0.;
+ na->mPositionKeys[0].mValue = aiVector3D();
+
+ return na.dismiss();
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ aiNodeAnim* GenerateTranslationNodeAnim(const std::string& name,
+ const Model& target,
+ const std::vector<const AnimationCurveNode*>& curves,
+ const LayerMap& layer_map,
+ double& max_time,
+ double& min_time,
+ bool inverse = false)
+ {
+ ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ ConvertTranslationKeys(na, curves, layer_map, max_time,min_time);
+
+ if (inverse) {
+ for (unsigned int i = 0; i < na->mNumPositionKeys; ++i) {
+ na->mPositionKeys[i].mValue *= -1.0f;
+ }
+ }
+
+ // dummy scaling key
+ na->mScalingKeys = new aiVectorKey[1];
+ na->mNumScalingKeys = 1;
+
+ na->mScalingKeys[0].mTime = 0.;
+ na->mScalingKeys[0].mValue = aiVector3D(1.0f,1.0f,1.0f);
+
+ // dummy rotation key
+ na->mRotationKeys = new aiQuatKey[1];
+ na->mNumRotationKeys = 1;
+
+ na->mRotationKeys[0].mTime = 0.;
+ na->mRotationKeys[0].mValue = aiQuaternion();
+
+ return na.dismiss();
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // generate node anim, extracting only Rotation, Scaling and Translation from the given chain
+ aiNodeAnim* GenerateSimpleNodeAnim(const std::string& name,
+ const Model& target,
+ NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
+ NodeMap::const_iterator iter_end,
+ const LayerMap& layer_map,
+ double& max_time,
+ double& min_time,
+ bool reverse_order = false)
+
+ {
+ ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ const PropertyTable& props = target.Props();
+
+ // need to convert from TRS order to SRT?
+ if(reverse_order) {
+
+ aiVector3D def_scale, def_translate;
+ aiQuaternion def_rot;
+
+ KeyFrameListList scaling;
+ KeyFrameListList translation;
+ KeyFrameListList rotation;
+
+ if(chain[TransformationComp_Scaling] != iter_end) {
+ scaling = GetKeyframeList((*chain[TransformationComp_Scaling]).second);
+ }
+ else {
+ def_scale = PropertyGet(props,"Lcl Scaling",aiVector3D(1.f,1.f,1.f));
+ }
+
+ if(chain[TransformationComp_Translation] != iter_end) {
+ translation = GetKeyframeList((*chain[TransformationComp_Translation]).second);
+ }
+ else {
+ def_translate = PropertyGet(props,"Lcl Translation",aiVector3D(0.f,0.f,0.f));
+ }
+
+ if(chain[TransformationComp_Rotation] != iter_end) {
+ rotation = GetKeyframeList((*chain[TransformationComp_Rotation]).second);
+ }
+ else {
+ def_rot = EulerToQuaternion(PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f)),
+ target.RotationOrder());
+ }
+
+ KeyFrameListList joined;
+ joined.insert(joined.end(), scaling.begin(), scaling.end());
+ joined.insert(joined.end(), translation.begin(), translation.end());
+ joined.insert(joined.end(), rotation.begin(), rotation.end());
+
+ const KeyTimeList& times = GetKeyTimeList(joined);
+
+ aiQuatKey* out_quat = new aiQuatKey[times.size()];
+ aiVectorKey* out_scale = new aiVectorKey[times.size()];
+ aiVectorKey* out_translation = new aiVectorKey[times.size()];
+
+ ConvertTransformOrder_TRStoSRT(out_quat, out_scale, out_translation,
+ scaling,
+ translation,
+ rotation,
+ times,
+ max_time,
+ min_time,
+ target.RotationOrder(),
+ def_scale,
+ def_translate,
+ def_rot);
+
+ // XXX remove duplicates / redundant keys which this operation did
+ // likely produce if not all three channels were equally dense.
