summaryrefslogtreecommitdiff
path: root/src/xmlpatterns/schema/qxsdstatemachine.cpp
blob: 3a59042cbc9f100cdcf4b5fcf0d00b8dbf2db75e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/****************************************************************************
**
** Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
** Contact: Qt Software Information (qt-info@nokia.com)
**
** This file is part of the QtXmlPatterns of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the either Technology Preview License Agreement or the
** Beta Release License Agreement.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain
** additional rights. These rights are described in the Nokia Qt LGPL
** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
** package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
** If you are unsure which license is appropriate for your use, please
** contact the sales department at http://www.qtsoftware.com/contact.
** $QT_END_LICENSE$
**
****************************************************************************/

/*
 * NOTE: This file is included by qxsdstatemachine_p.h
 * if you need some includes, put them in qxsdstatemachine_p.h (outside of the namespace)
 */

template <typename TransitionType>
XsdStateMachine<TransitionType>::XsdStateMachine()
    : m_counter(50)
{
}

template <typename TransitionType>
XsdStateMachine<TransitionType>::XsdStateMachine(const NamePool::Ptr &namePool)
    : m_namePool(namePool)
    , m_counter(50)
{
}

template <typename TransitionType>
typename XsdStateMachine<TransitionType>::StateId XsdStateMachine<TransitionType>::addState(StateType type)
{
#ifndef QT_NO_DEBUG
    // make sure we don't have two start states
    if (type == StartState) {
        QHashIterator<StateId, StateType> it(m_states);
        while (it.hasNext()) {
            it.next();
            Q_ASSERT(it.value() != StartState && it.value() != StartEndState);
        }
    }
#endif // QT_NO_DEBUG

    // reserve new state id
    const StateId id = ++m_counter;
    m_states.insert(id, type);

    // if it is a start state, we make it to our current state
    if (type == StartState || type == StartEndState)
        m_currentState = id;

    return id;
}

template <typename TransitionType>
void XsdStateMachine<TransitionType>::addTransition(StateId start, TransitionType transition, StateId end)
{
    QHash<TransitionType, QVector<StateId> > &hash = m_transitions[start];
    QVector<StateId> &states = hash[transition];
    if (!states.contains(end))
        states.append(end);
}

template <typename TransitionType>
void XsdStateMachine<TransitionType>::addEpsilonTransition(StateId start, StateId end)
{
    QVector<StateId> &states = m_epsilonTransitions[start];
    states.append(end);
}

template <typename TransitionType>
void XsdStateMachine<TransitionType>::reset()
{
    // reset the machine to the start state
    QHashIterator<StateId, StateType> it(m_states);
    while (it.hasNext()) {
        it.next();
        if (it.value() == StartState || it.value() == StartEndState) {
            m_currentState = it.key();
            return;
        }
    }

    Q_ASSERT(false);
}

template <typename TransitionType>
void XsdStateMachine<TransitionType>::clear()
{
    m_states.clear();
    m_transitions.clear();
    m_epsilonTransitions.clear();
    m_currentState = -1;
    m_counter = 50;
}

template <typename TransitionType>
bool XsdStateMachine<TransitionType>::proceed(TransitionType transition)
{
    // check that we are not in an invalid state
    if (!m_transitions.contains(m_currentState)) {
        return false;
    }

    // fetch the transition entry for the current state
    const QHash<TransitionType, QVector<StateId> > &entry = m_transitions[m_currentState];
    if (entry.contains(transition)) { // is there an transition for the given input?
        m_currentState = entry.value(transition).first();
        m_lastTransition = transition;
        return true;
    } else {
        return false;
    }
}

template <typename TransitionType>
QList<TransitionType> XsdStateMachine<TransitionType>::possibleTransitions() const
{
    // check that we are not in an invalid state
    if (!m_transitions.contains(m_currentState)) {
        return QList<TransitionType>();
    }

    // fetch the transition entry for the current state
    const QHash<TransitionType, QVector<StateId> > &entry = m_transitions[m_currentState];

    return entry.keys();
}

template <typename TransitionType>
template <typename InputType>
bool XsdStateMachine<TransitionType>::proceed(InputType input)
{
    // check that we are not in an invalid state
    if (!m_transitions.contains(m_currentState)) {
        return false;
    }

