summaryrefslogtreecommitdiff
path: root/lib/sqlalchemy/sql/elements.py
blob: 1447787cef44426dd144b3d664cf20f6f97e4bc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
# sql/elements.py
# Copyright (C) 2005-2014 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Core SQL expression elements, including :class:`.ClauseElement`,
:class:`.ColumnElement`, and derived classes.

"""

from __future__ import unicode_literals

from .. import util, exc, inspection
from . import type_api
from . import operators
from .visitors import Visitable, cloned_traverse, traverse
from .annotation import Annotated
import itertools
from .base import Executable, PARSE_AUTOCOMMIT, Immutable, NO_ARG
from .base import _generative, Generative

import re
import operator

def _clone(element, **kw):
    return element._clone()

def collate(expression, collation):
    """Return the clause ``expression COLLATE collation``.

    e.g.::

        collate(mycolumn, 'utf8_bin')

    produces::

        mycolumn COLLATE utf8_bin

    """

    expr = _literal_as_binds(expression)
    return BinaryExpression(
        expr,
        _literal_as_text(collation),
        operators.collate, type_=expr.type)

def between(expr, lower_bound, upper_bound, symmetric=False):
    """Produce a ``BETWEEN`` predicate clause.

    E.g.::

        from sqlalchemy import between
        stmt = select([users_table]).where(between(users_table.c.id, 5, 7))

    Would produce SQL resembling::

        SELECT id, name FROM user WHERE id BETWEEN :id_1 AND :id_2

    The :func:`.between` function is a standalone version of the
    :meth:`.ColumnElement.between` method available on all
    SQL expressions, as in::

        stmt = select([users_table]).where(users_table.c.id.between(5, 7))

    All arguments passed to :func:`.between`, including the left side
    column expression, are coerced from Python scalar values if a
    the value is not a :class:`.ColumnElement` subclass.   For example,
    three fixed values can be compared as in::

        print(between(5, 3, 7))

    Which would produce::

        :param_1 BETWEEN :param_2 AND :param_3

    :param expr: a column expression, typically a :class:`.ColumnElement`
     instance or alternatively a Python scalar expression to be coerced
     into a column expression, serving as the left side of the ``BETWEEN``
     expression.

    :param lower_bound: a column or Python scalar expression serving as the lower
     bound of the right side of the ``BETWEEN`` expression.

    :param upper_bound: a column or Python scalar expression serving as the
     upper bound of the right side of the ``BETWEEN`` expression.

    :param symmetric: if True, will render " BETWEEN SYMMETRIC ". Note
     that not all databases support this syntax.

     .. versionadded:: 0.9.5

    .. seealso::

        :meth:`.ColumnElement.between`

    """
    expr = _literal_as_binds(expr)
    return expr.between(lower_bound, upper_bound, symmetric=symmetric)

def literal(value, type_=None):
    """Return a literal clause, bound to a bind parameter.

    Literal clauses are created automatically when non- :class:`.ClauseElement`
    objects (such as strings, ints, dates, etc.) are used in a comparison
    operation with a :class:`.ColumnElement`
    subclass, such as a :class:`~sqlalchemy.schema.Column` object.
    Use this function to force the
    generation of a literal clause, which will be created as a
    :class:`BindParameter` with a bound value.

    :param value: the value to be bound. Can be any Python object supported by
        the underlying DB-API, or is translatable via the given type argument.

    :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` which
        will provide bind-parameter translation for this literal.

    """
    return BindParameter(None, value, type_=type_, unique=True)



def type_coerce(expression, type_):
    """Associate a SQL expression with a particular type, without rendering
    ``CAST``.

    E.g.::

        from sqlalchemy import type_coerce

        stmt = select([type_coerce(log_table.date_string, StringDateTime())])

    The above construct will produce SQL that is usually otherwise unaffected
    by the :func:`.type_coerce` call::

        SELECT date_string FROM log

    However, when result rows are fetched, the ``StringDateTime`` type
    will be applied to result rows on behalf of the ``date_string`` column.

    A type that features bound-value handling will also have that behavior
    take effect when literal values or :func:`.bindparam` constructs are
    passed to :func:`.type_coerce` as targets.
    For example, if a type implements the :meth:`.TypeEngine.bind_expression`
    method or :meth:`.TypeEngine.bind_processor` method or equivalent,
    these functions will take effect at statement compilation/execution time
    when a literal value is passed, as in::

        # bound-value handling of MyStringType will be applied to the
        # literal value "some string"
        stmt = select([type_coerce("some string", MyStringType)])

    :func:`.type_coerce` is similar to the :func:`.cast` function,
    except that it does not render the ``CAST`` expression in the resulting
    statement.

    :param expression: A SQL expression, such as a :class:`.ColumnElement` expression
     or a Python string which will be coerced into a bound literal value.

    :param type_: A :class:`.TypeEngine` class or instance indicating
     the type to which the expression is coerced.

    .. seealso::

        :func:`.cast`

    """
    type_ = type_api.to_instance(type_)

    if hasattr(expression, '__clause_element__'):
        return type_coerce(expression.__clause_element__(), type_)
    elif isinstance(expression, BindParameter):
        bp = expression._clone()
        bp.type = type_
        return bp
    elif not isinstance(expression, Visitable):
        if expression is None:
            return Null()
        else:
            return literal(expression, type_=type_)
    else:
        return Label(None, expression, type_=type_)





def outparam(key, type_=None):
    """Create an 'OUT' parameter for usage in functions (stored procedures),
    for databases which support them.

    The ``outparam`` can be used like a regular function parameter.
    The "output" value will be available from the
    :class:`~sqlalchemy.engine.ResultProxy` object via its ``out_parameters``
    attribute, which returns a dictionary containing the values.

    """
    return BindParameter(
                key, None, type_=type_, unique=False, isoutparam=True)




def not_(clause):
    """Return a negation of the given clause, i.e. ``NOT(clause)``.

    The ``~`` operator is also overloaded on all
    :class:`.ColumnElement` subclasses to produce the
    same result.

    """
    return operators.inv(_literal_as_binds(clause))



@inspection._self_inspects
class ClauseElement(Visitable):
    """Base class for elements of a programmatically constructed SQL
    expression.

    """
    __visit_name__ = 'clause'

    _annotations = {}
    supports_execution = False
    _from_objects = []
    bind = None
    _is_clone_of = None
    is_selectable = False
    is_clause_element = True

    _order_by_label_element = None

    def _clone(self):
        """Create a shallow copy of this ClauseElement.

        This method may be used by a generative API.  Its also used as
        part of the "deep" copy afforded by a traversal that combines
        the _copy_internals() method.

        """
        c = self.__class__.__new__(self.__class__)
        c.__dict__ = self.__dict__.copy()
        ClauseElement._cloned_set._reset(c)
        ColumnElement.comparator._reset(c)

        # this is a marker that helps to "equate" clauses to each other
        # when a Select returns its list of FROM clauses.  the cloning
        # process leaves around a lot of remnants of the previous clause
        # typically in the form of column expressions still attached to the
        # old table.
        c._is_clone_of = self

        return c

    @property
    def _constructor(self):
        """return the 'constructor' for this ClauseElement.

        This is for the purposes for creating a new object of
        this type.   Usually, its just the element's __class__.
        However, the "Annotated" version of the object overrides
        to return the class of its proxied element.

        """
        return self.__class__

    @util.memoized_property
    def _cloned_set(self):
        """Return the set consisting all cloned ancestors of this
        ClauseElement.

        Includes this ClauseElement.  This accessor tends to be used for
        FromClause objects to identify 'equivalent' FROM clauses, regardless
        of transformative operations.

        """
        s = util.column_set()
        f = self
        while f is not None:
            s.add(f)
            f = f._is_clone_of
        return s

    def __getstate__(self):
        d = self.__dict__.copy()
        d.pop('_is_clone_of', None)
        return d

    def _annotate(self, values):
        """return a copy of this ClauseElement with annotations
        updated by the given dictionary.

        """
        return Annotated(self, values)

    def _with_annotations(self, values):
        """return a copy of this ClauseElement with annotations
        replaced by the given dictionary.

        """
        return Annotated(self, values)

    def _deannotate(self, values=None, clone=False):
        """return a copy of this :class:`.ClauseElement` with annotations
        removed.

        :param values: optional tuple of individual values
         to remove.

        """
        if clone:
            # clone is used when we are also copying
            # the expression for a deep deannotation
            return self._clone()
        else:
            # if no clone, since we have no annotations we return
            # self
            return self

    def _execute_on_connection(self, connection, multiparams, params):
        return connection._execute_clauseelement(self, multiparams, params)

    def unique_params(self, *optionaldict, **kwargs):
        """Return a copy with :func:`bindparam()` elements replaced.

        Same functionality as ``params()``, except adds `unique=True`
        to affected bind parameters so that multiple statements can be
        used.

        """
        return self._params(True, optionaldict, kwargs)

    def params(self, *optionaldict, **kwargs):
        """Return a copy with :func:`bindparam()` elements replaced.

        Returns a copy of this ClauseElement with :func:`bindparam()`
        elements replaced with values taken from the given dictionary::

          >>> clause = column('x') + bindparam('foo')
          >>> print clause.compile().params
          {'foo':None}
          >>> print clause.params({'foo':7}).compile().params
          {'foo':7}

        """
        return self._params(False, optionaldict, kwargs)

    def _params(self, unique, optionaldict, kwargs):
        if len(optionaldict) == 1:
            kwargs.update(optionaldict[0])
        elif len(optionaldict) > 1:
            raise exc.ArgumentError(
                "params() takes zero or one positional dictionary argument")

        def visit_bindparam(bind):
            if bind.key in kwargs:
                bind.value = kwargs[bind.key]
                bind.required = False
            if unique:
                bind._convert_to_unique()
        return cloned_traverse(self, {}, {'bindparam': visit_bindparam})

    def compare(self, other, **kw):
        """Compare this ClauseElement to the given ClauseElement.

        Subclasses should override the default behavior, which is a
        straight identity comparison.

        \**kw are arguments consumed by subclass compare() methods and
        may be used to modify the criteria for comparison.
        (see :class:`.ColumnElement`)

        """
        return self is other

    def _copy_internals(self, clone=_clone, **kw):
        """Reassign internal elements to be clones of themselves.

        Called during a copy-and-traverse operation on newly
        shallow-copied elements to create a deep copy.

        The given clone function should be used, which may be applying
        additional transformations to the element (i.e. replacement
        traversal, cloned traversal, annotations).

        """
        pass

    def get_children(self, **kwargs):
        """Return immediate child elements of this :class:`.ClauseElement`.

        This is used for visit traversal.

        \**kwargs may contain flags that change the collection that is
        returned, for example to return a subset of items in order to
        cut down on larger traversals, or to return child items from a
        different context (such as schema-level collections instead of
        clause-level).

        """
        return []

    def self_group(self, against=None):
        """Apply a 'grouping' to this :class:`.ClauseElement`.

        This method is overridden by subclasses to return a
        "grouping" construct, i.e. parenthesis.   In particular
        it's used by "binary" expressions to provide a grouping
        around themselves when placed into a larger expression,
        as well as by :func:`.select` constructs when placed into
        the FROM clause of another :func:`.select`.  (Note that
        subqueries should be normally created using the
        :meth:`.Select.alias` method, as many platforms require
        nested SELECT statements to be named).

        As expressions are composed together, the application of
        :meth:`self_group` is automatic - end-user code should never
        need to use this method directly.  Note that SQLAlchemy's
        clause constructs take operator precedence into account -
        so parenthesis might not be needed, for example, in
        an expression like ``x OR (y AND z)`` - AND takes precedence
        over OR.

        The base :meth:`self_group` method of :class:`.ClauseElement`
        just returns self.
        """
        return self

    @util.dependencies("sqlalchemy.engine.default")
    def compile(self, default, bind=None, dialect=None, **kw):
        """Compile this SQL expression.

        The return value is a :class:`~.Compiled` object.
        Calling ``str()`` or ``unicode()`` on the returned value will yield a
        string representation of the result. The
        :class:`~.Compiled` object also can return a
        dictionary of bind parameter names and values
        using the ``params`` accessor.