+
+ na->mNumScalingKeys = static_cast<unsigned int>(times.size());
+ na->mNumRotationKeys = na->mNumScalingKeys;
+ na->mNumPositionKeys = na->mNumScalingKeys;
+
+ na->mScalingKeys = out_scale;
+ na->mRotationKeys = out_quat;
+ na->mPositionKeys = out_translation;
+ }
+ else {
+
+ // if a particular transformation is not given, grab it from
+ // the corresponding node to meet the semantics of aiNodeAnim,
+ // which requires all of rotation, scaling and translation
+ // to be set.
+ if(chain[TransformationComp_Scaling] != iter_end) {
+ ConvertScaleKeys(na, (*chain[TransformationComp_Scaling]).second,
+ layer_map,
+ max_time,
+ min_time);
+ }
+ else {
+ na->mScalingKeys = new aiVectorKey[1];
+ na->mNumScalingKeys = 1;
+
+ na->mScalingKeys[0].mTime = 0.;
+ na->mScalingKeys[0].mValue = PropertyGet(props,"Lcl Scaling",
+ aiVector3D(1.f,1.f,1.f));
+ }
+
+ if(chain[TransformationComp_Rotation] != iter_end) {
+ ConvertRotationKeys(na, (*chain[TransformationComp_Rotation]).second,
+ layer_map,
+ max_time,
+ min_time,
+ target.RotationOrder());
+ }
+ else {
+ na->mRotationKeys = new aiQuatKey[1];
+ na->mNumRotationKeys = 1;
+
+ na->mRotationKeys[0].mTime = 0.;
+ na->mRotationKeys[0].mValue = EulerToQuaternion(
+ PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f)),
+ target.RotationOrder());
+ }
+
+ if(chain[TransformationComp_Translation] != iter_end) {
+ ConvertTranslationKeys(na, (*chain[TransformationComp_Translation]).second,
+ layer_map,
+ max_time,
+ min_time);
+ }
+ else {
+ na->mPositionKeys = new aiVectorKey[1];
+ na->mNumPositionKeys = 1;
+
+ na->mPositionKeys[0].mTime = 0.;
+ na->mPositionKeys[0].mValue = PropertyGet(props,"Lcl Translation",
+ aiVector3D(0.f,0.f,0.f));
+ }
+
+ }
+ return na.dismiss();
+ }
+
+
+
+ // key (time), value, mapto (component index)
+ typedef boost::tuple< const KeyTimeList*, const KeyValueList*, unsigned int > KeyFrameList;
+ typedef std::vector<KeyFrameList> KeyFrameListList;
+
+
+
+ // ------------------------------------------------------------------------------------------------
+ KeyFrameListList GetKeyframeList(const std::vector<const AnimationCurveNode*>& nodes)
+ {
+ KeyFrameListList inputs;
+ inputs.reserve(nodes.size()*3);
+
+ BOOST_FOREACH(const AnimationCurveNode* node, nodes) {
+ ai_assert(node);
+
+ const AnimationCurveMap& curves = node->Curves();
+ BOOST_FOREACH(const AnimationCurveMap::value_type& kv, curves) {
+
+ unsigned int mapto;
+ if (kv.first == "d|X") {
+ mapto = 0;
+ }
+ else if (kv.first == "d|Y") {
+ mapto = 1;
+ }
+ else if (kv.first == "d|Z") {
+ mapto = 2;
+ }
+ else {
+ FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
+ continue;
+ }
+
+ const AnimationCurve* const curve = kv.second;
+ ai_assert(curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size());
+
+ inputs.push_back(boost::make_tuple(&curve->GetKeys(), &curve->GetValues(), mapto));
+ }
+ }
+ return inputs; // pray for NRVO :-)
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ KeyTimeList GetKeyTimeList(const KeyFrameListList& inputs)
+ {
+ ai_assert(inputs.size());
+
+ // reserve some space upfront - it is likely that the keyframe lists
+ // have matching time values, so max(of all keyframe lists) should
+ // be a good estimate.
