diff options
Diffstat (limited to 'lib/sqlalchemy/ext/declarative/__init__.py')
-rw-r--r-- | lib/sqlalchemy/ext/declarative/__init__.py | 1371 |
1 files changed, 0 insertions, 1371 deletions
diff --git a/lib/sqlalchemy/ext/declarative/__init__.py b/lib/sqlalchemy/ext/declarative/__init__.py index 2b611252a..cbde6f9d2 100644 --- a/lib/sqlalchemy/ext/declarative/__init__.py +++ b/lib/sqlalchemy/ext/declarative/__init__.py @@ -5,1377 +5,6 @@ # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php -""" -Synopsis -======== - -SQLAlchemy object-relational configuration involves the -combination of :class:`.Table`, :func:`.mapper`, and class -objects to define a mapped class. -:mod:`~sqlalchemy.ext.declarative` allows all three to be -expressed at once within the class declaration. As much as -possible, regular SQLAlchemy schema and ORM constructs are -used directly, so that configuration between "classical" ORM -usage and declarative remain highly similar. - -As a simple example:: - - from sqlalchemy.ext.declarative import declarative_base - - Base = declarative_base() - - class SomeClass(Base): - __tablename__ = 'some_table' - id = Column(Integer, primary_key=True) - name = Column(String(50)) - -Above, the :func:`declarative_base` callable returns a new base class from -which all mapped classes should inherit. When the class definition is -completed, a new :class:`.Table` and :func:`.mapper` will have been generated. - -The resulting table and mapper are accessible via -``__table__`` and ``__mapper__`` attributes on the -``SomeClass`` class:: - - # access the mapped Table - SomeClass.__table__ - - # access the Mapper - SomeClass.__mapper__ - -Defining Attributes -=================== - -In the previous example, the :class:`.Column` objects are -automatically named with the name of the attribute to which they are -assigned. - -To name columns explicitly with a name distinct from their mapped attribute, -just give the column a name. Below, column "some_table_id" is mapped to the -"id" attribute of `SomeClass`, but in SQL will be represented as -"some_table_id":: - - class SomeClass(Base): - __tablename__ = 'some_table' - id = Column("some_table_id", Integer, primary_key=True) - -Attributes may be added to the class after its construction, and they will be -added to the underlying :class:`.Table` and -:func:`.mapper` definitions as appropriate:: - - SomeClass.data = Column('data', Unicode) - SomeClass.related = relationship(RelatedInfo) - -Classes which are constructed using declarative can interact freely -with classes that are mapped explicitly with :func:`.mapper`. - -It is recommended, though not required, that all tables -share the same underlying :class:`~sqlalchemy.schema.MetaData` object, -so that string-configured :class:`~sqlalchemy.schema.ForeignKey` -references can be resolved without issue. - -Accessing the MetaData -======================= - -The :func:`declarative_base` base class contains a -:class:`.MetaData` object where newly defined -:class:`.Table` objects are collected. This object is -intended to be accessed directly for -:class:`.MetaData`-specific operations. Such as, to issue -CREATE statements for all tables:: - - engine = create_engine('sqlite://') - Base.metadata.create_all(engine) - -:func:`declarative_base` can also receive a pre-existing -:class:`.MetaData` object, which allows a -declarative setup to be associated with an already -existing traditional collection of :class:`~sqlalchemy.schema.Table` -objects:: - - mymetadata = MetaData() - Base = declarative_base(metadata=mymetadata) - - -.. _declarative_configuring_relationships: - -Configuring Relationships -========================= - -Relationships to other classes are done in the usual way, with the added -feature that the class specified to :func:`~sqlalchemy.orm.relationship` -may be a string name. The "class registry" associated with ``Base`` -is used at mapper compilation time to resolve the name into the actual -class object, which is expected to have been defined once the mapper -configuration is used:: - - class User(Base): - __tablename__ = 'users' - - id = Column(Integer, primary_key=True) - name = Column(String(50)) - addresses = relationship("Address", backref="user") - - class Address(Base): - __tablename__ = 'addresses' - - id = Column(Integer, primary_key=True) - email = Column(String(50)) - user_id = Column(Integer, ForeignKey('users.id')) - -Column constructs, since they are just that, are immediately usable, -as below where we define a primary join condition on the ``Address`` -class using them:: - - class Address(Base): - __tablename__ = 'addresses' - - id = Column(Integer, primary_key=True) - email = Column(String(50)) - user_id = Column(Integer, ForeignKey('users.id')) - user = relationship(User, primaryjoin=user_id == User.id) - -In addition to the main argument for :func:`~sqlalchemy.orm.relationship`, -other arguments which depend upon the columns present on an as-yet -undefined class may also be specified as strings. These strings are -evaluated as Python expressions. The full namespace available within -this evaluation includes all classes mapped for this declarative base, -as well as the contents of the ``sqlalchemy`` package, including -expression functions like :func:`~sqlalchemy.sql.expression.desc` and -:attr:`~sqlalchemy.sql.expression.func`:: - - class User(Base): - # .... - addresses = relationship("Address", - order_by="desc(Address.email)", - primaryjoin="Address.user_id==User.id") - -For the case where more than one module contains a class of the same name, -string class names can also be specified as module-qualified paths -within any of these string expressions:: - - class User(Base): - # .... - addresses = relationship("myapp.model.address.Address", - order_by="desc(myapp.model.address.Address.email)", - primaryjoin="myapp.model.address.Address.user_id==" - "myapp.model.user.User.id") - -The qualified path can be any partial path that removes ambiguity between -the names. For example, to disambiguate between -``myapp.model.address.Address`` and ``myapp.model.lookup.Address``, -we can specify ``address.Address`` or ``lookup.Address``:: - - class User(Base): - # .... - addresses = relationship("address.Address", - order_by="desc(address.Address.email)", - primaryjoin="address.Address.user_id==" - "User.id") - -.. versionadded:: 0.8 - module-qualified paths can be used when specifying string arguments - with Declarative, in order to specify specific modules. - -Two alternatives also exist to using string-based attributes. A lambda -can also be used, which will be evaluated after all mappers have been -configured:: - - class User(Base): - # ... - addresses = relationship(lambda: Address, - order_by=lambda: desc(Address.email), - primaryjoin=lambda: Address.user_id==User.id) - -Or, the relationship can be added to the class explicitly after the classes -are available:: - - User.addresses = relationship(Address, - primaryjoin=Address.user_id==User.id) - - - -.. _declarative_many_to_many: - -Configuring Many-to-Many Relationships -====================================== - -Many-to-many relationships are also declared in the same way -with declarative as with traditional mappings. The -``secondary`` argument to -:func:`.relationship` is as usual passed a -:class:`.Table` object, which is typically declared in the -traditional way. The :class:`.Table` usually shares -the :class:`.MetaData` object used by the declarative base:: - - keywords = Table( - 'keywords', Base.metadata, - Column('author_id', Integer, ForeignKey('authors.id')), - Column('keyword_id', Integer, ForeignKey('keywords.id')) - ) - - class Author(Base): - __tablename__ = 'authors' - id = Column(Integer, primary_key=True) - keywords = relationship("Keyword", secondary=keywords) - -Like other :func:`~sqlalchemy.orm.relationship` arguments, a string is accepted -as well, passing the string name of the table as defined in the -``Base.metadata.tables`` collection:: - - class Author(Base): - __tablename__ = 'authors' - id = Column(Integer, primary_key=True) - keywords = relationship("Keyword", secondary="keywords") - -As with traditional mapping, its generally not a good idea to use -a :class:`.Table` as the "secondary" argument which is also mapped to -a class, unless the :func:`.relationship` is declared with ``viewonly=True``. -Otherwise, the unit-of-work system may attempt duplicate INSERT and -DELETE statements against the underlying table. - -.. _declarative_sql_expressions: - -Defining SQL Expressions -======================== - -See :ref:`mapper_sql_expressions` for examples on declaratively -mapping attributes to SQL expressions. - -.. _declarative_table_args: - -Table Configuration -=================== - -Table arguments other than the name, metadata, and mapped Column -arguments are specified using the ``__table_args__`` class attribute. -This attribute accommodates both positional as well as keyword -arguments that are normally sent to the -:class:`~sqlalchemy.schema.Table` constructor. -The attribute can be specified in one of two forms. One is as a -dictionary:: - - class MyClass(Base): - __tablename__ = 'sometable' - __table_args__ = {'mysql_engine':'InnoDB'} - -The other, a tuple, where each argument is positional -(usually constraints):: - - class MyClass(Base): - __tablename__ = 'sometable' - __table_args__ = ( - ForeignKeyConstraint(['id'], ['remote_table.id']), - UniqueConstraint('foo'), - ) - -Keyword arguments can be specified with the above form by -specifying the last argument as