summaryrefslogtreecommitdiff
path: root/demos/spectrum/fftreal/fftreal.pas
blob: ea6375450e6c0b5e625cdfd6b75e76a1af1ada46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
(*****************************************************************************

        DIGITAL SIGNAL PROCESSING TOOLS
        Version 1.03, 2001/06/15
        (c) 1999 - Laurent de Soras

        FFTReal.h
        Fourier transformation of real number arrays.
        Portable ISO C++

------------------------------------------------------------------------------

	LEGAL

	Source code may be freely used for any purpose, including commercial
	applications. Programs must display in their "About" dialog-box (or
	documentation) a text telling they use these routines by Laurent de Soras.
	Modified source code can be distributed, but modifications must be clearly
	indicated.

	CONTACT

	Laurent de Soras
	92 avenue Albert 1er
	92500 Rueil-Malmaison
	France

	ldesoras@club-internet.fr

------------------------------------------------------------------------------

        Translation to ObjectPascal by :
          Frederic Vanmol
          frederic@axiworld.be

*****************************************************************************)


unit
    FFTReal;

interface

uses
    Windows;

(* Change this typedef to use a different floating point type in your FFTs
	(i.e. float, double or long double). *)
type
    pflt_t = ^flt_t;
    flt_t = single;

    pflt_array = ^flt_array;
    flt_array = array[0..0] of flt_t;

    plongarray = ^longarray;
    longarray = array[0..0] of longint;

const
     sizeof_flt : longint = SizeOf(flt_t);



type
    // Bit reversed look-up table nested class
    TBitReversedLUT = class
    private
      _ptr : plongint;
    public
      constructor Create(const nbr_bits: integer);
      destructor Destroy; override;
      function get_ptr: plongint;
    end;

    // Trigonometric look-up table nested class
    TTrigoLUT = class
    private
      _ptr : pflt_t;
    public
      constructor Create(const nbr_bits: integer);
      destructor Destroy; override;
      function get_ptr(const level: integer): pflt_t;
    end;

    TFFTReal = class
    private
      _bit_rev_lut  : TBitReversedLUT;
      _trigo_lut    : TTrigoLUT;
      _sqrt2_2      : flt_t;
      _length       : longint;
      _nbr_bits     : integer;
      _buffer_ptr   : pflt_t;
    public
      constructor Create(const length: longint);
      destructor Destroy; override;

      procedure do_fft(f: pflt_array; const x: pflt_array);
      procedure do_ifft(const f: pflt_array; x: pflt_array);
      procedure rescale(x: pflt_array);
    end;







implementation

uses
    Math;

{ TBitReversedLUT }

constructor TBitReversedLUT.Create(const nbr_bits: integer);
var
   length   : longint;
   cnt      : longint;
   br_index : longint;
   bit      : longint;
begin
  inherited Create;

  length := 1 shl nbr_bits;
  GetMem(_ptr, length*SizeOf(longint));

  br_index := 0;
  plongarray(_ptr)^[0] := 0;
  for cnt := 1 to length-1 do
  begin
    // ++br_index (bit reversed)
    bit := length shr 1;
    br_index := br_index xor bit;
    while br_index and bit = 0 do
    begin
      bit := bit shr 1;
      br_index := br_index xor bit;
    end;

    plongarray(_ptr)^[cnt] := br_index;
  end;
end;

destructor TBitReversedLUT.Destroy;
begin
  FreeMem(_ptr);
  _ptr := nil;
  inherited;
end;

function TBitReversedLUT.get_ptr: plongint;
begin
  Result := _ptr;
end;

{ TTrigLUT }

constructor TTrigoLUT.Create(const nbr_bits: integer);
var
   total_len : longint;
   PI        : double;
   level     : integer;
   level_len : longint;
   level_ptr : pflt_array;
   mul       : double;
   i         : longint;
begin
  inherited Create;

  _ptr := nil;

  if (nbr_bits > 3) then
  begin
    total_len := (1 shl (nbr_bits - 1)) - 4;
    GetMem(_ptr, total_len * sizeof_flt);