+ KeyTimeList keys;
+
+ size_t estimate = 0;
+ BOOST_FOREACH(const KeyFrameList& kfl, inputs) {
+ estimate = std::max(estimate, kfl.get<0>()->size());
+ }
+
+ keys.reserve(estimate);
+
+ std::vector<unsigned int> next_pos;
+ next_pos.resize(inputs.size(),0);
+
+ const size_t count = inputs.size();
+ while(true) {
+
+ uint64_t min_tick = std::numeric_limits<uint64_t>::max();
+ for (size_t i = 0; i < count; ++i) {
+ const KeyFrameList& kfl = inputs[i];
+
+ if (kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) < min_tick) {
+ min_tick = kfl.get<0>()->at(next_pos[i]);
+ }
+ }
+
+ if (min_tick == std::numeric_limits<uint64_t>::max()) {
+ break;
+ }
+ keys.push_back(min_tick);
+
+ for (size_t i = 0; i < count; ++i) {
+ const KeyFrameList& kfl = inputs[i];
+
+
+ while(kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == min_tick) {
+ ++next_pos[i];
+ }
+ }
+ }
+
+ return keys;
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void InterpolateKeys(aiVectorKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs,
+ const bool geom,
+ double& max_time,
+ double& min_time)
+
+ {
+ ai_assert(keys.size());
+ ai_assert(valOut);
+
+ std::vector<unsigned int> next_pos;
+ const size_t count = inputs.size();
+
+ next_pos.resize(inputs.size(),0);
+
+ BOOST_FOREACH(KeyTimeList::value_type time, keys) {
+ float result[3] = {0.0f, 0.0f, 0.0f};
+ if(geom) {
+ result[0] = result[1] = result[2] = 1.0f;
+ }
+
+ for (size_t i = 0; i < count; ++i) {
+ const KeyFrameList& kfl = inputs[i];
+
+ const size_t ksize = kfl.get<0>()->size();
+ if (ksize > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == time) {
+ ++next_pos[i];
+ }
+
+ const size_t id0 = next_pos[i]>0 ? next_pos[i]-1 : 0;
+ const size_t id1 = next_pos[i]==ksize ? ksize-1 : next_pos[i];
+
+ // use lerp for interpolation
+ const KeyValueList::value_type valueA = kfl.get<1>()->at(id0);
+ const KeyValueList::value_type valueB = kfl.get<1>()->at(id1);
+
+ const KeyTimeList::value_type timeA = kfl.get<0>()->at(id0);
+ const KeyTimeList::value_type timeB = kfl.get<0>()->at(id1);
+
+ // do the actual interpolation in double-precision arithmetics
+ // because it is a bit sensitive to rounding errors.
+ const double factor = timeB == timeA ? 0. : static_cast<double>((time - timeA) / (timeB - timeA));
+ const float interpValue = static_cast<float>(valueA + (valueB - valueA) * factor);
+
+ if(geom) {
+ result[kfl.get<2>()] *= interpValue;
+ }
+ else {
+ result[kfl.get<2>()] += interpValue;
+ }
+ }
+
+ // magic value to convert fbx times to seconds
+ valOut->mTime = CONVERT_FBX_TIME(time) * anim_fps;
+
+ min_time = std::min(min_time, valOut->mTime);
+ max_time = std::max(max_time, valOut->mTime);
+
+ valOut->mValue.x = result[0];
+ valOut->mValue.y = result[1];
+ valOut->mValue.z = result[2];
+
+ ++valOut;
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void InterpolateKeys(aiQuatKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs,
+ const bool geom,
+ double& maxTime,
+ double& minTime,
+ Model::RotOrder order)
+ {