a dictionary:: - - class MyClass(Base): - __tablename__ = 'sometable' - __table_args__ = ( - ForeignKeyConstraint(['id'], ['remote_table.id']), - UniqueConstraint('foo'), - {'autoload':True} - ) - -Using a Hybrid Approach with __table__ -======================================= - -As an alternative to ``__tablename__``, a direct -:class:`~sqlalchemy.schema.Table` construct may be used. The -:class:`~sqlalchemy.schema.Column` objects, which in this case require -their names, will be added to the mapping just like a regular mapping -to a table:: - - class MyClass(Base): - __table__ = Table('my_table', Base.metadata, - Column('id', Integer, primary_key=True), - Column('name', String(50)) - ) - -``__table__`` provides a more focused point of control for establishing -table metadata, while still getting most of the benefits of using declarative. -An application that uses reflection might want to load table metadata elsewhere -and pass it to declarative classes:: - - from sqlalchemy.ext.declarative import declarative_base - - Base = declarative_base() - Base.metadata.reflect(some_engine) - - class User(Base): - __table__ = metadata.tables['user'] - - class Address(Base): - __table__ = metadata.tables['address'] - -Some configuration schemes may find it more appropriate to use ``__table__``, -such as those which already take advantage of the data-driven nature of -:class:`.Table` to customize and/or automate schema definition. - -Note that when the ``__table__`` approach is used, the object is immediately -usable as a plain :class:`.Table` within the class declaration body itself, -as a Python class is only another syntactical block. Below this is illustrated -by using the ``id`` column in the ``primaryjoin`` condition of a -:func:`.relationship`:: - - class MyClass(Base): - __table__ = Table('my_table', Base.metadata, - Column('id', Integer, primary_key=True), - Column('name', String(50)) - ) - - widgets = relationship(Widget, - primaryjoin=Widget.myclass_id==__table__.c.id) - -Similarly, mapped attributes which refer to ``__table__`` can be placed inline, -as below where we assign the ``name`` column to the attribute ``_name``, -generating a synonym for ``name``:: - - from sqlalchemy.ext.declarative import synonym_for - - class MyClass(Base): - __table__ = Table('my_table', Base.metadata, - Column('id', Integer, primary_key=True), - Column('name', String(50)) - ) - - _name = __table__.c.name - - @synonym_for("_name") - def name(self): - return "Name: %s" % _name - -Using Reflection with Declarative -================================= - -It's easy to set up a :class:`.Table` that uses ``autoload=True`` -in conjunction with a mapped class:: - - class MyClass(Base): - __table__ = Table('mytable', Base.metadata, - autoload=True, autoload_with=some_engine) - -However, one improvement that can be made here is to not -require the :class:`.Engine` to be available when classes are -being first declared. To achieve this, use the -:class:`.DeferredReflection` mixin, which sets up mappings -only after a special ``prepare(engine)`` step is called:: - - from sqlalchemy.ext.declarative import declarative_base, DeferredReflection - - Base = declarative_base(cls=DeferredReflection) - - class Foo(Base): - __tablename__ = 'foo' - bars = relationship("Bar") - - class Bar(Base): - __tablename__ = 'bar' - - # illustrate overriding of "bar.foo_id" to have - # a foreign key constraint otherwise not - # reflected, such as when using MySQL - foo_id = Column(Integer, ForeignKey('foo.id')) - - Base.prepare(e) - -.. versionadded:: 0.8 - Added :class:`.DeferredReflection`. - -Mapper Configuration -==================== - -Declarative makes use of the :func:`~.orm.mapper` function internally -when it creates the mapping to the declared table. The options -for :func:`~.orm.mapper` are passed directly through via the -``__mapper_args__`` class attribute. As always, arguments which reference -locally mapped columns can reference them directly from within the -class declaration:: - - from datetime import datetime - - class Widget(Base): - __tablename__ = 'widgets' - - id = Column(Integer, primary_key=True) - timestamp = Column(DateTime, nullable=False) - - __mapper_args__ = { - 'version_id_col': timestamp, - 'version_id_generator': lambda v:datetime.now() - } - -.. _declarative_inheritance: - -Inheritance Configuration -========================= - -Declarative supports all three forms of inheritance as intuitively -as possible. The ``inherits`` mapper keyword argument is not needed -as declarative will determine this from the class itself. The various -"polymorphic" keyword arguments are specified using ``__mapper_args__``. - -Joined Table Inheritance -~~~~~~~~~~~~~~~~~~~~~~~~ - -Joined table inheritance is defined as a subclass