    PI := ArcTan(1) * 4;
    for level := 3 to nbr_bits-1 do
    begin
      level_len := 1 shl (level - 1);
      level_ptr := pointer(get_ptr(level));
      mul := PI / (level_len shl 1);

      for i := 0 to level_len-1 do
        level_ptr^[i] := cos(i * mul);
    end;
  end;
end;

destructor TTrigoLUT.Destroy;
begin
  FreeMem(_ptr);
  _ptr := nil;
  inherited;
end;

function TTrigoLUT.get_ptr(const level: integer): pflt_t;
var
   tempp : pflt_t;
begin
  tempp := _ptr;
  inc(tempp, (1 shl (level-1)) - 4);
  Result := tempp;
end;

{ TFFTReal }

constructor TFFTReal.Create(const length: longint);
begin
  inherited Create;

  _length := length;
  _nbr_bits := Floor(Ln(length) / Ln(2) + 0.5);
  _bit_rev_lut := TBitReversedLUT.Create(Floor(Ln(length) / Ln(2) + 0.5));
  _trigo_lut := TTrigoLUT.Create(Floor(Ln(length) / Ln(2) + 0.05));
  _sqrt2_2 := Sqrt(2) * 0.5;

  _buffer_ptr := nil;
  if _nbr_bits > 2 then
    GetMem(_buffer_ptr, _length * sizeof_flt);
end;

destructor TFFTReal.Destroy;
begin
  if _buffer_ptr <> nil then
  begin
    FreeMem(_buffer_ptr);
    _buffer_ptr := nil;
  end;

  _bit_rev_lut.Free;
  _bit_rev_lut := nil;
  _trigo_lut.Free;
  _trigo_lut := nil;

  inherited;       
end;

(*==========================================================================*/
/*      Name: do_fft                                                        */
/*      Description: Compute the FFT of the array.                          */
/*      Input parameters:                                                   */
/*        - x: pointer on the source array (time).                          */
/*      Output parameters:                                                  */
/*        - f: pointer on the destination array (frequencies).              */
/*             f [0...length(x)/2] = real values,                           */
/*             f [length(x)/2+1...length(x)-1] = imaginary values of        */
/*               coefficents 1...length(x)/2-1.                             */
/*==========================================================================*)
procedure TFFTReal.do_fft(f: pflt_array; const x: pflt_array);
var
   sf, df     : pflt_array;
   pass       : integer;
   nbr_coef   : longint;
   h_nbr_coef : longint;
   d_nbr_coef : longint;
   coef_index : longint;
   bit_rev_lut_ptr : plongarray;
   rev_index_0 : longint;
   rev_index_1 : longint;
   rev_index_2 : longint;
   rev_index_3 : longint;
   df2         : pflt_array;
   n1, n2, n3  : integer;
   sf_0, sf_2  : flt_t;
   sqrt2_2     : flt_t;
   v           : flt_t;
   cos_ptr     : pflt_array;
   i           : longint;
   sf1r, sf2r  : pflt_array;
   dfr, dfi    : pflt_array;
   sf1i, sf2i  : pflt_array;
   c, s        : flt_t;
   temp_ptr    : pflt_array;
   b_0, b_2    : flt_t;
begin
  n1 := 1;
  n2 := 2;
  n3 := 3;

  (*______________________________________________
   *
   * General case
   *______________________________________________
   *)

  if _nbr_bits > 2 then
  begin
    if _nbr_bits and 1 <> 0 then
    begin
      df := pointer(_buffer_ptr);
      sf := f;
    end
    else
    begin
      df := f;
      sf := pointer(_buffer_ptr);
    end;

    //
    // Do the transformation in several passes
    //

    // First and second pass at once
    bit_rev_lut_ptr := pointer(_bit_rev_lut.get_ptr);
    coef_index := 0;

    repeat
      rev_index_0 := bit_rev_lut_ptr^[coef_index];
      rev_index_1 := bit_rev_lut_ptr^[coef_index + 1];
      rev_index_2 := bit_rev_lut_ptr^[coef_index + 2];
      rev_index_3 := bit_rev_lut_ptr^[coef_index + 3];

      df2 := pointer(longint(df) + (coef_index*sizeof_flt));
      df2^[n1] := x^[rev_index_0] - x^[rev_index_1];
      df2^[n3] := x^[rev_index_2] - x^[rev_index_3];

      sf_0 := x^[rev_index_0] + x^[rev_index_1];
      sf_2 := x^[rev_index_2] + x^[rev_index_3];

      df2^[0] := sf_0 + sf_2;
      df2^[n2] := sf_0 - sf_2;

      inc(coef_index, 4);
    until (coef_index >= _length);