+ ai_assert(keys.size());
+ ai_assert(valOut);
+
+ boost::scoped_array<aiVectorKey> temp(new aiVectorKey[keys.size()]);
+ InterpolateKeys(temp.get(),keys,inputs,geom,maxTime, minTime);
+
+ aiMatrix4x4 m;
+
+ aiQuaternion lastq;
+
+ for (size_t i = 0, c = keys.size(); i < c; ++i) {
+
+ valOut[i].mTime = temp[i].mTime;
+
+
+ GetRotationMatrix(order, temp[i].mValue, m);
+ aiQuaternion quat = aiQuaternion(aiMatrix3x3(m));
+
+ // take shortest path by checking the inner product
+ // http://www.3dkingdoms.com/weekly/weekly.php?a=36
+ if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0)
+ {
+ quat.x = -quat.x;
+ quat.y = -quat.y;
+ quat.z = -quat.z;
+ quat.w = -quat.w;
+ }
+ lastq = quat;
+
+ valOut[i].mValue = quat;
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertTransformOrder_TRStoSRT(aiQuatKey* out_quat, aiVectorKey* out_scale,
+ aiVectorKey* out_translation,
+ const KeyFrameListList& scaling,
+ const KeyFrameListList& translation,
+ const KeyFrameListList& rotation,
+ const KeyTimeList& times,
+ double& maxTime,
+ double& minTime,
+ Model::RotOrder order,
+ const aiVector3D& def_scale,
+ const aiVector3D& def_translate,
+ const aiQuaternion& def_rotation)
+ {
+ if (rotation.size()) {
+ InterpolateKeys(out_quat, times, rotation, false, maxTime, minTime, order);
+ }
+ else {
+ for (size_t i = 0; i < times.size(); ++i) {
+ out_quat[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
+ out_quat[i].mValue = def_rotation;
+ }
+ }
+
+ if (scaling.size()) {
+ InterpolateKeys(out_scale, times, scaling, true, maxTime, minTime);
+ }
+ else {
+ for (size_t i = 0; i < times.size(); ++i) {
+ out_scale[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
+ out_scale[i].mValue = def_scale;
+ }
+ }
+
+ if (translation.size()) {
+ InterpolateKeys(out_translation, times, translation, false, maxTime, minTime);
+ }
+ else {
+ for (size_t i = 0; i < times.size(); ++i) {
+ out_translation[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
+ out_translation[i].mValue = def_translate;
+ }
+ }
+
+ const size_t count = times.size();
+ for (size_t i = 0; i < count; ++i) {
+ aiQuaternion& r = out_quat[i].mValue;
+ aiVector3D& s = out_scale[i].mValue;
+ aiVector3D& t = out_translation[i].mValue;
+
+ aiMatrix4x4 mat, temp;
+ aiMatrix4x4::Translation(t, mat);
+ mat *= aiMatrix4x4( r.GetMatrix() );
+ mat *= aiMatrix4x4::Scaling(s, temp);
+
+ mat.Decompose(s, r, t);
+ }
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // euler xyz -> quat
+ aiQuaternion EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order)
+ {
+ aiMatrix4x4 m;
+ GetRotationMatrix(order, rot, m);
+
+ return aiQuaternion(aiMatrix3x3(m));
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertScaleKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers,
+ double& maxTime,
+ double& minTime)
+ {
+ ai_assert(nodes.size());
+
+ // XXX for now, assume scale should be blended geometrically (i.e. two
+ // layers should be multiplied with each other). There is a FBX
+ // property in the layer to specify the behaviour, though.