that defines its own -table:: - - class Person(Base): - __tablename__ = 'people' - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __tablename__ = 'engineers' - __mapper_args__ = {'polymorphic_identity': 'engineer'} - id = Column(Integer, ForeignKey('people.id'), primary_key=True) - primary_language = Column(String(50)) - -Note that above, the ``Engineer.id`` attribute, since it shares the -same attribute name as the ``Person.id`` attribute, will in fact -represent the ``people.id`` and ``engineers.id`` columns together, -with the "Engineer.id" column taking precedence if queried directly. -To provide the ``Engineer`` class with an attribute that represents -only the ``engineers.id`` column, give it a different attribute name:: - - class Engineer(Person): - __tablename__ = 'engineers' - __mapper_args__ = {'polymorphic_identity': 'engineer'} - engineer_id = Column('id', Integer, ForeignKey('people.id'), - primary_key=True) - primary_language = Column(String(50)) - - -.. versionchanged:: 0.7 joined table inheritance favors the subclass - column over that of the superclass, such as querying above - for ``Engineer.id``. Prior to 0.7 this was the reverse. - -.. _declarative_single_table: - -Single Table Inheritance -~~~~~~~~~~~~~~~~~~~~~~~~ - -Single table inheritance is defined as a subclass that does not have -its own table; you just leave out the ``__table__`` and ``__tablename__`` -attributes:: - - class Person(Base): - __tablename__ = 'people' - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __mapper_args__ = {'polymorphic_identity': 'engineer'} - primary_language = Column(String(50)) - -When the above mappers are configured, the ``Person`` class is mapped -to the ``people`` table *before* the ``primary_language`` column is -defined, and this column will not be included in its own mapping. -When ``Engineer`` then defines the ``primary_language`` column, the -column is added to the ``people`` table so that it is included in the -mapping for ``Engineer`` and is also part of the table's full set of -columns. Columns which are not mapped to ``Person`` are also excluded -from any other single or joined inheriting classes using the -``exclude_properties`` mapper argument. Below, ``Manager`` will have -all the attributes of ``Person`` and ``Manager`` but *not* the -``primary_language`` attribute of ``Engineer``:: - - class Manager(Person): - __mapper_args__ = {'polymorphic_identity': 'manager'} - golf_swing = Column(String(50)) - -The attribute exclusion logic is provided by the -``exclude_properties`` mapper argument, and declarative's default -behavior can be disabled by passing an explicit ``exclude_properties`` -collection (empty or otherwise) to the ``__mapper_args__``. - -Resolving Column Conflicts -^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Note above that the ``primary_language`` and ``golf_swing`` columns -are "moved up" to be applied to ``Person.__table__``, as a result of their -declaration on a subclass that has no table of its own. A tricky case -comes up when two subclasses want to specify *the same* column, as below:: - - class Person(Base): - __tablename__ = 'people' - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __mapper_args__ = {'polymorphic_identity': 'engineer'} - start_date = Column(DateTime) - - class Manager(Person): - __mapper_args__ = {'polymorphic_identity': 'manager'} - start_date = Column(DateTime) - -Above, the ``start_date`` column declared on both ``Engineer`` and ``Manager`` -will result in an error:: - - sqlalchemy.exc.ArgumentError: Column 'start_date' on class - <class '__main__.Manager'> conflicts with existing - column 'people.start_date' - -In a situation like this, Declarative can't be sure -of the intent, especially if the ``start_date`` columns had, for example, -different types. A situation like this can be resolved by using -:class:`.declared_attr` to define the :class:`.Column` conditionally, taking -care to return the **existing column** via the parent ``__table__`` if it -already exists:: - - from sqlalchemy.ext.declarative import declared_attr - - class Person(Base): - __tablename__ = 'people' - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __mapper_args__ = {'polymorphic_identity': 'engineer'} - - @declared_attr - def start_date(cls): - "Start date column, if not present already." - return Person.__table__.c.get('start_date', Column(DateTime)) - - class Manager(Person): - __mapper_args__ = {'polymorphic_identity': 'manager'} - - @declared_attr - def start_date(cls): - "Start date column, if not present already." - return Person.