        :param bind: An ``Engine`` or ``Connection`` from which a
            ``Compiled`` will be acquired. This argument takes precedence over
            this :class:`.ClauseElement`'s bound engine, if any.

        :param column_keys: Used for INSERT and UPDATE statements, a list of
            column names which should be present in the VALUES clause of the
            compiled statement. If ``None``, all columns from the target table
            object are rendered.

        :param dialect: A ``Dialect`` instance from which a ``Compiled``
            will be acquired. This argument takes precedence over the `bind`
            argument as well as this :class:`.ClauseElement`'s bound engine, if
            any.

        :param inline: Used for INSERT statements, for a dialect which does
            not support inline retrieval of newly generated primary key
            columns, will force the expression used to create the new primary
            key value to be rendered inline within the INSERT statement's
            VALUES clause. This typically refers to Sequence execution but may
            also refer to any server-side default generation function
            associated with a primary key `Column`.

        :param compile_kwargs: optional dictionary of additional parameters
            that will be passed through to the compiler within all "visit"
            methods.  This allows any custom flag to be passed through to
            a custom compilation construct, for example.  It is also used
            for the case of passing the ``literal_binds`` flag through::

                from sqlalchemy.sql import table, column, select

                t = table('t', column('x'))

                s = select([t]).where(t.c.x == 5)

                print s.compile(compile_kwargs={"literal_binds": True})

            .. versionadded:: 0.9.0

        .. seealso::

            :ref:`faq_sql_expression_string`

        """

        if not dialect:
            if bind:
                dialect = bind.dialect
            elif self.bind:
                dialect = self.bind.dialect
                bind = self.bind
            else:
                dialect = default.DefaultDialect()
        return self._compiler(dialect, bind=bind, **kw)

    def _compiler(self, dialect, **kw):
        """Return a compiler appropriate for this ClauseElement, given a
        Dialect."""

        return dialect.statement_compiler(dialect, self, **kw)

    def __str__(self):
        if util.py3k:
            return str(self.compile())
        else:
            return unicode(self.compile()).encode('ascii', 'backslashreplace')

    def __and__(self, other):
        """'and' at the ClauseElement level.

        .. deprecated:: 0.9.5 - conjunctions are intended to be
           at the :class:`.ColumnElement`. level

        """
        return and_(self, other)

    def __or__(self, other):
        """'or' at the ClauseElement level.

        .. deprecated:: 0.9.5 - conjunctions are intended to be
           at the :class:`.ColumnElement`. level

        """
        return or_(self, other)

    def __invert__(self):
        if hasattr(self, 'negation_clause'):
            return self.negation_clause
        else:
            return self._negate()

    def _negate(self):
        return UnaryExpression(
                    self.self_group(against=operators.inv),
                    operator=operators.inv,
                    negate=None)

    def __bool__(self):
        raise TypeError("Boolean value of this clause is not defined")

    __nonzero__ = __bool__


    def __repr__(self):
        friendly = getattr(self, 'description', None)
        if friendly is None:
            return object.__repr__(self)
        else:
            return '<%s.%s at 0x%x; %s>' % (
                self.__module__, self.__class__.__name__, id(self), friendly)


class ColumnElement(operators.ColumnOperators, ClauseElement):
    """Represent a column-oriented SQL expression suitable for usage in the
    "columns" clause, WHERE clause etc. of a statement.

    While the most familiar kind of :class:`.ColumnElement` is the
    :class:`.Column` object, :class:`.ColumnElement` serves as the basis
    for any unit that may be present in a SQL expression, including
    the expressions themselves, SQL functions, bound parameters,
    literal expressions, keywords such as ``NULL``, etc.
    :class:`.ColumnElement` is the ultimate base class for all such elements.

    A wide variety of SQLAlchemy Core functions work at the SQL expression level,
    and are intended to accept instances of :class:`.ColumnElement` as arguments.
    These functions will typically document that they accept a "SQL expression"
    as an argument.  What this means in terms of SQLAlchemy usually refers
    to an input which is either already in the form of a :class:`.ColumnElement`
    object, or a value which can be **coerced** into one.   The coercion
    rules followed by most, but not all, SQLAlchemy Core functions with regards
    to SQL expressions are as follows:

        * a literal Python value, such as a string, integer or floating
          point value, boolean, datetime, ``Decimal`` object, or virtually
          any other Python object, will be coerced into a "literal bound value".
          This generally means that a :func:`.bindparam` will be produced
          featuring the given value embedded into the construct; the resulting
          :class:`.BindParameter` object is an instance of :class:`.ColumnElement`.
          The Python value will ultimately be sent to the DBAPI at execution time as a
          paramterized argument to the ``execute()`` or ``executemany()`` methods,
          after SQLAlchemy type-specific converters (e.g. those provided by
          any associated :class:`.TypeEngine` objects) are applied to the value.

        * any special object value, typically ORM-level constructs, which feature
          a method called ``__clause_element__()``.   The Core expression system
          looks for this method when an object of otherwise unknown type is passed
          to a function that is looking to coerce the argument into a :class:`.ColumnElement`
          expression.  The ``__clause_element__()`` method, if present, should
          return a :class:`.ColumnElement` instance.  The primary use of
          ``__clause_element__()`` within SQLAlchemy is that of class-bound attributes
          on ORM-mapped classes; a ``User`` class which contains a mapped attribute
          named ``.name`` will have a method ``User.name.__clause_element__()``
          which when invoked returns the :class:`.Column` called ``name`` associated
          with the mapped table.

        * The Python ``None`` value is typically interpreted as ``NULL``, which
          in SQLAlchemy Core produces an instance of :func:`.null`.

    A :class:`.ColumnElement` provides the ability to generate new
    :class:`.ColumnElement`
    objects using Python expressions.  This means that Python operators
    such as ``==``, ``!=`` and ``<`` are overloaded to mimic SQL operations,
    and allow the instantiation of further :class:`.ColumnElement` instances
    which are composed from other, more fundamental :class:`.ColumnElement`
    objects.  For example, two :class:`.ColumnClause` objects can be added
    together with the addition operator ``+`` to produce
    a :class:`.BinaryExpression`.
    Both :class:`.ColumnClause` and :class:`.BinaryExpression` are subclasses
    of :class:`.ColumnElement`::

        >>> from sqlalchemy.sql import column
        >>> column('a') + column('b')
        <sqlalchemy.sql.expression.BinaryExpression object at 0x101029dd0>
        >>> print column('a') + column('b')
        a + b

    .. seealso::

        :class:`.Column`

        :func:`.expression.column`

    """

    __visit_name__ = 'column'
    primary_key = False
    foreign_keys = []
    _label = None
    _key_label = key = None
    _alt_names = ()

    def self_group(self, against=None):
        if against in (operators.and_, operators.or_, operators._asbool) and \
            self.type._type_affinity is type_api.BOOLEANTYPE._type_affinity:
            return AsBoolean(self, operators.istrue, operators.isfalse)
        else:
            return self

    def _negate(self):
        if self.type._type_affinity is type_api.BOOLEANTYPE._type_affinity:
            return AsBoolean(self, operators.isfalse, operators.istrue)
        else:
            return super(ColumnElement, self)._negate()

    @util.memoized_property
    def type(self):
        return type_api.NULLTYPE

    @util.memoized_property
    def comparator(self):
        return self.type.comparator_factory(self)

    def __getattr__(self, key):
        try:
            return getattr(self.comparator, key)
        except AttributeError:
            raise AttributeError(
                    'Neither %r object nor %r object has an attribute %r' % (
                    type(self).__name__,
                    type(self.comparator).__name__,
                    key)
            )

    def operate(self, op, *other, **kwargs):
        return op(self.comparator, *other, **kwargs)

    def reverse_operate(self, op, other, **kwargs):
        return op(other, self.comparator, **kwargs)

    def _bind_param(self, operator, obj):
        return BindParameter(None, obj,
                                    _compared_to_operator=operator,
                                    _compared_to_type=self.type, unique=True)

    @property
    def expression(self):
        """Return a column expression.

        Part of the inspection interface; returns self.

        """
        return self

    @property
    def _select_iterable(self):
        return (self, )

    @util.memoized_property
    def base_columns(self):
        return util.column_set(c for c in self.proxy_set
                                     if not hasattr(c, '_proxies'))

    @util.memoized_property
    def proxy_set(self):
        s = util.column_set([self])
        if hasattr(self, '_proxies'):
            for c in self._proxies:
                s.update(c.proxy_set)
        return s

    def shares_lineage(self, othercolumn):
        """Return True if the given :class:`.ColumnElement`
        has a common ancestor to this :class:`.ColumnElement`."""

        return bool(self.proxy_set.intersection(othercolumn.proxy_set))

    def _compare_name_for_result(self, other):
        """Return True if the given column element compares to this one
        when targeting within a result row."""

        return hasattr(other, 'name') and hasattr(self, 'name') and \
                other.name == self.name

    def _make_proxy(self, selectable, name=None, name_is_truncatable=False, **kw):
        """Create a new :class:`.ColumnElement` representing this
        :class:`.ColumnElement` as it appears in the select list of a
        descending selectable.

        """
        if name is None:
            name = self.anon_label
            if self.key:
                key = self.key
            else:
                try:
                    key = str(self)
                except exc.UnsupportedCompilationError:
                    key = self.anon_label

        else:
            key = name
        co = ColumnClause(
                _as_truncated(name) if name_is_truncatable else name,
                type_=getattr(self, 'type', None),
                _selectable=selectable
            )
        co._proxies = [self]
        if selectable._is_clone_of is not None:
            co._is_clone_of = \
                selectable._is_clone_of.columns.get(key)
        selectable._columns[key] = co
        return co

    def compare(self, other, use_proxies=False, equivalents=None, **kw):
        """Compare this ColumnElement to another.

        Special arguments understood:

        :param use_proxies: when True, consider two columns that
          share a common base column as equivalent (i.e. shares_lineage())

        :param equivalents: a dictionary of columns as keys mapped to sets
          of columns. If the given "other" column is present in this
          dictionary, if any of the columns in the corresponding set() pass the
          comparison test, the result is True. This is used to expand the
          comparison to other columns that may be known to be equivalent to
          this one via foreign key or other criterion.

        """
        to_compare = (other, )
        if equivalents and other in equivalents:
            to_compare = equivalents[other].union(to_compare)

        for oth in to_compare:
            if use_proxies and self.shares_lineage(oth):
                return True
            elif hash(oth) == hash(self):
                return True
        else:
            return False

    def label(self, name):
        """Produce a column label, i.e. ``<columnname> AS <name>``.

        This is a shortcut to the :func:`~.expression.label` function.

        if 'name' is None, an anonymous label name will be generated.

        """
        return Label(name, self, self.type)

    @util.memoized_property
    def anon_label(self):
        """provides a constant 'anonymous label' for this ColumnElement.

        This is a label() expression which will be named at compile time.
        The same label() is returned each time anon_label is called so
        that expressions can reference anon_label multiple times, producing
        the same label name at compile time.

        the compiler uses this function automatically at compile time
        for expressions that are known to be 'unnamed' like binary
        expressions and function calls.

        """
        return _anonymous_label('%%(%d %s)s' % (id(self), getattr(self,
                                'name', 'anon')))


class BindParameter(ColumnElement):
    """Represent a "bound expression".

    :class:`.BindParameter` is invoked explicitly using the
    :func:`.bindparam` function, as in::

        from sqlalchemy import bindparam

        stmt = select([users_table]).\\
                    where(users_table.c.name == bindparam('username'))

    Detailed discussion of how :class:`.BindParameter` is used is
    at :func:`.bindparam`.

    .. seealso::

        :func:`.bindparam`

    """

    __visit_name__ = 'bindparam'

    _is_crud = False

    def __init__(self, key, value=NO_ARG, type_=None,
                            unique=False, required=NO_ARG,
                            quote=None, callable_=None,
                            isoutparam=False,
                            _compared_to_operator=None,
                            _compared_to_type=None):
        """Produce a "bound expression".

        The return value is an instance of :class:`.BindParameter`; this
        is a :class:`.ColumnElement` subclass which represents a so-called
        "placeholder" value in a SQL expression, the value of which is supplied
        at the point at which the statement in executed against a database
        connection.