    // fetch the transition entry for the current state
    const QHash<TransitionType, QVector<StateId> > &entry = m_transitions[m_currentState];
    QHashIterator<TransitionType, QVector<StateId> > it(entry);
    while (it.hasNext()) {
        it.next();
        if (inputEqualsTransition(input, it.key())) {
            m_currentState = it.value().first();
            m_lastTransition = it.key();
            return true;
        }
    }

    return false;
}

template <typename TransitionType>
template <typename InputType>
bool XsdStateMachine<TransitionType>::inputEqualsTransition(InputType input, TransitionType transition) const
{
    return false;
}

template <typename TransitionType>
bool XsdStateMachine<TransitionType>::inEndState() const
{
    // check if current state is an end state
    return (m_states.value(m_currentState) == StartEndState || m_states.value(m_currentState) == EndState);
}

template <typename TransitionType>
TransitionType XsdStateMachine<TransitionType>::lastTransition() const
{
    return m_lastTransition;
}

template <typename TransitionType>
typename XsdStateMachine<TransitionType>::StateId XsdStateMachine<TransitionType>::startState() const
{
    QHashIterator<StateId, StateType> it(m_states);
    while (it.hasNext()) {
        it.next();
        if (it.value() == StartState || it.value() == StartEndState)
            return it.key();
    }

    Q_ASSERT(false); // should never be reached
    return -1;
}

template <typename TransitionType>
QString XsdStateMachine<TransitionType>::transitionTypeToString(TransitionType type) const
{
    Q_UNUSED(type)

    return QString();
}

template <typename TransitionType>
bool XsdStateMachine<TransitionType>::outputGraph(QIODevice *device, const QString &graphName) const
{
    if (!device->isOpen()) {
        qWarning("device must be open for writing");
        return false;
    }

    QByteArray graph;
    QTextStream s(&graph);

    QHashIterator<StateId, QHash<TransitionType, QVector<StateId> > > it(m_transitions);
    QHashIterator<StateId, StateType> it3(m_states);

    s << "digraph " << graphName << " {\n";
    s << "  mindist = 2.0\n";

    // draw edges
    while (it.hasNext()) {
        it.next();

        QHashIterator<TransitionType, QVector<StateId> > it2(it.value());
        while (it2.hasNext()) {
            it2.next();
            for (int i = 0; i < it2.value().count(); ++i)
                s << "  " << it.key() << " -> " << it2.value().at(i) << " [label=\"" << transitionTypeToString(it2.key()) << "\"]\n";
        }
    }

    QHashIterator<StateId, QVector<StateId> > it4(m_epsilonTransitions);
    while (it4.hasNext()) {
        it4.next();

        const QVector<StateId> states = it4.value();
        for (int i = 0; i < states.count(); ++i)
            s << "  " << it4.key() << " -> " << states.at(i) << " [label=\"&#949;\"]\n";
    }

    // draw node infos
    while (it3.hasNext()) {
        it3.next();

        QString style;
        if (it3.value() == StartState) {
            style = QLatin1String("shape=circle, style=filled, color=blue");
        } else if (it3.value() == StartEndState) {
            style = QLatin1String("shape=doublecircle, style=filled, color=blue");
        } else if (it3.value() == InternalState) {
            style = QLatin1String("shape=circle, style=filled, color=red");
        } else if (it3.value() == EndState) {
            style = QLatin1String("shape=doublecircle, style=filled, color=green");
        }

        s << "  " << it3.key() << " [" << style << "]\n";
    }

    s << "}\n";

    s.flush();

    if (device->write(graph) == -1)
        return false;

    return true;
}


template <typename TransitionType>
typename XsdStateMachine<TransitionType>::StateId XsdStateMachine<TransitionType>::dfaStateForNfaState(QSet<StateId> nfaState,
                                                                                                       QList< QPair<QSet<StateId>, StateId> > &stateTable,
                                                                                                       XsdStateMachine<TransitionType> &dfa) const
{
    // check whether we have the given state in our lookup table
    // already, in that case simply return it
    for (int i = 0; i < stateTable.count(); ++i) {
        if (stateTable.at(i).first == nfaState)
            return stateTable.at(i).second;
    }

    // check if the NFA state set contains a Start or End
    // state, in that case our new DFA state will be a
    // Start or End state as well
    StateType type = InternalState;
    QSetIterator<StateId> it(nfaState);
    bool hasStartState = false;
    bool hasEndState = false;
    while (it.hasNext()) {
        const StateId state = it.next();
        if (m_states.value(state) == EndState) {
            hasEndState = true;
        } else if (m_states.value(state) == StartState) {
            hasStartState = true;
        }
    }
    if (hasStartState) {
        if (hasEndState)
            type = StartEndState;
        else
            type = StartState;
    } else if (hasEndState) {
        type = EndState;
    }

    // create the new DFA state
    const StateId dfaState = dfa.addState(type);

    // add the new DFA state to the lookup table
    stateTable.append(qMakePair<QSet<StateId>, StateId>(nfaState, dfaState));

    return dfaState;
}


template <typename TransitionType>
QSet<typename XsdStateMachine<TransitionType>::StateId> XsdStateMachine<TransitionType>::epsilonClosure(const QSet<StateId> &input) const
{
    // every state can reach itself by epsilon transition, so include the input states
    // in the result as well
    QSet<StateId> result = input;

    // add the input states to the list of to be processed states
    QList<StateId> workStates = input.toList();
    while (!workStates.isEmpty()) { // while there are states to be processed left...