+
+ const KeyFrameListList& inputs = GetKeyframeList(nodes);
+ const KeyTimeList& keys = GetKeyTimeList(inputs);
+
+ na->mNumScalingKeys = static_cast<unsigned int>(keys.size());
+ na->mScalingKeys = new aiVectorKey[keys.size()];
+ InterpolateKeys(na->mScalingKeys, keys, inputs, true, maxTime, minTime);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
+ const LayerMap& layers,
+ double& maxTime,
+ double& minTime)
+ {
+ ai_assert(nodes.size());
+
+ // XXX see notes in ConvertScaleKeys()
+ const KeyFrameListList& inputs = GetKeyframeList(nodes);
+ const KeyTimeList& keys = GetKeyTimeList(inputs);
+
+ na->mNumPositionKeys = static_cast<unsigned int>(keys.size());
+ na->mPositionKeys = new aiVectorKey[keys.size()];
+ InterpolateKeys(na->mPositionKeys, keys, inputs, false, maxTime, minTime);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ void ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
+ const LayerMap& layers,
+ double& maxTime,
+ double& minTime,
+ Model::RotOrder order)
+ {
+ ai_assert(nodes.size());
+
+ // XXX see notes in ConvertScaleKeys()
+ const std::vector< KeyFrameList >& inputs = GetKeyframeList(nodes);
+ const KeyTimeList& keys = GetKeyTimeList(inputs);
+
+ na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
+ na->mRotationKeys = new aiQuatKey[keys.size()];
+ InterpolateKeys(na->mRotationKeys, keys, inputs, false, maxTime, minTime, order);
+ }
+
+
+ // ------------------------------------------------------------------------------------------------
+ // copy generated meshes, animations, lights, cameras and textures to the output scene
+ void TransferDataToScene()
+ {
+ ai_assert(!out->mMeshes && !out->mNumMeshes);
+
+ // note: the trailing () ensures initialization with NULL - not
+ // many C++ users seem to know this, so pointing it out to avoid
+ // confusion why this code works.
+
+ if(meshes.size()) {
+ out->mMeshes = new aiMesh*[meshes.size()]();
+ out->mNumMeshes = static_cast<unsigned int>(meshes.size());
+
+ std::swap_ranges(meshes.begin(),meshes.end(),out->mMeshes);
+ }
+
+ if(materials.size()) {
+ out->mMaterials = new aiMaterial*[materials.size()]();
+ out->mNumMaterials = static_cast<unsigned int>(materials.size());
+
+ std::swap_ranges(materials.begin(),materials.end(),out->mMaterials);
+ }
+
+ if(animations.size()) {
+ out->mAnimations = new aiAnimation*[animations.size()]();
+ out->mNumAnimations = static_cast<unsigned int>(animations.size());
+
+ std::swap_ranges(animations.begin(),animations.end(),out->mAnimations);
+ }
+
+ if(lights.size()) {
+ out->mLights = new aiLight*[lights.size()]();
+ out->mNumLights = static_cast<unsigned int>(lights.size());
+
+ std::swap_ranges(lights.begin(),lights.end(),out->mLights);
+ }
+
+ if(cameras.size()) {
+ out->mCameras = new aiCamera*[cameras.size()]();
+ out->mNumCameras = static_cast<unsigned int>(cameras.size());
+
+ std::swap_ranges(cameras.begin(),cameras.end(),out->mCameras);
+ }
+ }
+
+
+private:
+
+ // 0: not assigned yet, others: index is value - 1
+ unsigned int defaultMaterialIndex;
+
+ std::vector<aiMesh*> meshes;
+ std::vector<aiMaterial*> materials;
+ std::vector<aiAnimation*> animations;
+ std::vector<aiLight*> lights;
+ std::vector<aiCamera*> cameras;
+
+ typedef std::map<const Material*, unsigned int> MaterialMap;
+ MaterialMap materials_converted;
+
+ typedef std::map<const Geometry*, std::vector<unsigned int> > MeshMap;
+ MeshMap meshes_converted;
+
+ // fixed node name -> which trafo chain components have animations?
+ typedef std::map<std::string, unsigned int> NodeAnimBitMap;
+ NodeAnimBitMap node_anim_chain_bits;
+
+ // name -> has had its prefix_stripped?
+ typedef std::map<std::string, bool> NodeNameMap;
+ NodeNameMap node_names;
+
+ typedef std::map<std::string, std::string> NameNameMap;
+ NameNameMap renamed_nodes;
+
+ double anim_fps;
+
+ aiScene* const out;
+ const FBX::Document& doc;
+};
+
+//} // !anon
+
+// ------------------------------------------------------------------------------------------------
+void ConvertToAssimpScene(aiScene* out, const Document& doc)
+{
+ Converter converter(out,doc);
+}
+
+} // !FBX
+} // !Assimp
+
+#endif