        In SQLAlchemy, the :func:`.bindparam` construct has
        the ability to carry along the actual value that will be ultimately
        used at expression time.  In this way, it serves not just as
        a "placeholder" for eventual population, but also as a means of
        representing so-called "unsafe" values which should not be rendered
        directly in a SQL statement, but rather should be passed along
        to the :term:`DBAPI` as values which need to be correctly escaped
        and potentially handled for type-safety.

        When using :func:`.bindparam` explicitly, the use case is typically
        one of traditional deferment of parameters; the :func:`.bindparam`
        construct accepts a name which can then be referred to at execution
        time::

            from sqlalchemy import bindparam

            stmt = select([users_table]).\\
                        where(users_table.c.name == bindparam('username'))

        The above statement, when rendered, will produce SQL similar to::

            SELECT id, name FROM user WHERE name = :username

        In order to populate the value of ``:username`` above, the value
        would typically be applied at execution time to a method
        like :meth:`.Connection.execute`::

            result = connection.execute(stmt, username='wendy')

        Explicit use of :func:`.bindparam` is also common when producing
        UPDATE or DELETE statements that are to be invoked multiple times,
        where the WHERE criterion of the statement is to change on each
        invocation, such as::

            stmt = users_table.update().\\
                            where(user_table.c.name == bindparam('username')).\\
                            values(fullname=bindparam('fullname'))

            connection.execute(stmt, [
                                {"username": "wendy", "fullname": "Wendy Smith"},
                                {"username": "jack", "fullname": "Jack Jones"},
                        ])

        SQLAlchemy's Core expression system makes wide use of :func:`.bindparam`
        in an implicit sense.   It is typical that Python literal values passed to
        virtually all SQL expression functions are coerced into fixed
        :func:`.bindparam` constructs.  For example, given a comparison operation
        such as::

            expr = users_table.c.name == 'Wendy'

        The above expression will produce a :class:`.BinaryExpression`
        construct, where the left side is the :class:`.Column` object
        representing the ``name`` column, and the right side is a :class:`.BindParameter`
        representing the literal value::

            print(repr(expr.right))
            BindParameter('%(4327771088 name)s', 'Wendy', type_=String())

        The expression above will render SQL such as::

            user.name = :name_1

        Where the ``:name_1`` parameter name is an anonymous name.  The
        actual string ``Wendy`` is not in the rendered string, but is carried
        along where it is later used within statement execution.  If we
        invoke a statement like the following::

            stmt = select([users_table]).where(users_table.c.name == 'Wendy')
            result = connection.execute(stmt)

        We would see SQL logging output as::

            SELECT "user".id, "user".name
            FROM "user"
            WHERE "user".name = %(name_1)s
            {'name_1': 'Wendy'}

        Above, we see that ``Wendy`` is passed as a parameter to the database,
        while the placeholder ``:name_1`` is rendered in the appropriate form
        for the target database, in this case the Postgresql database.

        Similarly, :func:`.bindparam` is invoked automatically
        when working with :term:`CRUD` statements as far as the "VALUES"
        portion is concerned.   The :func:`.insert` construct produces an
        ``INSERT`` expression which will, at statement execution time, generate
        bound placeholders based on the arguments passed, as in::

            stmt = users_table.insert()
            result = connection.execute(stmt, name='Wendy')

        The above will produce SQL output as::

            INSERT INTO "user" (name) VALUES (%(name)s)
            {'name': 'Wendy'}

        The :class:`.Insert` construct, at compilation/execution time,
        rendered a single :func:`.bindparam` mirroring the column
        name ``name`` as a result of the single ``name`` parameter
        we passed to the :meth:`.Connection.execute` method.

        :param key:
          the key (e.g. the name) for this bind param.
          Will be used in the generated
          SQL statement for dialects that use named parameters.  This
          value may be modified when part of a compilation operation,
          if other :class:`BindParameter` objects exist with the same
          key, or if its length is too long and truncation is
          required.

        :param value:
          Initial value for this bind param.  Will be used at statement
          execution time as the value for this parameter passed to the
          DBAPI, if no other value is indicated to the statement execution
          method for this particular parameter name.  Defaults to ``None``.

        :param callable\_:
          A callable function that takes the place of "value".  The function
          will be called at statement execution time to determine the
          ultimate value.   Used for scenarios where the actual bind
          value cannot be determined at the point at which the clause
          construct is created, but embedded bind values are still desirable.

        :param type\_:
          A :class:`.TypeEngine` class or instance representing an optional
          datatype for this :func:`.bindparam`.  If not passed, a type
          may be determined automatically for the bind, based on the given
          value; for example, trivial Python types such as ``str``,
          ``int``, ``bool``
          may result in the :class:`.String`, :class:`.Integer` or
          :class:`.Boolean` types being autoamtically selected.

          The type of a :func:`.bindparam` is significant especially in that
          the type will apply pre-processing to the value before it is
          passed to the database.  For example, a :func:`.bindparam` which
          refers to a datetime value, and is specified as holding the
          :class:`.DateTime` type, may apply conversion needed to the
          value (such as stringification on SQLite) before passing the value
          to the database.

        :param unique:
          if True, the key name of this :class:`.BindParameter` will be
          modified if another :class:`.BindParameter` of the same name
          already has been located within the containing
          expression.  This flag is used generally by the internals
          when producing so-called "anonymous" bound expressions, it
          isn't generally applicable to explicitly-named :func:`.bindparam`
          constructs.

        :param required:
          If ``True``, a value is required at execution time.  If not passed,
          it defaults to ``True`` if neither :paramref:`.bindparam.value`
          or :paramref:`.bindparam.callable` were passed.  If either of these
          parameters are present, then :paramref:`.bindparam.required` defaults
          to ``False``.

          .. versionchanged:: 0.8 If the ``required`` flag is not specified,
             it will be set automatically to ``True`` or ``False`` depending
             on whether or not the ``value`` or ``callable`` parameters
             were specified.

        :param quote:
          True if this parameter name requires quoting and is not
          currently known as a SQLAlchemy reserved word; this currently
          only applies to the Oracle backend, where bound names must
          sometimes be quoted.

        :param isoutparam:
          if True, the parameter should be treated like a stored procedure
          "OUT" parameter.  This applies to backends such as Oracle which
          support OUT parameters.

        .. seealso::

            :ref:`coretutorial_bind_param`

            :ref:`coretutorial_insert_expressions`

            :func:`.outparam`

        """
        if isinstance(key, ColumnClause):
            type_ = key.type
            key = key.name
        if required is NO_ARG:
            required = (value is NO_ARG and callable_ is None)
        if value is NO_ARG:
            value = None

        if quote is not None:
            key = quoted_name(key, quote)

        if unique:
            self.key = _anonymous_label('%%(%d %s)s' % (id(self), key
                    or 'param'))
        else:
            self.key = key or _anonymous_label('%%(%d param)s'
                    % id(self))

        # identifying key that won't change across
        # clones, used to identify the bind's logical
        # identity
        self._identifying_key = self.key

        # key that was passed in the first place, used to
        # generate new keys
        self._orig_key = key or 'param'

        self.unique = unique
        self.value = value
        self.callable = callable_
        self.isoutparam = isoutparam
        self.required = required
        if type_ is None:
            if _compared_to_type is not None:
                self.type = \
                    _compared_to_type.coerce_compared_value(
                        _compared_to_operator, value)
            else:
                self.type = type_api._type_map.get(type(value),
                        type_api.NULLTYPE)
        elif isinstance(type_, type):
            self.type = type_()
        else:
            self.type = type_

    def _with_value(self, value):
        """Return a copy of this :class:`.BindParameter` with the given value set."""
        cloned = self._clone()
        cloned.value = value
        cloned.callable = None
        cloned.required = False
        if cloned.type is type_api.NULLTYPE:
            cloned.type = type_api._type_map.get(type(value),
                        type_api.NULLTYPE)
        return cloned

    @property
    def effective_value(self):
        """Return the value of this bound parameter,
        taking into account if the ``callable`` parameter
        was set.

        The ``callable`` value will be evaluated
        and returned if present, else ``value``.

        """
        if self.callable:
            return self.callable()
        else:
            return self.value

    def _clone(self):
        c = ClauseElement._clone(self)
        if self.unique:
            c.key = _anonymous_label('%%(%d %s)s' % (id(c), c._orig_key
                    or 'param'))
        return c

    def _convert_to_unique(self):
        if not self.unique:
            self.unique = True
            self.key = _anonymous_label('%%(%d %s)s' % (id(self),
                    self._orig_key or 'param'))

    def compare(self, other, **kw):
        """Compare this :class:`BindParameter` to the given
        clause."""

        return isinstance(other, BindParameter) \
            and self.type._compare_type_affinity(other.type) \
            and self.value == other.value

    def __getstate__(self):
        """execute a deferred value for serialization purposes."""

        d = self.__dict__.copy()
        v = self.value
        if self.callable:
            v = self.callable()
            d['callable'] = None
        d['value'] = v
        return d

    def __repr__(self):
        return 'BindParameter(%r, %r, type_=%r)' % (self.key,
                self.value, self.type)


class TypeClause(ClauseElement):
    """Handle a type keyword in a SQL statement.

    Used by the ``Case`` statement.

    """

    __visit_name__ = 'typeclause'

    def __init__(self, type):
        self.type = type


class TextClause(Executable, ClauseElement):
    """Represent a literal SQL text fragment.

    E.g.::

        from sqlalchemy import text

        t = text("SELECT * FROM users")
        result = connection.execute(t)


    The :class:`.Text` construct is produced using the :func:`.text`
    function; see that function for full documentation.

    .. seealso::

        :func:`.text`

    """

    __visit_name__ = 'textclause'

    _bind_params_regex = re.compile(r'(?<![:\w\x5c]):(\w+)(?!:)', re.UNICODE)
    _execution_options = \
        Executable._execution_options.union(
            {'autocommit': PARSE_AUTOCOMMIT})

    @property
    def _select_iterable(self):
        return (self,)

    @property
    def selectable(self):
        return self

    _hide_froms = []

    def __init__(
                    self,
                    text,
                    bind=None):
        self._bind = bind
        self._bindparams = {}

        def repl(m):
            self._bindparams[m.group(1)] = BindParameter(m.group(1))
            return ':%s' % m.group(1)

        # scan the string and search for bind parameter names, add them
        # to the list of bindparams
        self.text = self._bind_params_regex.sub(repl, text)

    @classmethod
    def _create_text(self, text, bind=None, bindparams=None,
                                    typemap=None, autocommit=None):
        """Construct a new :class:`.TextClause` clause, representing
        a textual SQL string directly.

        E.g.::

            fom sqlalchemy import text

            t = text("SELECT * FROM users")
            result = connection.execute(t)

        The advantages :func:`.text` provides over a plain string are
        backend-neutral support for bind parameters, per-statement
        execution options, as well as
        bind parameter and result-column typing behavior, allowing
        SQLAlchemy type constructs to play a role when executing
        a statement that is specified literally.  The construct can also
        be provided with a ``.c`` collection of column elements, allowing
        it to be embedded in other SQL expression constructs as a subquery.

        Bind parameters are specified by name, using the format ``:name``.
        E.g.::

            t = text("SELECT * FROM users WHERE id=:user_id")
            result = connection.execute(t, user_id=12)

        For SQL statements where a colon is required verbatim, as within
        an inline string, use a backslash to escape::

            t = text("SELECT * FROM users WHERE name='\\:username'")

        The :class:`.TextClause` construct includes methods which can
        provide information about the bound parameters as well as the column
        values which would be returned from the textual statement, assuming
        it's an executable SELECT type of statement.  The :meth:`.TextClause.bindparams`
        method is used to provide bound parameter detail, and
        :meth:`.TextClause.columns` method allows specification of
        return columns including names and types::

            t = text("SELECT * FROM users WHERE id=:user_id").\\
                    bindparams(user_id=7).\\
                    columns(id=Integer, name=String)

            for id, name in connection.execute(t):
                print(id, name)

        The :func:`.text` construct is used internally in cases when
        a literal string is specified for part of a larger query, such as
        when a string is specified to the :meth:`.Select.where` method of
        :class:`.Select`.  In those cases, the same
        bind parameter syntax is applied::

            s = select([users.c.id, users.c.name]).where("id=:user_id")
            result = connection.execute(s, user_id=12)

        Using :func:`.text` explicitly usually implies the construction
        of a full, standalone statement.   As such, SQLAlchemy refers
        to it as an :class:`.Executable` object, and it supports
        the :meth:`Executable.execution_options` method.  For example,
        a :func:`.text` construct that should be subject to "autocommit"
        can be set explicitly so using the :paramref:`.Connection.execution_options.autocommit`
        option::

            t = text("EXEC my_procedural_thing()").\\
                    execution_options(autocommit=True)

        Note that SQLAlchemy's usual "autocommit" behavior applies to
        :func:`.text` constructs implicitly - that is, statements which begin
        with a phrase such as ``INSERT``, ``UPDATE``, ``DELETE``,
        or a variety of other phrases specific to certain backends, will
        be eligible for autocommit if no transaction is in progress.