        // dequeue one state from list
        const StateId state = workStates.takeFirst();

        // get the list of states that can be reached by the epsilon transition
        // from the current 'state'
        const QVector<StateId> targetStates = m_epsilonTransitions.value(state);
        for (int i = 0; i < targetStates.count(); ++i) {
            // if we have this target state not in our result set yet...
            if (!result.contains(targetStates.at(i))) {
                // ... add it to the result set
                result.insert(targetStates.at(i));

                // add the target state to the list of to be processed states as well,
                // as we want to have the epsilon transitions not only for the first
                // level of following states
                workStates.append(targetStates.at(i));
            }
        }
    }

    return result;
}

template <typename TransitionType>
QSet<typename XsdStateMachine<TransitionType>::StateId> XsdStateMachine<TransitionType>::move(const QSet<StateId> &states, TransitionType input) const
{
    QSet<StateId> result;

    QSetIterator<StateId> it(states);
    while (it.hasNext()) { // iterate over all given states
        const StateId state = it.next();

        // get the transition table for the current state
        const QHash<TransitionType, QVector<StateId> > transitions = m_transitions.value(state);

        // get the target states for the given input
        const QVector<StateId> targetStates = transitions.value(input);

        // add all target states to the result
        for (int i = 0; i < targetStates.size(); ++i)
            result.insert(targetStates.at(i));
    }

    return result;
}

template <typename TransitionType>
XsdStateMachine<TransitionType> XsdStateMachine<TransitionType>::toDFA() const
{
    XsdStateMachine<TransitionType> dfa(m_namePool);
    dfa.m_counter = 100;
    QList< QPair< QSet<StateId>, StateId> > table;
    QList< QSet<StateId> > isMarked;

    // search the start state as the algorithm starts with it...
    StateId startState = -1;
    QHashIterator<StateId, StateType> stateTypeIt(m_states);
    while (stateTypeIt.hasNext()) {
        stateTypeIt.next();
        if (stateTypeIt.value() == StartState) {
            startState = stateTypeIt.key();
            break;
        }
    }
    Q_ASSERT(startState != -1);

    // our list of state set that still have to be processed
    QList< QSet<StateId> > workStates;

    // add the start state to the list of to processed state sets
    workStates.append(epsilonClosure(QSet<StateId>() << startState));

    while (!workStates.isEmpty()) { // as long as there are state sets to process left

        // enqueue set of states
        const QSet<StateId> states = workStates.takeFirst();

        if (isMarked.contains(states)) // we processed this state set already
            continue;

        // mark as processed
        isMarked.append(states);

        // select a list of all inputs that are possible for
        // the 'states' set
        QList<TransitionType> input;

        {
            QSetIterator<StateId> it(states);
            while (it.hasNext()) {
                input << m_transitions.value(it.next()).keys();
            }
        }

        // get the state in DFA that corresponds to the 'states' set in the NFA
        const StateId dfaBegin = dfaStateForNfaState(states, table, dfa);

        for (int i = 0; i < input.count(); ++i) { // for each possible input
            // retrieve the states that can  be reached from the 'states' set by the
            // given input or by epsilon transition
            const QSet<StateId> followStates = epsilonClosure(move(states, input.at(i)));

            // get the state in DFA that corresponds to the 'followStates' set in the NFA
            const StateId dfaEnd = dfaStateForNfaState(followStates, table, dfa);

            // adds a new transition to the DFA that corresponds to the transitions between
            // 'states' and 'followStates' in the NFA
            dfa.addTransition(dfaBegin, input.at(i), dfaEnd);

            // add the 'followStates' to the list of to be processed state sets
            workStates.append(followStates);
        }
    }

    return dfa;
}

template <typename TransitionType>
QHash<typename XsdStateMachine<TransitionType>::StateId, typename XsdStateMachine<TransitionType>::StateType> XsdStateMachine<TransitionType>::states() const
{
    return m_states;
}

template <typename TransitionType>
QHash<typename XsdStateMachine<TransitionType>::StateId, QHash<TransitionType, QVector<typename XsdStateMachine<TransitionType>::StateId> > > XsdStateMachine<TransitionType>::transitions() const
{
    return m_transitions;
}