    // Third pass
    coef_index := 0;
    sqrt2_2 := _sqrt2_2;

    repeat
      sf^[coef_index] := df^[coef_index] + df^[coef_index + 4];
      sf^[coef_index + 4] := df^[coef_index] - df^[coef_index + 4];
      sf^[coef_index + 2] := df^[coef_index + 2];
      sf^[coef_index + 6] := df^[coef_index + 6];

      v := (df [coef_index + 5] - df^[coef_index + 7]) * sqrt2_2;
      sf^[coef_index + 1] := df^[coef_index + 1] + v;
      sf^[coef_index + 3] := df^[coef_index + 1] - v;

      v := (df^[coef_index + 5] + df^[coef_index + 7]) * sqrt2_2;
      sf [coef_index + 5] := v + df^[coef_index + 3];
      sf [coef_index + 7] := v - df^[coef_index + 3];

      inc(coef_index, 8);
    until (coef_index >= _length);


    // Next pass
    for pass := 3 to _nbr_bits-1 do
    begin
      coef_index := 0;
      nbr_coef := 1 shl pass;
      h_nbr_coef := nbr_coef shr 1;
      d_nbr_coef := nbr_coef shl 1;

      cos_ptr := pointer(_trigo_lut.get_ptr(pass));
      repeat
        sf1r := pointer(longint(sf) + (coef_index * sizeof_flt));
        sf2r := pointer(longint(sf1r) + (nbr_coef * sizeof_flt));
        dfr := pointer(longint(df) + (coef_index * sizeof_flt));
        dfi := pointer(longint(dfr) + (nbr_coef * sizeof_flt));

        // Extreme coefficients are always real
        dfr^[0] := sf1r^[0] + sf2r^[0];
        dfi^[0] := sf1r^[0] - sf2r^[0];   // dfr [nbr_coef] =
        dfr^[h_nbr_coef] := sf1r^[h_nbr_coef];
        dfi^[h_nbr_coef] := sf2r^[h_nbr_coef];

        // Others are conjugate complex numbers
        sf1i := pointer(longint(sf1r) + (h_nbr_coef * sizeof_flt));
        sf2i := pointer(longint(sf1i) + (nbr_coef * sizeof_flt));

        for i := 1 to h_nbr_coef-1 do
        begin
          c := cos_ptr^[i];               // cos (i*PI/nbr_coef);
          s := cos_ptr^[h_nbr_coef - i];  // sin (i*PI/nbr_coef);

          v := sf2r^[i] * c - sf2i^[i] * s;
          dfr^[i] := sf1r^[i] + v;
          dfi^[-i] := sf1r^[i] - v;	// dfr [nbr_coef - i] =

          v := sf2r^[i] * s + sf2i^[i] * c;
          dfi^[i] := v + sf1i^[i];
          dfi^[nbr_coef - i] := v - sf1i^[i];
        end;

        inc(coef_index, d_nbr_coef);
      until (coef_index >= _length);

      // Prepare to the next pass
      temp_ptr := df;
      df := sf;
      sf := temp_ptr;
    end;
  end

  (*______________________________________________
   *
   * Special cases
   *______________________________________________
   *)

  // 4-point FFT
  else if _nbr_bits = 2 then
  begin
    f^[n1] := x^[0] - x^[n2];
    f^[n3] := x^[n1] - x^[n3];

    b_0 := x^[0] + x^[n2];
    b_2 := x^[n1] + x^[n3];

    f^[0] := b_0 + b_2;
    f^[n2] := b_0 - b_2;
  end

  // 2-point FFT
  else if _nbr_bits = 1 then
  begin
    f^[0] := x^[0] + x^[n1];
    f^[n1] := x^[0] - x^[n1];
  end