        :param text:
          the text of the SQL statement to be created.  use ``:<param>``
          to specify bind parameters; they will be compiled to their
          engine-specific format.

        :param autocommit:
          Deprecated.  Use .execution_options(autocommit=<True|False>)
          to set the autocommit option.

        :param bind:
          an optional connection or engine to be used for this text query.

        :param bindparams:
          Deprecated.  A list of :func:`.bindparam` instances used to
          provide information about parameters embedded in the statement.
          This argument now invokes the :meth:`.TextClause.bindparams`
          method on the construct before returning it.  E.g.::

              stmt = text("SELECT * FROM table WHERE id=:id",
                        bindparams=[bindparam('id', value=5, type_=Integer)])

          Is equivalent to::

              stmt = text("SELECT * FROM table WHERE id=:id").\\
                        bindparams(bindparam('id', value=5, type_=Integer))

          .. deprecated:: 0.9.0 the :meth:`.TextClause.bindparams` method
             supersedes the ``bindparams`` argument to :func:`.text`.

        :param typemap:
          Deprecated.  A dictionary mapping the names of columns
          represented in the columns clause of a ``SELECT`` statement
          to type objects,
          which will be used to perform post-processing on columns within
          the result set.  This parameter now invokes the :meth:`.TextClause.columns`
          method, which returns a :class:`.TextAsFrom` construct that gains
          a ``.c`` collection and can be embedded in other expressions.  E.g.::

              stmt = text("SELECT * FROM table",
                            typemap={'id': Integer, 'name': String},
                        )

          Is equivalent to::

              stmt = text("SELECT * FROM table").columns(id=Integer, name=String)

          Or alternatively::

              from sqlalchemy.sql import column
              stmt = text("SELECT * FROM table").columns(
                                    column('id', Integer),
                                    column('name', String)
                                )

          .. deprecated:: 0.9.0 the :meth:`.TextClause.columns` method
             supersedes the ``typemap`` argument to :func:`.text`.

        """
        stmt = TextClause(text, bind=bind)
        if bindparams:
            stmt = stmt.bindparams(*bindparams)
        if typemap:
            stmt = stmt.columns(**typemap)
        if autocommit is not None:
            util.warn_deprecated('autocommit on text() is deprecated.  '
                                 'Use .execution_options(autocommit=True)')
            stmt = stmt.execution_options(autocommit=autocommit)

        return stmt

    @_generative
    def bindparams(self, *binds, **names_to_values):
        """Establish the values and/or types of bound parameters within
        this :class:`.TextClause` construct.

        Given a text construct such as::

            from sqlalchemy import text
            stmt = text("SELECT id, name FROM user WHERE name=:name "
                        "AND timestamp=:timestamp")

        the :meth:`.TextClause.bindparams` method can be used to establish
        the initial value of ``:name`` and ``:timestamp``,
        using simple keyword arguments::

            stmt = stmt.bindparams(name='jack',
                        timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5))

        Where above, new :class:`.BindParameter` objects
        will be generated with the names ``name`` and ``timestamp``, and
        values of ``jack`` and ``datetime.datetime(2012, 10, 8, 15, 12, 5)``,
        respectively.  The types will be
        inferred from the values given, in this case :class:`.String` and
        :class:`.DateTime`.

        When specific typing behavior is needed, the positional ``*binds``
        argument can be used in which to specify :func:`.bindparam` constructs
        directly.  These constructs must include at least the ``key`` argument,
        then an optional value and type::

            from sqlalchemy import bindparam
            stmt = stmt.bindparams(
                            bindparam('name', value='jack', type_=String),
                            bindparam('timestamp', type_=DateTime)
                        )

        Above, we specified the type of :class:`.DateTime` for the ``timestamp``
        bind, and the type of :class:`.String` for the ``name`` bind.  In
        the case of ``name`` we also set the default value of ``"jack"``.

        Additional bound parameters can be supplied at statement execution
        time, e.g.::

            result = connection.execute(stmt,
                        timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5))

        The :meth:`.TextClause.bindparams` method can be called repeatedly, where
        it will re-use existing :class:`.BindParameter` objects to add new information.
        For example, we can call :meth:`.TextClause.bindparams` first with
        typing information, and a second time with value information, and it
        will be combined::

            stmt = text("SELECT id, name FROM user WHERE name=:name "
                        "AND timestamp=:timestamp")
            stmt = stmt.bindparams(
                            bindparam('name', type_=String),
                            bindparam('timestamp', type_=DateTime)
                        )
            stmt = stmt.bindparams(
                            name='jack',
                            timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5)
                        )


        .. versionadded:: 0.9.0 The :meth:`.TextClause.bindparams` method supersedes
           the argument ``bindparams`` passed to :func:`~.expression.text`.


        """
        self._bindparams = new_params = self._bindparams.copy()

        for bind in binds:
            try:
                existing = new_params[bind.key]
            except KeyError:
                raise exc.ArgumentError(
                            "This text() construct doesn't define a "
                            "bound parameter named %r" % bind.key)
            else:
                new_params[existing.key] = bind

        for key, value in names_to_values.items():
            try:
                existing = new_params[key]
            except KeyError:
                raise exc.ArgumentError(
                            "This text() construct doesn't define a "
                            "bound parameter named %r" % key)
            else:
                new_params[key] = existing._with_value(value)



    @util.dependencies('sqlalchemy.sql.selectable')
    def columns(self, selectable, *cols, **types):
        """Turn this :class:`.TextClause` object into a :class:`.TextAsFrom`
        object that can be embedded into another statement.

        This function essentially bridges the gap between an entirely
        textual SELECT statement and the SQL expression language concept
        of a "selectable"::

            from sqlalchemy.sql import column, text

            stmt = text("SELECT id, name FROM some_table")
            stmt = stmt.columns(column('id'), column('name')).alias('st')

            stmt = select([mytable]).\\
                    select_from(
                        mytable.join(stmt, mytable.c.name == stmt.c.name)
                    ).where(stmt.c.id > 5)

        Above, we used untyped :func:`.column` elements.  These can also have
        types specified, which will impact how the column behaves in expressions
        as well as determining result set behavior::

            stmt = text("SELECT id, name, timestamp FROM some_table")
            stmt = stmt.columns(
                        column('id', Integer),
                        column('name', Unicode),
                        column('timestamp', DateTime)
                    )

            for id, name, timestamp in connection.execute(stmt):
                print(id, name, timestamp)

        Keyword arguments allow just the names and types of columns to be specified,
        where the :func:`.column` elements will be generated automatically::

            stmt = text("SELECT id, name, timestamp FROM some_table")
            stmt = stmt.columns(
                        id=Integer,
                        name=Unicode,
                        timestamp=DateTime
                    )

            for id, name, timestamp in connection.execute(stmt):
                print(id, name, timestamp)

        The :meth:`.TextClause.columns` method provides a direct
        route to calling :meth:`.FromClause.alias` as well as :meth:`.SelectBase.cte`
        against a textual SELECT statement::

            stmt = stmt.columns(id=Integer, name=String).cte('st')

            stmt = select([sometable]).where(sometable.c.id == stmt.c.id)

        .. versionadded:: 0.9.0 :func:`.text` can now be converted into a fully
           featured "selectable" construct using the :meth:`.TextClause.columns`
           method.  This method supersedes the ``typemap`` argument to
           :func:`.text`.

        """

        input_cols = [
            ColumnClause(col.key, types.pop(col.key))
                if col.key in types
                else col
            for col in cols
        ] + [ColumnClause(key, type_) for key, type_ in types.items()]
        return selectable.TextAsFrom(self, input_cols)

    @property
    def type(self):
        return type_api.NULLTYPE

    @property
    def comparator(self):
        return self.type.comparator_factory(self)

    def self_group(self, against=None):
        if against is operators.in_op:
            return Grouping(self)
        else:
            return self

    def _copy_internals(self, clone=_clone, **kw):
        self._bindparams = dict((b.key, clone(b, **kw))
                               for b in self._bindparams.values())

    def get_children(self, **kwargs):
        return list(self._bindparams.values())

    def compare(self, other):
        return isinstance(other, TextClause) and other.text == self.text

class Null(ColumnElement):
    """Represent the NULL keyword in a SQL statement.

    :class:`.Null` is accessed as a constant via the
    :func:`.null` function.

    """

    __visit_name__ = 'null'

    @util.memoized_property
    def type(self):
        return type_api.NULLTYPE

    @classmethod
    def _singleton(cls):
        """Return a constant :class:`.Null` construct."""

        return NULL

    def compare(self, other):
        return isinstance(other, Null)


class False_(ColumnElement):
    """Represent the ``false`` keyword, or equivalent, in a SQL statement.

    :class:`.False_` is accessed as a constant via the
    :func:`.false` function.

    """

    __visit_name__ = 'false'

    @util.memoized_property
    def type(self):
        return type_api.BOOLEANTYPE

    def _negate(self):
        return TRUE

    @classmethod
    def _singleton(cls):
        """Return a constant :class:`.False_` construct.

        E.g.::

            >>> from sqlalchemy import false
            >>> print select([t.c.x]).where(false())
            SELECT x FROM t WHERE false

        A backend which does not support true/false constants will render as
        an expression against 1 or 0::

            >>> print select([t.c.x]).where(false())
            SELECT x FROM t WHERE 0 = 1

        The :func:`.true` and :func:`.false` constants also feature
        "short circuit" operation within an :func:`.and_` or :func:`.or_`
        conjunction::

            >>> print select([t.c.x]).where(or_(t.c.x > 5, true()))
            SELECT x FROM t WHERE true

            >>> print select([t.c.x]).where(and_(t.c.x > 5, false()))
            SELECT x FROM t WHERE false

        .. versionchanged:: 0.9 :func:`.true` and :func:`.false` feature
           better integrated behavior within conjunctions and on dialects
           that don't support true/false constants.

        .. seealso::

            :func:`.true`

        """

        return FALSE

    def compare(self, other):
        return isinstance(other, False_)

class True_(ColumnElement):
    """Represent the ``true`` keyword, or equivalent, in a SQL statement.

    :class:`.True_` is accessed as a constant via the
    :func:`.true` function.

    """

    __visit_name__ = 'true'

    @util.memoized_property
    def type(self):
        return type_api.BOOLEANTYPE

    def _negate(self):
        return FALSE

    @classmethod
    def _ifnone(cls, other):
        if other is None:
            return cls._singleton()
        else:
            return other

    @classmethod
    def _singleton(cls):
        """Return a constant :class:`.True_` construct.

        E.g.::

            >>> from sqlalchemy import true
            >>> print select([t.c.x]).where(true())
            SELECT x FROM t WHERE true

        A backend which does not support true/false constants will render as
        an expression against 1 or 0::

            >>> print select([t.c.x]).where(true())
            SELECT x FROM t WHERE 1 = 1

        The :func:`.true` and :func:`.false` constants also feature
        "short circuit" operation within an :func:`.and_` or :func:`.or_`
        conjunction::

            >>> print select([t.c.x]).where(or_(t.c.x > 5, true()))
            SELECT x FROM t WHERE true

            >>> print select([t.c.x]).where(and_(t.c.x > 5, false()))
            SELECT x FROM t WHERE false

        .. versionchanged:: 0.9 :func:`.true` and :func:`.false` feature
           better integrated behavior within conjunctions and on dialects
           that don't support true/false constants.

        .. seealso::

            :func:`.false`

        """

        return TRUE

    def compare(self, other):
        return isinstance(other, True_)

NULL = Null()
FALSE = False_()
TRUE = True_()

class ClauseList(ClauseElement):
    """Describe a list of clauses, separated by an operator.

    By default, is comma-separated, such as a column listing.

    """
    __visit_name__ = 'clauselist'

    def __init__(self, *clauses, **kwargs):
        self.operator = kwargs.pop('operator', operators.comma_op)
        self.group = kwargs.pop('group', True)
        self.group_contents = kwargs.pop('group_contents', True)
        if self.group_contents:
            self.clauses = [
                _literal_as_text(clause).self_group(against=self.operator)
                for clause in clauses]
        else:
            self.clauses = [
                _literal_as_text(clause)
                for clause in clauses]

    def __iter__(self):
        return iter(self.clauses)

    def __len__(self):
        return len(self.clauses)

    @property
    def _select_iterable(self):
        return iter(self)

    def append(self, clause):
        if self.group_contents:
            self.clauses.append(_literal_as_text(clause).\
                                self_group(against=self.operator))
        else:
            self.clauses.append(_literal_as_text(clause))

    def _copy_internals(self, clone=_clone, **kw):
        self.clauses = [clone(clause, **kw) for clause in self.clauses]

    def get_children(self, **kwargs):
        return self.clauses

    @property
    def _from_objects(self):
        return list(itertools.chain(*[c._from_objects for c in self.clauses]))

    def self_group(self, against=None):
        if self.group and operators.is_precedent(self.operator, against):
            return Grouping(self)
        else:
            return self

    def compare(self, other, **kw):
        """Compare this :class:`.ClauseList` to the given :class:`.ClauseList`,
        including a comparison of all the clause items.

        """
        if not isinstance(other, ClauseList) and len(self.clauses) == 1:
            return self.clauses[0].compare(other, **kw)
        elif isinstance(other, ClauseList) and \
                len(self.clauses) == len(other.clauses):
            for i in range(0, len(self.clauses)):
                if not self.clauses[i].compare(other.clauses[i], **kw):
                    return False
            else:
                return self.operator == other.operator
        else:
            return False



class BooleanClauseList(ClauseList, ColumnElement):
    __visit_name__ = 'clauselist'

    def __init__(self, *arg, **kw):
        raise NotImplementedError(
                "BooleanClauseList has a private constructor")

    @classmethod
    def _construct(cls, operator, continue_on, skip_on, *clauses, **kw):
        convert_clauses = []

        clauses = util.coerce_generator_arg(clauses)
        for clause in clauses:
            clause = _literal_as_text(clause)

            if isinstance(clause, continue_on):
                continue
            elif isinstance(clause, skip_on):
                return clause.self_group(against=operators._asbool)

            convert_clauses.append(clause)

        if len(convert_clauses) == 1:
            return convert_clauses[0].self_group(against=operators._asbool)
        elif not convert_clauses and clauses:
            return clauses[0].self_group(against=operators._asbool)

        convert_clauses = [c.self_group(against=operator)
                                for c in convert_clauses]

        self = cls.__new__(cls)
        self.clauses = convert_clauses
        self.group = True
        self.operator = operator
        self.group_contents = True
        self.type = type_api.BOOLEANTYPE
        return self

    @classmethod
    def and_(cls, *clauses):
        """Produce a conjunction of expressions joined by ``AND``.

        E.g.::

            from sqlalchemy import and_

            stmt = select([users_table]).where(
                            and_(
                                users_table.c.name == 'wendy',
                                users_table.c.enrolled == True
                            )
                        )

        The :func:`.and_` conjunction is also available using the
        Python ``&`` operator (though note that compound expressions
        need to be parenthesized in order to function with Python
        operator precedence behavior)::

            stmt = select([users_table]).where(
                            (users_table.c.name == 'wendy') &
                            (users_table.c.enrolled == True)
                        )

        The :func:`.and_` operation is also implicit in some cases;
        the :meth:`.Select.where` method for example can be invoked multiple
        times against a statement, which will have the effect of each
        clause being combined using :func:`.and_`::

            stmt = select([users_table]).\\
                        where(users_table.c.name == 'wendy').\\
                        where(users_table.c.enrolled == True)

        .. seealso::

            :func:`.or_`

        """
        return cls._construct(operators.and_, True_, False_, *clauses)

    @classmethod
    def or_(cls, *clauses):
        """Produce a conjunction of expressions joined by ``OR``.

        E.g.::

            from sqlalchemy import or_

            stmt = select([users_table]).where(
                            or_(
                                users_table.c.name == 'wendy',
                                users_table.c.name == 'jack'
                            )
                        )

        The :func:`.or_` conjunction is also available using the
        Python ``|`` operator (though note that compound expressions
        need to be parenthesized in order to function with Python
        operator precedence behavior)::

            stmt = select([users_table]).where(
                            (users_table.c.name == 'wendy') |
                            (users_table.c.name == 'jack')
                        )

        .. seealso::

            :func:`.and_`

        """
        return cls._construct(operators.or_, False_, True_, *clauses)

    @property
    def _select_iterable(self):
        return (self, )

    def self_group(self, against=None):
        if not self.clauses:
            return self
        else:
            return super(BooleanClauseList, self).self_group(against=against)

    def _negate(self):
        return ClauseList._negate(self)


and_ = BooleanClauseList.and_
or_ = BooleanClauseList.or_

class Tuple(ClauseList, ColumnElement):
    """Represent a SQL tuple."""

    def __init__(self, *clauses, **kw):
        """Return a :class:`.Tuple`.

        Main usage is to produce a composite IN construct::

            from sqlalchemy import tuple_

            tuple_(table.c.col1, table.c.col2).in_(
                [(1, 2), (5, 12), (10, 19)]
            )

        .. warning::

            The composite IN construct is not supported by all backends,
            and is currently known to work on Postgresql and MySQL,
            but not SQLite.   Unsupported backends will raise
            a subclass of :class:`~sqlalchemy.exc.DBAPIError` when such
            an expression is invoked.

        """

        clauses = [_literal_as_binds(c) for c in clauses]
        self._type_tuple = [arg.type for arg in clauses]
        self.type = kw.pop('type_', self._type_tuple[0]
                            if self._type_tuple else type_api.NULLTYPE)

        super(Tuple, self).__init__(*clauses, **kw)

    @property
    def _select_iterable(self):
        return (self, )

    def _bind_param(self, operator, obj):
        return Tuple(*[
            BindParameter(None, o, _compared_to_operator=operator,
                             _compared_to_type=type_, unique=True)
            for o, type_ in zip(obj, self._type_tuple)
        ]).self_group()


class Case(ColumnElement):
    """Represent a ``CASE`` expression.

    :class:`.Case` is produced using the :func:`.case` factory function,
    as in::

        from sqlalchemy import case

        stmt = select([users_table]).\\
                    where(
                        case(
                            [
                                (users_table.c.name == 'wendy', 'W'),
                                (users_table.c.name == 'jack', 'J')
                            ],
                            else_='E'
                        )
                    )

    Details on :class:`.Case` usage is at :func:`.case`.

    .. seealso::

        :func:`.case`

    """

    __visit_name__ = 'case'

    def __init__(self, whens, value=None, else_=None):
        """Produce a ``CASE`` expression.

        The ``CASE`` construct in SQL is a conditional object that
        acts somewhat analogously to an "if/then" construct in other
        languages.  It returns an instance of :class:`.Case`.

        :func:`.case` in its usual form is passed a list of "when"
        constructs, that is, a list of conditions and results as tuples::

            from sqlalchemy import case

            stmt = select([users_table]).\\
                        where(
                            case(
                                [
                                    (users_table.c.name == 'wendy', 'W'),
                                    (users_table.c.name == 'jack', 'J')
                                ],
                                else_='E'
                            )
                        )

        The above statement will produce SQL resembling::

            SELECT id, name FROM user
            WHERE CASE
                WHEN (name = :name_1) THEN :param_1
                WHEN (name = :name_2) THEN :param_2
                ELSE :param_3
            END

        When simple equality expressions of several values against a single
        parent column are needed, :func:`.case` also has a "shorthand" format
        used via the
        :paramref:`.case.value` parameter, which is passed a column
        expression to be compared.  In this form, the :paramref:`.case.whens`
        parameter is passed as a dictionary containing expressions to be compared
        against keyed to result expressions.  The statement below is equivalent
        to the preceding statement::

            stmt = select([users_table]).\\
                        where(
                            case(
                                {"wendy": "W", "jack": "J"},
                                value=users_table.c.name,
                                else_='E'
                            )
                        )

        The values which are accepted as result values in
        :paramref:`.case.whens` as well as with :paramref:`.case.else_` are
        coerced from Python literals into :func:`.bindparam` constructs.
        SQL expressions, e.g. :class:`.ColumnElement` constructs, are accepted
        as well.  To coerce a literal string expression into a constant
        expression rendered inline, use the :func:`.literal_column` construct,
        as in::

            from sqlalchemy import case, literal_column

            case(
                [
                    (
                        orderline.c.qty > 100,
                        literal_column("'greaterthan100'")
                    ),
                    (
                        orderline.c.qty > 10,
                        literal_column("'greaterthan10'")
                    )
                ],
                else_=literal_column("'lessthan10'")
            )

        The above will render the given constants without using bound
        parameters for the result values (but still for the comparison
        values), as in::

            CASE
                WHEN (orderline.qty > :qty_1) THEN 'greaterthan100'
                WHEN (orderline.qty > :qty_2) THEN 'greaterthan10'
                ELSE 'lessthan10'
            END

        :param whens: The criteria to be compared against, :paramref:`.case.whens`
         accepts two different forms, based on whether or not :paramref:`.case.value`
         is used.

         In the first form, it accepts a list of 2-tuples; each 2-tuple consists
         of ``(<sql expression>, <value>)``, where the SQL expression is a
         boolean expression and "value" is a resulting value, e.g.::

            case([
                (users_table.c.name == 'wendy', 'W'),
                (users_table.c.name == 'jack', 'J')
            ])

         In the second form, it accepts a Python dictionary of comparison values
         mapped to a resulting value; this form requires :paramref:`.case.value`
         to be present, and values will be compared using the ``==`` operator,
         e.g.::

            case(
                {"wendy": "W", "jack": "J"},
                value=users_table.c.name
            )

        :param value: An optional SQL expression which will be used as a
          fixed "comparison point" for candidate values within a dictionary
          passed to :paramref:`.case.whens`.

        :param else\_: An optional SQL expression which will be the evaluated
          result of the ``CASE`` construct if all expressions within
          :paramref:`.case.whens` evaluate to false.  When omitted, most
          databases will produce a result of NULL if none of the "when"
          expressions evaulate to true.


        """

        try:
            whens = util.dictlike_iteritems(whens)
        except TypeError:
            pass

        if value is not None:
            whenlist = [
                (_literal_as_binds(c).self_group(),
                _literal_as_binds(r)) for (c, r) in whens
            ]
        else:
            whenlist = [
                (_no_literals(c).self_group(),
                _literal_as_binds(r)) for (c, r) in whens
            ]

        if whenlist:
            type_ = list(whenlist[-1])[-1].type
        else:
            type_ = None

        if value is None:
            self.value = None
        else:
            self.value = _literal_as_binds(value)

        self.type = type_
        self.whens = whenlist
        if else_ is not None:
            self.else_ = _literal_as_binds(else_)
        else:
            self.else_ = None

    def _copy_internals(self, clone=_clone, **kw):
        if self.value is not None:
            self.value = clone(self.value, **kw)
        self.whens = [(clone(x, **kw), clone(y, **kw))
                            for x, y in self.whens]
        if self.else_ is not None:
            self.else_ = clone(self.else_, **kw)

    def get_children(self, **kwargs):
        if self.value is not None:
            yield self.value
        for x, y in self.whens:
            yield x
            yield y
        if self.else_ is not None:
            yield self.else_

    @property
    def _from_objects(self):
        return list(itertools.chain(*[x._from_objects for x in
                    self.get_children()]))


def literal_column(text, type_=None):
    """Return a textual column expression, as would be in the columns
    clause of a ``SELECT`` statement.