  // 1-point FFT
  else
    f^[0] := x^[0];
end;


(*==========================================================================*/
/*      Name: do_ifft                                                       */
/*      Description: Compute the inverse FFT of the array. Notice that      */
/*                   IFFT (FFT (x)) = x * length (x). Data must be          */
/*                   post-scaled.                                           */
/*      Input parameters:                                                   */
/*        - f: pointer on the source array (frequencies).                   */
/*             f [0...length(x)/2] = real values,                           */
/*             f [length(x)/2+1...length(x)-1] = imaginary values of        */
/*               coefficents 1...length(x)/2-1.                             */
/*      Output parameters:                                                  */
/*        - x: pointer on the destination array (time).                     */
/*==========================================================================*)
procedure TFFTReal.do_ifft(const f: pflt_array; x: pflt_array);
var
   n1, n2, n3      : integer;
   n4, n5, n6, n7  : integer;
   sf, df, df_temp : pflt_array;
   pass            : integer;
   nbr_coef        : longint;
   h_nbr_coef      : longint;
   d_nbr_coef      : longint;
   coef_index      : longint;
   cos_ptr         : pflt_array;
   i               : longint;
   sfr, sfi        : pflt_array;
   df1r, df2r      : pflt_array;
   df1i, df2i      : pflt_array;
   c, s, vr, vi    : flt_t;
   temp_ptr        : pflt_array;
   sqrt2_2         : flt_t;
   bit_rev_lut_ptr : plongarray;
   sf2             : pflt_array;
   b_0, b_1, b_2, b_3 : flt_t;
begin
  n1 := 1;
  n2 := 2;
  n3 := 3;
  n4 := 4;
  n5 := 5;
  n6 := 6;
  n7 := 7;

  (*______________________________________________
   *
   * General case
   *______________________________________________
   *)

  if _nbr_bits > 2 then
  begin
    sf := f;

    if _nbr_bits and 1 <> 0 then
    begin
      df := pointer(_buffer_ptr);
      df_temp := x;
    end
    else
    begin
      df := x;
      df_temp := pointer(_buffer_ptr);
    end;

    // Do the transformation in several pass

    // First pass
    for pass := _nbr_bits-1 downto 3 do
    begin
      coef_index := 0;
      nbr_coef := 1 shl pass;
      h_nbr_coef := nbr_coef shr 1;
      d_nbr_coef := nbr_coef shl 1;

      cos_ptr := pointer(_trigo_lut.get_ptr(pass));

      repeat
        sfr := pointer(longint(sf) + (coef_index*sizeof_flt));
        sfi := pointer(longint(sfr) + (nbr_coef*sizeof_flt));
        df1r := pointer(longint(df) + (coef_index*sizeof_flt));
        df2r := pointer(longint(df1r) + (nbr_coef*sizeof_flt));

        // Extreme coefficients are always real
        df1r^[0] := sfr^[0] + sfi^[0];		// + sfr [nbr_coef]
        df2r^[0] := sfr^[0] - sfi^[0];		// - sfr [nbr_coef]
        df1r^[h_nbr_coef] := sfr^[h_nbr_coef] * 2;
        df2r^[h_nbr_coef] := sfi^[h_nbr_coef] * 2;

        // Others are conjugate complex numbers
        df1i := pointer(longint(df1r) + (h_nbr_coef*sizeof_flt));
        df2i := pointer(longint(df1i) + (nbr_coef*sizeof_flt));

        for i := 1 to h_nbr_coef-1 do
        begin
          df1r^[i] := sfr^[i] + sfi^[-i];		// + sfr [nbr_coef - i]
          df1i^[i] := sfi^[i] - sfi^[nbr_coef - i];

          c := cos_ptr^[i];					// cos (i*PI/nbr_coef);
          s := cos_ptr^[h_nbr_coef - i];	// sin (i*PI/nbr_coef);
          vr := sfr^[i] - sfi^[-i];		// - sfr [nbr_coef - i]
          vi := sfi^[i] + sfi^[nbr_coef - i];

          df2r^[i] := vr * c + vi * s;
          df2i^[i] := vi * c - vr * s;
        end;

        inc(coef_index, d_nbr_coef);
      until (coef_index >= _length);


      // Prepare to the next pass 
      if (pass < _nbr_bits - 1) then
      begin
        temp_ptr := df;
        df := sf;
        sf := temp_ptr;
      end
      else
      begin
        sf := df;
        df := df_temp;
      end
    end;

    // Antepenultimate pass
    sqrt2_2 := _sqrt2_2;
    coef_index := 0;

    repeat
      df^[coef_index] := sf^[coef_index] + sf^[coef_index + 4];
      df^[coef_index + 4] := sf^[coef_index] - sf^[coef_index + 4];
      df^[coef_index + 2] := sf^[coef_index + 2] * 2;
      df^[coef_index + 6] := sf^[coef_index + 6] * 2;

      df^[coef_index + 1] := sf^[coef_index + 1] + sf^[coef_index + 3];
      df^[coef_index + 3] := sf^[coef_index + 5] - sf^[coef_index + 7];

      vr := sf^[coef_index + 1] - sf^[coef_index + 3];
      vi := sf^[coef_index + 5] + sf^[coef_index + 7];

      df^[coef_index + 5] := (vr + vi) * sqrt2_2;
      df^[coef_index + 7] := (vi - vr) * sqrt2_2;

      inc(coef_index, 8);
    until (coef_index >= _length);


    // Penultimate and last pass at once 
    coef_index := 0;
    bit_rev_lut_ptr := pointer(_bit_rev_lut.get_ptr);
    sf2 := df;

    repeat
      b_0 := sf2^[0] + sf2^[n2];
      b_2 := sf2^[0] - sf2^[n2];
      b_1 := sf2^[n1] * 2;
      b_3 := sf2^[n3] * 2;

      x^[bit_rev_lut_ptr^[0]] := b_0 + b_1;
      x^[bit_rev_lut_ptr^[n1]] := b_0 - b_1;
      x^[bit_rev_lut_ptr^[n2]] := b_2 + b_3;
      x^[bit_rev_lut_ptr^[n3]] := b_2 - b_3;

      b_0 := sf2^[n4] + sf2^[n6];
      b_2 := sf2^[n4] - sf2^[n6];
      b_1 := sf2^[n5] * 2;
      b_3 := sf2^[n7] * 2;

      x^[bit_rev_lut_ptr^[n4]] := b_0 + b_1;
      x^[bit_rev_lut_ptr^[n5]] := b_0 - b_1;
      x^[bit_rev_lut_ptr^[n6]] := b_2 + b_3;
      x^[bit_rev_lut_ptr^[n7]] := b_2 - b_3;

      inc(sf2, 8);
      inc(coef_index, 8);
      inc(bit_rev_lut_ptr, 8);
    until (coef_index >= _length);
  end

  (*______________________________________________
   *
   * Special cases
   *______________________________________________
   *)

  // 4-point IFFT
  else if _nbr_bits = 2 then
  begin
    b_0 := f^[0] + f [n2];
    b_2 := f^[0] - f [n2];

    x^[0] := b_0 + f [n1] * 2;
    x^[n2] := b_0 - f [n1] * 2;
    x^[n1] := b_2 + f [n3] * 2;
    x^[n3] := b_2 - f [n3] * 2;
  end

  // 2-point IFFT
  else if _nbr_bits = 1 then
  begin
    x^[0] := f^[0] + f^[n1];
    x^[n1] := f^[0] - f^[n1];
  end

  // 1-point IFFT
  else
    x^[0] := f^[0];
end;

(*==========================================================================*/
/*      Name: rescale                                                       */
/*      Description: Scale an array by divide each element by its length.   */
/*                   This function should be called after FFT + IFFT.       */
/*      Input/Output parameters:                                            */
/*        - x: pointer on array to rescale (time or frequency).             */
/*==========================================================================*)
procedure TFFTReal.rescale(x: pflt_array);
var
   mul  : flt_t;
   i    : longint;
begin
  mul := 1.0 / _length;
  i := _length - 1;

  repeat
    x^[i] := x^[i] * mul;
    dec(i);
  until (i < 0);
end;

end.