    The object returned supports further expressions in the same way as any
    other column object, including comparison, math and string operations.
    The type\_ parameter is important to determine proper expression behavior
    (such as, '+' means string concatenation or numerical addition based on
    the type).

    :param text: the text of the expression; can be any SQL expression.
      Quoting rules will not be applied. To specify a column-name expression
      which should be subject to quoting rules, use the :func:`column`
      function.

    :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine`
      object which will
      provide result-set translation and additional expression semantics for
      this column. If left as None the type will be NullType.

    """
    return ColumnClause(text, type_=type_, is_literal=True)



class Cast(ColumnElement):
    """Represent a ``CAST`` expression.

    :class:`.Cast` is produced using the :func:`.cast` factory function,
    as in::

        from sqlalchemy import cast, Numeric

        stmt = select([
                    cast(product_table.c.unit_price, Numeric(10, 4))
                ])

    Details on :class:`.Cast` usage is at :func:`.cast`.

    .. seealso::

        :func:`.cast`

    """

    __visit_name__ = 'cast'

    def __init__(self, expression, type_):
        """Produce a ``CAST`` expression.

        :func:`.cast` returns an instance of :class:`.Cast`.

        E.g.::

            from sqlalchemy import cast, Numeric

            stmt = select([
                        cast(product_table.c.unit_price, Numeric(10, 4))
                    ])

        The above statement will produce SQL resembling::

            SELECT CAST(unit_price AS NUMERIC(10, 4)) FROM product

        The :func:`.cast` function performs two distinct functions when
        used.  The first is that it renders the ``CAST`` expression within
        the resulting SQL string.  The second is that it associates the given
        type (e.g. :class:`.TypeEngine` class or instance) with the column
        expression on the Python side, which means the expression will take
        on the expression operator behavior associated with that type,
        as well as the bound-value handling and result-row-handling behavior
        of the type.

        .. versionchanged:: 0.9.0 :func:`.cast` now applies the given type
           to the expression such that it takes effect on the bound-value,
           e.g. the Python-to-database direction, in addition to the
           result handling, e.g. database-to-Python, direction.

        An alternative to :func:`.cast` is the :func:`.type_coerce` function.
        This function performs the second task of associating an expression
        with a specific type, but does not render the ``CAST`` expression
        in SQL.

        :param expression: A SQL expression, such as a :class:`.ColumnElement`
         expression or a Python string which will be coerced into a bound
         literal value.

        :param type_: A :class:`.TypeEngine` class or instance indicating
         the type to which the ``CAST`` should apply.

        .. seealso::

            :func:`.type_coerce` - Python-side type coercion without emitting
            CAST.

        """
        self.type = type_api.to_instance(type_)
        self.clause = _literal_as_binds(expression, type_=self.type)
        self.typeclause = TypeClause(self.type)

    def _copy_internals(self, clone=_clone, **kw):
        self.clause = clone(self.clause, **kw)
        self.typeclause = clone(self.typeclause, **kw)

    def get_children(self, **kwargs):
        return self.clause, self.typeclause

    @property
    def _from_objects(self):
        return self.clause._from_objects


class Extract(ColumnElement):
    """Represent a SQL EXTRACT clause, ``extract(field FROM expr)``."""

    __visit_name__ = 'extract'

    def __init__(self, field, expr, **kwargs):
        """Return a :class:`.Extract` construct.

        This is typically available as :func:`.extract`
        as well as ``func.extract`` from the
        :data:`.func` namespace.

        """
        self.type = type_api.INTEGERTYPE
        self.field = field
        self.expr = _literal_as_binds(expr, None)

    def _copy_internals(self, clone=_clone, **kw):
        self.expr = clone(self.expr, **kw)

    def get_children(self, **kwargs):
        return self.expr,

    @property
    def _from_objects(self):
        return self.expr._from_objects


class UnaryExpression(ColumnElement):
    """Define a 'unary' expression.

    A unary expression has a single column expression
    and an operator.  The operator can be placed on the left
    (where it is called the 'operator') or right (where it is called the
    'modifier') of the column expression.

    :class:`.UnaryExpression` is the basis for several unary operators
    including those used by :func:`.desc`, :func:`.asc`, :func:`.distinct`,
    :func:`.nullsfirst` and :func:`.nullslast`.

    """
    __visit_name__ = 'unary'

    def __init__(self, element, operator=None, modifier=None,
                            type_=None, negate=None):
        self.operator = operator
        self.modifier = modifier
        self.element = element.self_group(against=self.operator or self.modifier)
        self.type = type_api.to_instance(type_)
        self.negate = negate

    @classmethod
    def _create_nullsfirst(cls, column):
        """Produce the ``NULLS FIRST`` modifier for an ``ORDER BY`` expression.

        :func:`.nullsfirst` is intended to modify the expression produced
        by :func:`.asc` or :func:`.desc`, and indicates how NULL values
        should be handled when they are encountered during ordering::


            from sqlalchemy import desc, nullsfirst

            stmt = select([users_table]).\\
                        order_by(nullsfirst(desc(users_table.c.name)))

        The SQL expression from the above would resemble::

            SELECT id, name FROM user ORDER BY name DESC NULLS FIRST

        Like :func:`.asc` and :func:`.desc`, :func:`.nullsfirst` is typically
        invoked from the column expression itself using :meth:`.ColumnElement.nullsfirst`,
        rather than as its standalone function version, as in::

            stmt = select([users_table]).\\
                        order_by(users_table.c.name.desc().nullsfirst())

        .. seealso::

            :func:`.asc`

            :func:`.desc`

            :func:`.nullslast`

            :meth:`.Select.order_by`

        """
        return UnaryExpression(
                _literal_as_text(column), modifier=operators.nullsfirst_op)


    @classmethod
    def _create_nullslast(cls, column):
        """Produce the ``NULLS LAST`` modifier for an ``ORDER BY`` expression.

        :func:`.nullslast` is intended to modify the expression produced
        by :func:`.asc` or :func:`.desc`, and indicates how NULL values
        should be handled when they are encountered during ordering::


            from sqlalchemy import desc, nullslast

            stmt = select([users_table]).\\
                        order_by(nullslast(desc(users_table.c.name)))

        The SQL expression from the above would resemble::

            SELECT id, name FROM user ORDER BY name DESC NULLS LAST

        Like :func:`.asc` and :func:`.desc`, :func:`.nullslast` is typically
        invoked from the column expression itself using :meth:`.ColumnElement.nullslast`,
        rather than as its standalone function version, as in::

            stmt = select([users_table]).\\
                        order_by(users_table.c.name.desc().nullslast())

        .. seealso::

            :func:`.asc`

            :func:`.desc`

            :func:`.nullsfirst`

            :meth:`.Select.order_by`

        """
        return UnaryExpression(
            _literal_as_text(column), modifier=operators.nullslast_op)


    @classmethod
    def _create_desc(cls, column):
        """Produce a descending ``ORDER BY`` clause element.

        e.g.::

            from sqlalchemy import desc

            stmt = select([users_table]).order_by(desc(users_table.c.name))

        will produce SQL as::

            SELECT id, name FROM user ORDER BY name DESC

        The :func:`.desc` function is a standalone version of the
        :meth:`.ColumnElement.desc` method available on all SQL expressions,
        e.g.::


            stmt = select([users_table]).order_by(users_table.c.name.desc())

        :param column: A :class:`.ColumnElement` (e.g. scalar SQL expression)
         with which to apply the :func:`.desc` operation.

        .. seealso::

            :func:`.asc`

            :func:`.nullsfirst`

            :func:`.nullslast`

            :meth:`.Select.order_by`

        """
        return UnaryExpression(
            _literal_as_text(column), modifier=operators.desc_op)

    @classmethod
    def _create_asc(cls, column):
        """Produce an ascending ``ORDER BY`` clause element.

        e.g.::

            from sqlalchemy import asc
            stmt = select([users_table]).order_by(asc(users_table.c.name))

        will produce SQL as::

            SELECT id, name FROM user ORDER BY name ASC

        The :func:`.asc` function is a standalone version of the
        :meth:`.ColumnElement.asc` method available on all SQL expressions,
        e.g.::


            stmt = select([users_table]).order_by(users_table.c.name.asc())

        :param column: A :class:`.ColumnElement` (e.g. scalar SQL expression)
         with which to apply the :func:`.asc` operation.

        .. seealso::

            :func:`.desc`

            :func:`.nullsfirst`

            :func:`.nullslast`

            :meth:`.Select.order_by`

        """
        return UnaryExpression(
            _literal_as_text(column), modifier=operators.asc_op)

    @classmethod
    def _create_distinct(cls, expr):
        """Produce an column-expression-level unary ``DISTINCT`` clause.

        This applies the ``DISTINCT`` keyword to an individual column
        expression, and is typically contained within an aggregate function,
        as in::

            from sqlalchemy import distinct, func
            stmt = select([func.count(distinct(users_table.c.name))])

        The above would produce an expression resembling::

            SELECT COUNT(DISTINCT name) FROM user

        The :func:`.distinct` function is also available as a column-level
        method, e.g. :meth:`.ColumnElement.distinct`, as in::

            stmt = select([func.count(users_table.c.name.distinct())])

        The :func:`.distinct` operator is different from the
        :meth:`.Select.distinct` method of :class:`.Select`,
        which produces a ``SELECT`` statement
        with ``DISTINCT`` applied to the result set as a whole,
        e.g. a ``SELECT DISTINCT`` expression.  See that method for further
        information.

        .. seealso::

            :meth:`.ColumnElement.distinct`

            :meth:`.Select.distinct`

            :data:`.func`

        """
        expr = _literal_as_binds(expr)
        return UnaryExpression(expr,
                    operator=operators.distinct_op, type_=expr.type)

    @util.memoized_property
    def _order_by_label_element(self):
        if self.modifier in (operators.desc_op, operators.asc_op):
            return self.element._order_by_label_element
        else:
            return None

    @property
    def _from_objects(self):
        return self.element._from_objects

    def _copy_internals(self, clone=_clone, **kw):
        self.element = clone(self.element, **kw)

    def get_children(self, **kwargs):
        return self.element,

    def compare(self, other, **kw):
        """Compare this :class:`UnaryExpression` against the given
        :class:`.ClauseElement`."""

        return (
            isinstance(other, UnaryExpression) and
            self.operator == other.operator and
            self.modifier == other.modifier and
            self.element.compare(other.element, **kw)
        )

    def _negate(self):
        if self.negate is not None:
            return UnaryExpression(
                self.element,
                operator=self.negate,
                negate=self.operator,
                modifier=self.modifier,
                type_=self.type)
        else:
            return ClauseElement._negate(self)

    def self_group(self, against=None):
        if self.operator and operators.is_precedent(self.operator, against):
            return Grouping(self)
        else:
            return self


class AsBoolean(UnaryExpression):

    def __init__(self, element, operator, negate):
        self.element = element
        self.type = type_api.BOOLEANTYPE
        self.operator = operator
        self.negate = negate
        self.modifier = None

    def self_group(self, against=None):
        return self

    def _negate(self):
        return self.element._negate()


class BinaryExpression(ColumnElement):
    """Represent an expression that is ``LEFT <operator> RIGHT``.

    A :class:`.BinaryExpression` is generated automatically
    whenever two column expressions are used in a Python binary expression::

        >>> from sqlalchemy.sql import column
        >>> column('a') + column('b')
        <sqlalchemy.sql.expression.BinaryExpression object at 0x101029dd0>
        >>> print column('a') + column('b')
        a + b

    """

    __visit_name__ = 'binary'

    def __init__(self, left, right, operator, type_=None,
                    negate=None, modifiers=None):
        # allow compatibility with libraries that
        # refer to BinaryExpression directly and pass strings
        if isinstance(operator, util.string_types):
            operator = operators.custom_op(operator)
        self._orig = (left, right)
        self.left = left.self_group(against=operator)
        self.right = right.self_group(against=operator)
        self.operator = operator
        self.type = type_api.to_instance(type_)
        self.negate = negate

        if modifiers is None:
            self.modifiers = {}
        else:
            self.modifiers = modifiers

    def __bool__(self):
        if self.operator in (operator.eq, operator.ne):
            return self.operator(hash(self._orig[0]), hash(self._orig[1]))
        else:
            raise TypeError("Boolean value of this clause is not defined")

    __nonzero__ = __bool__

    @property
    def is_comparison(self):
        return operators.is_comparison(self.operator)

    @property
    def _from_objects(self):
        return self.left._from_objects + self.right._from_objects

    def _copy_internals(self, clone=_clone, **kw):
        self.left = clone(self.left, **kw)
        self.right = clone(self.right, **kw)

    def get_children(self, **kwargs):
        return self.left, self.right

    def compare(self, other, **kw):
        """Compare this :class:`BinaryExpression` against the
        given :class:`BinaryExpression`."""

        return (
            isinstance(other, BinaryExpression) and
            self.operator == other.operator and
            (
                self.left.compare(other.left, **kw) and
                self.right.compare(other.right, **kw) or
                (
                    operators.is_commutative(self.operator) and
                    self.left.compare(other.right, **kw) and
                    self.right.compare(other.left, **kw)
                )
            )
        )

    def self_group(self, against=None):
        if operators.is_precedent(self.operator, against):
            return Grouping(self)
        else:
            return self

    def _negate(self):
        if self.negate is not None:
            return BinaryExpression(
                self.left,
                self.right,
                self.negate,
                negate=self.operator,
                type_=type_api.BOOLEANTYPE,
                modifiers=self.modifiers)
        else:
            return super(BinaryExpression, self)._negate()




class Grouping(ColumnElement):
    """Represent a grouping within a column expression"""

    __visit_name__ = 'grouping'

    def __init__(self, element):
        self.element = element
        self.type = getattr(element, 'type', type_api.NULLTYPE)

    def self_group(self, against=None):
        return self

    @property
    def _label(self):
        return getattr(self.element, '_label', None) or self.anon_label

    def _copy_internals(self, clone=_clone, **kw):
        self.element = clone(self.element, **kw)

    def get_children(self, **kwargs):
        return self.element,

    @property
    def _from_objects(self):
        return self.element._from_objects

    def __getattr__(self, attr):
        return getattr(self.element, attr)

    def __getstate__(self):
        return {'element': self.element, 'type': self.type}

    def __setstate__(self, state):
        self.element = state['element']
        self.type = state['type']

    def compare(self, other, **kw):
        return isinstance(other, Grouping) and \
            self.element.compare(other.element)


class Over(ColumnElement):
    """Represent an OVER clause.

    This is a special operator against a so-called
    "window" function, as well as any aggregate function,
    which produces results relative to the result set
    itself.  It's supported only by certain database
    backends.

    """
    __visit_name__ = 'over'

    order_by = None
    partition_by = None

    def __init__(self, func, partition_by=None, order_by=None):
        """Produce an :class:`.Over` object against a function.

        Used against aggregate or so-called "window" functions,
        for database backends that support window functions.

        E.g.::

            from sqlalchemy import over
            over(func.row_number(), order_by='x')

        Would produce "ROW_NUMBER() OVER(ORDER BY x)".

        :param func: a :class:`.FunctionElement` construct, typically
         generated by :data:`~.expression.func`.
        :param partition_by: a column element or string, or a list
         of such, that will be used as the PARTITION BY clause
         of the OVER construct.
        :param order_by: a column element or string, or a list
         of such, that will be used as the ORDER BY clause
         of the OVER construct.

        This function is also available from the :data:`~.expression.func`
        construct itself via the :meth:`.FunctionElement.over` method.

        .. versionadded:: 0.7

        """
        self.func = func
        if order_by is not None:
            self.order_by = ClauseList(*util.to_list(order_by))
        if partition_by is not None:
            self.partition_by = ClauseList(*util.to_list(partition_by))

    @util.memoized_property
    def type(self):
        return self.func.type

    def get_children(self, **kwargs):
        return [c for c in
                (self.func, self.partition_by, self.order_by)
                if c is not None]

    def _copy_internals(self, clone=_clone, **kw):
        self.func = clone(self.func, **kw)
        if self.partition_by is not None:
            self.partition_by = clone(self.partition_by, **kw)
        if self.order_by is not None:
            self.order_by = clone(self.order_by, **kw)

    @property
    def _from_objects(self):
        return list(itertools.chain(
            *[c._from_objects for c in
                (self.func, self.partition_by, self.order_by)
            if c is not None]
        ))


class Label(ColumnElement):
    """Represents a column label (AS).

    Represent a label, as typically applied to any column-level
    element using the ``AS`` sql keyword.

    """

    __visit_name__ = 'label'

    def __init__(self, name, element, type_=None):
        """Return a :class:`Label` object for the
        given :class:`.ColumnElement`.

        A label changes the name of an element in the columns clause of a
        ``SELECT`` statement, typically via the ``AS`` SQL keyword.

        This functionality is more conveniently available via the
        :meth:`.ColumnElement.label` method on :class:`.ColumnElement`.

        :param name: label name

        :param obj: a :class:`.ColumnElement`.

        """
        while isinstance(element, Label):
            element = element.element
        if name:
            self.name = name
        else:
            self.name = _anonymous_label('%%(%d %s)s' % (id(self),
                                getattr(element, 'name', 'anon')))
        self.key = self._label = self._key_label = self.name
        self._element = element
        self._type = type_
        self._proxies = [element]

    def __reduce__(self):
        return self.__class__, (self.name, self._element, self._type)

    @util.memoized_property
    def _order_by_label_element(self):
        return self

    @util.memoized_property
    def type(self):
        return type_api.to_instance(
                    self._type or getattr(self._element, 'type', None)
                )

    @util.memoized_property
    def element(self):
        return self._element.self_group(against=operators.as_)

    def self_group(self, against=None):
        sub_element = self._element.self_group(against=against)
        if sub_element is not self._element:
            return Label(self.name,
                        sub_element,
                        type_=self._type)
        else:
            return self

    @property
    def primary_key(self):
        return self.element.primary_key

    @property
    def foreign_keys(self):
        return self.element.foreign_keys

    def get_children(self, **kwargs):
        return self.element,

    def _copy_internals(self, clone=_clone, **kw):
        self.element = clone(self.element, **kw)

    @property
    def _from_objects(self):
        return self.element._from_objects

    def _make_proxy(self, selectable, name=None, **kw):
        e = self.element._make_proxy(selectable,
                                name=name if name else self.name)
        e._proxies.append(self)
        if self._type is not None:
            e.type = self._type
        return e


class ColumnClause(Immutable, ColumnElement):
    """Represents a column expression from any textual string.

    The :class:`.ColumnClause`, a lightweight analogue to the
    :class:`.Column` class, is typically invoked using the
    :func:`.column` function, as in::

        from sqlalchemy.sql import column

        id, name = column("id"), column("name")
        stmt = select([id, name]).select_from("user")

    The above statement would produce SQL like::

        SELECT id, name FROM user

    :class:`.ColumnClause` is the immediate superclass of the schema-specific
    :class:`.Column` object.  While the :class:`.Column` class has all the
    same capabilities as :class:`.ColumnClause`, the :class:`.ColumnClause`
    class is usable by itself in those cases where behavioral requirements
    are limited to simple SQL expression generation.  The object has none of the
    associations with schema-level metadata or with execution-time behavior
    that :class:`.Column` does, so in that sense is a "lightweight" version
    of :class:`.Column`.

    Full details on :class:`.ColumnClause` usage is at :func:`.column`.

    .. seealso::

        :func:`.column`

        :class:`.Column`

    """
    __visit_name__ = 'column'

    onupdate = default = server_default = server_onupdate = None

    _memoized_property = util.group_expirable_memoized_property()

    def __init__(self, text, type_=None, is_literal=False, _selectable=None):
        """Produce a :class:`.ColumnClause` object.

        The :class:`.ColumnClause` is a lightweight analogue to the
        :class:`.Column` class.  The :func:`.column` function can
        be invoked with just a name alone, as in::

            from sqlalchemy.sql import column

            id, name = column("id"), column("name")
            stmt = select([id, name]).select_from("user")

        The above statement would produce SQL like::

            SELECT id, name FROM user

        Once constructed, :func:`.column` may be used like any other SQL expression
        element such as within :func:`.select` constructs::

            from sqlalchemy.sql import column

            id, name = column("id"), column("name")
            stmt = select([id, name]).select_from("user")

        The text handled by :func:`.column` is assumed to be handled
        like the name of a database column; if the string contains mixed case,
        special characters, or matches a known reserved word on the target
        backend, the column expression will render using the quoting
        behavior determined by the backend.  To produce a textual SQL
        expression that is rendered exactly without any quoting,
        use :func:`.literal_column` instead, or pass ``True`` as the
        value of :paramref:`.column.is_literal`.   Additionally, full SQL
        statements are best handled using the :func:`.text` construct.

        :func:`.column` can be used in a table-like
        fashion by combining it with the :func:`.table` function
        (which is the lightweight analogue to :class:`.Table`) to produce
        a working table construct with minimal boilerplate::

            from sqlalchemy.sql import table, column

            user = table("user",
                    column("id"),
                    column("name"),
                    column("description"),
            )

            stmt = select([user.c.description]).where(user.c.name == 'wendy')

        A :func:`.column` / :func:`.table` construct like that illustrated
        above can be created in an
        ad-hoc fashion and is not associated with any :class:`.schema.MetaData`,
        DDL, or events, unlike its :class:`.Table` counterpart.

        :param text: the text of the element.

        :param type: :class:`.types.TypeEngine` object which can associate
          this :class:`.ColumnClause` with a type.

        :param is_literal: if True, the :class:`.ColumnClause` is assumed to
          be an exact expression that will be delivered to the output with no
          quoting rules applied regardless of case sensitive settings. the
          :func:`.literal_column()` function essentially invokes :func:`.column`
          while passing ``is_literal=True``.

        .. seealso::

            :class:`.Column`

            :func:`.literal_column`

            :func:`.text`

            :ref:`metadata_toplevel`

        """

        self.key = self.name = text
        self.table = _selectable
        self.type = type_api.to_instance(type_)
        self.is_literal = is_literal

    def _compare_name_for_result(self, other):
        if self.is_literal or \
            self.table is None or self.table._textual or \
            not hasattr(other, 'proxy_set') or (
            isinstance(other, ColumnClause) and
                (other.is_literal or
                        other.table is None or
                        other.table._textual)
        ):
            return (hasattr(other, 'name') and self.name == other.name) or \
                (hasattr(other, '_label') and self._label == other._label)
        else:
            return other.proxy_set.intersection(self.proxy_set)

    def _get_table(self):
        return self.__dict__['table']

    def _set_table(self, table):
        self._memoized_property.expire_instance(self)
        self.__dict__['table'] = table
    table = property(_get_table, _set_table)

    @_memoized_property
    def _from_objects(self):
        t = self.table
        if t is not None:
            return [t]
        else:
            return []

    @util.memoized_property
    def description(self):
        if util.py3k:
            return self.name
        else:
            return self.name.encode('ascii', 'backslashreplace')

    @_memoized_property
    def _key_label(self):
        if self.key != self.name:
            return self._gen_label(self.key)
        else:
            return self._label

    @_memoized_property
    def _label(self):
        return self._gen_label(self.name)

    def _gen_label(self, name):
        t = self.table

        if self.is_literal:
            return None

        elif t is not None and t.named_with_column:
            if getattr(t, 'schema', None):
                label = t.schema.replace('.', '_') + "_" + \
                            t.name + "_" + name
            else:
                label = t.name + "_" + name

            # propagate name quoting rules for labels.
            if getattr(name, "quote", None) is not None:
                if isinstance(label, quoted_name):
                    label.quote = name.quote
                else:
                    label = quoted_name(label, name.quote)
            elif getattr(t.name, "quote", None) is not None:
                # can't get this situation to occur, so let's
                # assert false on it for now
                assert not isinstance(label, quoted_name)
                label = quoted_name(label, t.name.quote)

            # ensure the label name doesn't conflict with that
            # of an existing column
            if label in t.c:
                _label = label
                counter = 1
                while _label in t.c:
                    _label = label + "_" + str(counter)
                    counter += 1
                label = _label

            return _as_truncated(label)

        else:
            return name

    def _bind_param(self, operator, obj):
        return BindParameter(self.name, obj,
                                _compared_to_operator=operator,
                                _compared_to_type=self.type,
                                unique=True)

    def _make_proxy(self, selectable, name=None, attach=True,
                            name_is_truncatable=False, **kw):
        # propagate the "is_literal" flag only if we are keeping our name,
        # otherwise its considered to be a label
        is_literal = self.is_literal and (name is None or name == self.name)
        c = self._constructor(
                    _as_truncated(name or self.name) if \
                                    name_is_truncatable else \
                                    (name or self.name),
                    type_=self.type,
                    _selectable=selectable,
                    is_literal=is_literal
                )
        if name is None:
            c.key = self.key
        c._proxies = [self]
        if selectable._is_clone_of is not None:
            c._is_clone_of = \
                selectable._is_clone_of.columns.get(c.key)

        if attach:
            selectable._columns[c.key] = c
        return c


class _IdentifiedClause(Executable, ClauseElement):

    __visit_name__ = 'identified'
    _execution_options = \
        Executable._execution_options.union({'autocommit': False})

    def __init__(self, ident):
        self.ident = ident


class SavepointClause(_IdentifiedClause):
    __visit_name__ = 'savepoint'


class RollbackToSavepointClause(_IdentifiedClause):
    __visit_name__ = 'rollback_to_savepoint'


class ReleaseSavepointClause(_IdentifiedClause):
    __visit_name__ = 'release_savepoint'


class quoted_name(util.text_type):
    """Represent a SQL identifier combined with quoting preferences.

    :class:`.quoted_name` is a Python unicode/str subclass which
    represents a particular identifier name along with a
    ``quote`` flag.  This ``quote`` flag, when set to
    ``True`` or ``False``, overrides automatic quoting behavior
    for this identifier in order to either unconditionally quote
    or to not quote the name.  If left at its default of ``None``,
    quoting behavior is applied to the identifier on a per-backend basis
    based on an examination of the token itself.

    A :class:`.quoted_name` object with ``quote=True`` is also
    prevented from being modified in the case of a so-called
    "name normalize" option.  Certain database backends, such as
    Oracle, Firebird, and DB2 "normalize" case-insensitive names
    as uppercase.  The SQLAlchemy dialects for these backends
    convert from SQLAlchemy's lower-case-means-insensitive convention
    to the upper-case-means-insensitive conventions of those backends.
    The ``quote=True`` flag here will prevent this conversion from occurring
    to support an identifier that's quoted as all lower case against
    such a backend.

    The :class:`.quoted_name` object is normally created automatically
    when specifying the name for key schema constructs such as :class:`.Table`,
    :class:`.Column`, and others.   The class can also be passed explicitly
    as the name to any function that receives a name which can be quoted.
    Such as to use the :meth:`.Engine.has_table` method with an unconditionally
    quoted name::

        from sqlaclchemy import create_engine
        from sqlalchemy.sql.elements import quoted_name

        engine = create_engine("oracle+cx_oracle://some_dsn")
        engine.has_table(quoted_name("some_table", True))

    The above logic will run the "has table" logic against the Oracle backend,
    passing the name exactly as ``"some_table"`` without converting to
    upper case.

    .. versionadded:: 0.9.0

    """

    def __new__(cls, value, quote):
        if value is None:
            return None
        # experimental - don't bother with quoted_name
        # if quote flag is None.  doesn't seem to make any dent
        # in performance however
        # elif not sprcls and quote is None:
        #   return value
        elif isinstance(value, cls) and (
                quote is None or value.quote == quote
            ):
            return value
        self = super(quoted_name, cls).__new__(cls, value)
        self.quote = quote
        return self

    def __reduce__(self):
        return quoted_name, (util.text_type(self), self.quote)

    @util.memoized_instancemethod
    def lower(self):
        if self.quote:
            return self
        else:
            return util.text_type(self).lower()

    @util.memoized_instancemethod
    def upper(self):
        if self.quote:
            return self
        else:
            return util.text_type(self).upper()

    def __repr__(self):
        backslashed = self.encode('ascii', 'backslashreplace')
        if not util.py2k:
            backslashed = backslashed.decode('ascii')
        return "'%s'" % backslashed

class _truncated_label(quoted_name):
    """A unicode subclass used to identify symbolic "
    "names that may require truncation."""

    def __new__(cls, value, quote=None):
        quote = getattr(value, "quote", quote)
        #return super(_truncated_label, cls).__new__(cls, value, quote, True)
        return super(_truncated_label, cls).__new__(cls, value, quote)

    def __reduce__(self):
        return self.__class__, (util.text_type(self), self.quote)

    def apply_map(self, map_):
        return self


class _defer_name(_truncated_label):
    """mark a name as 'deferred' for the purposes of automated name
    generation.

    """
    def __new__(cls, value):
        if value is None:
            return _NONE_NAME
        else:
            return super(_defer_name, cls).__new__(cls, value)


class _defer_none_name(_defer_name):
    """indicate a 'deferred' name that was ultimately the value None."""

_NONE_NAME = _defer_none_name("_unnamed_")

# for backwards compatibility in case
# someone is re-implementing the
# _truncated_identifier() sequence in a custom
# compiler
_generated_label = _truncated_label


class _anonymous_label(_truncated_label):
    """A unicode subclass used to identify anonymously
    generated names."""

    def __add__(self, other):
        return _anonymous_label(
                    quoted_name(
                        util.text_type.__add__(self, util.text_type(other)),
                        self.quote)
                )

    def __radd__(self, other):
        return _anonymous_label(
                    quoted_name(
                        util.text_type.__add__(util.text_type(other), self),
                        self.quote)
                    )

    def apply_map(self, map_):
        if self.quote is not None:
            # preserve quoting only if necessary
            return quoted_name(self % map_, self.quote)
        else:
            # else skip the constructor call
            return self % map_


def _as_truncated(value):
    """coerce the given value to :class:`._truncated_label`.

    Existing :class:`._truncated_label` and
    :class:`._anonymous_label` objects are passed
    unchanged.
    """

    if isinstance(value, _truncated_label):
        return value
    else:
        return _truncated_label(value)


def _string_or_unprintable(element):
    if isinstance(element, util.string_types):
        return element
    else:
        try:
            return str(element)
        except:
            return "unprintable element %r" % element


def _expand_cloned(elements):
    """expand the given set of ClauseElements to be the set of all 'cloned'
    predecessors.

    """
    return itertools.chain(*[x._cloned_set for x in elements])


def _select_iterables(elements):
    """expand tables into individual columns in the
    given list of column expressions.

    """
    return itertools.chain(*[c._select_iterable for c in elements])


def _cloned_intersection(a, b):
    """return the intersection of sets a and b, counting
    any overlap between 'cloned' predecessors.

    The returned set is in terms of the entities present within 'a'.

    """
    all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b))
    return set(elem for elem in a
               if all_overlap.intersection(elem._cloned_set))

def _cloned_difference(a, b):
    all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b))
    return set(elem for elem in a
                if not all_overlap.intersection(elem._cloned_set))


def _labeled(element):
    if not hasattr(element, 'name'):
        return element.label(None)
    else:
        return element


def _is_column(col):
    """True if ``col`` is an instance of :class:`.ColumnElement`."""

    return isinstance(col, ColumnElement)


def _find_columns(clause):
    """locate Column objects within the given expression."""

    cols = util.column_set()
    traverse(clause, {}, {'column': cols.add})
    return cols


# there is some inconsistency here between the usage of
# inspect() vs. checking for Visitable and __clause_element__.
# Ideally all functions here would derive from inspect(),
# however the inspect() versions add significant callcount
# overhead for critical functions like _interpret_as_column_or_from().
# Generally, the column-based functions are more performance critical
# and are fine just checking for __clause_element__().  It is only
# _interpret_as_from() where we'd like to be able to receive ORM entities
# that have no defined namespace, hence inspect() is needed there.


def _column_as_key(element):
    if isinstance(element, util.string_types):
        return element
    if hasattr(element, '__clause_element__'):
        element = element.__clause_element__()
    try:
        return element.key
    except AttributeError:
        return None


def _clause_element_as_expr(element):
    if hasattr(element, '__clause_element__'):
        return element.__clause_element__()
    else:
        return element


def _literal_as_text(element):
    if isinstance(element, Visitable):
        return element
    elif hasattr(element, '__clause_element__'):
        return element.__clause_element__()
    elif isinstance(element, util.string_types):
        return TextClause(util.text_type(element))
    elif isinstance(element, (util.NoneType, bool)):
        return _const_expr(element)
    else:
        raise exc.ArgumentError(
            "SQL expression object or string expected."
        )


def _no_literals(element):
    if hasattr(element, '__clause_element__'):
        return element.__clause_element__()
    elif not isinstance(element, Visitable):
        raise exc.ArgumentError("Ambiguous literal: %r.  Use the 'text()' "
                                "function to indicate a SQL expression "
                                "literal, or 'literal()' to indicate a "
                                "bound value." % element)
    else:
        return element


def _is_literal(element):
    return not isinstance(element, Visitable) and \
            not hasattr(element, '__clause_element__')


def _only_column_elements_or_none(element, name):
    if element is None:
        return None
    else:
        return _only_column_elements(element, name)


def _only_column_elements(element, name):
    if hasattr(element, '__clause_element__'):
        element = element.__clause_element__()
    if not isinstance(element, ColumnElement):
        raise exc.ArgumentError(
                "Column-based expression object expected for argument "
                "'%s'; got: '%s', type %s" % (name, element, type(element)))
    return element

def _literal_as_binds(element, name=None, type_=None):
    if hasattr(element, '__clause_element__'):
        return element.__clause_element__()
    elif not isinstance(element, Visitable):
        if element is None:
            return Null()
        else:
            return BindParameter(name, element, type_=type_, unique=True)
    else:
        return element


def _interpret_as_column_or_from(element):
    if isinstance(element, Visitable):
        return element
    elif hasattr(element, '__clause_element__'):
        return element.__clause_element__()

    insp = inspection.inspect(element, raiseerr=False)
    if insp is None:
        if isinstance(element, (util.NoneType, bool)):
            return _const_expr(element)
    elif hasattr(insp, "selectable"):
        return insp.selectable

    return ColumnClause(str(element), is_literal=True)


def _const_expr(element):
    if isinstance(element, (Null, False_, True_)):
        return element
    elif element is None:
        return Null()
    elif element is False:
        return False_()
    elif element is True:
        return True_()
    else:
        raise exc.ArgumentError(
            "Expected None, False, or True"
        )


def _type_from_args(args):
    for a in args:
        if not a.type._isnull:
            return a.type
    else:
        return type_api.NULLTYPE


def _corresponding_column_or_error(fromclause, column,
                                        require_embedded=False):
    c = fromclause.corresponding_column(column,
            require_embedded=require_embedded)
    if c is None:
        raise exc.InvalidRequestError(
                "Given column '%s', attached to table '%s', "
                "failed to locate a corresponding column from table '%s'"
                %
                (column,
                    getattr(column, 'table', None),
                    fromclause.description)
                )
    return c


class AnnotatedColumnElement(Annotated):
    def __init__(self, element, values):
        Annotated.__init__(self, element, values)
        ColumnElement.comparator._reset(self)
        for attr in ('name', 'key', 'table'):
            if self.__dict__.get(attr, False) is None:
                self.__dict__.pop(attr)

    def _with_annotations(self, values):
        clone = super(AnnotatedColumnElement, self)._with_annotations(values)
        ColumnElement.comparator._reset(clone)
        return clone

    @util.memoized_property
    def name(self):
        """pull 'name' from parent, if not present"""
        return self._Annotated__element.name

    @util.memoized_property
    def table(self):
        """pull 'table' from parent, if not present"""
        return self._Annotated__element.table

    @util.memoized_property
    def key(self):
        """pull 'key' from parent, if not present"""
        return self._Annotated__element.key

    @util.memoized_property
    def info(self):
        return self._Annotated__element.info

    @util.memoized_property
    def anon_label(self):
        return self._Annotated__element.anon_label