__table__.c.get('start_date', Column(DateTime)) - -Above, when ``Manager`` is mapped, the ``start_date`` column is -already present on the ``Person`` class. Declarative lets us return -that :class:`.Column` as a result in this case, where it knows to skip -re-assigning the same column. If the mapping is mis-configured such -that the ``start_date`` column is accidentally re-assigned to a -different table (such as, if we changed ``Manager`` to be joined -inheritance without fixing ``start_date``), an error is raised which -indicates an existing :class:`.Column` is trying to be re-assigned to -a different owning :class:`.Table`. - -.. versionadded:: 0.8 :class:`.declared_attr` can be used on a non-mixin - class, and the returned :class:`.Column` or other mapped attribute - will be applied to the mapping as any other attribute. Previously, - the resulting attribute would be ignored, and also result in a warning - being emitted when a subclass was created. - -.. versionadded:: 0.8 :class:`.declared_attr`, when used either with a - mixin or non-mixin declarative class, can return an existing - :class:`.Column` already assigned to the parent :class:`.Table`, - to indicate that the re-assignment of the :class:`.Column` should be - skipped, however should still be mapped on the target class, - in order to resolve duplicate column conflicts. - -The same concept can be used with mixin classes (see -:ref:`declarative_mixins`):: - - class Person(Base): - __tablename__ = 'people' - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class HasStartDate(object): - @declared_attr - def start_date(cls): - return cls.__table__.c.get('start_date', Column(DateTime)) - - class Engineer(HasStartDate, Person): - __mapper_args__ = {'polymorphic_identity': 'engineer'} - - class Manager(HasStartDate, Person): - __mapper_args__ = {'polymorphic_identity': 'manager'} - -The above mixin checks the local ``__table__`` attribute for the column. -Because we're using single table inheritance, we're sure that in this case, -``cls.__table__`` refers to ``People.__table__``. If we were mixing joined- -and single-table inheritance, we might want our mixin to check more carefully -if ``cls.__table__`` is really the :class:`.Table` we're looking for. - -Concrete Table Inheritance -~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Concrete is defined as a subclass which has its own table and sets the -``concrete`` keyword argument to ``True``:: - - class Person(Base): - __tablename__ = 'people' - id = Column(Integer, primary_key=True) - name = Column(String(50)) - - class Engineer(Person): - __tablename__ = 'engineers' - __mapper_args__ = {'concrete':True} - id = Column(Integer, primary_key=True) - primary_language = Column(String(50)) - name = Column(String(50)) - -Usage of an abstract base class is a little less straightforward as it -requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`, -which needs to be created with the :class:`.Table` objects -before the class is built:: - - engineers = Table('engineers', Base.metadata, - Column('id', Integer, primary_key=True), - Column('name', String(50)), - Column('primary_language', String(50)) - ) - managers = Table('managers', Base.metadata, - Column('id', Integer, primary_key=True), - Column('name', String(50)), - Column('golf_swing', String(50)) - ) - - punion = polymorphic_union({ - 'engineer':engineers, - 'manager':managers - }, 'type', 'punion') - - class Person(Base): - __table__ = punion - __mapper_args__ = {'polymorphic_on':punion.c.type} - - class Engineer(Person): - __table__ = engineers - __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True} - - class Manager(Person): - __table__ = managers - __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True} - -.. _declarative_concrete_helpers: - -Using the Concrete Helpers -^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Helper classes provides a simpler pattern for concrete inheritance. -With these objects, the ``__declare_first__`` helper is used to configure the -"polymorphic" loader for the mapper after all subclasses have been declared. - -.. versionadded:: 0.7.3 - -An abstract base can be declared using the -:class:`.AbstractConcreteBase` class:: - - from sqlalchemy.ext.declarative import AbstractConcreteBase - - class Employee(AbstractConcreteBase, Base): - pass - -To have a concrete ``employee`` table, use :class:`.ConcreteBase` instead:: - - from sqlalchemy.ext.declarative import ConcreteBase - - class Employee(ConcreteBase, Base): - __tablename__ = 'employee' - employee_id = Column(Integer, primary_key=True) - name = Column(String(50)) - __mapper_args__ = { - 'polymorphic_identity':'employee', - 'concrete':True} - - -Either ``Employee`` base can be used in the normal fashion:: - - class Manager(Employee): - __tablename__ = 'manager' - employee_id = Column(Integer, primary_key=True) - name = Column(String(50)) - manager_data = Column(String(40)) - __mapper_args__ = { - 'polymorphic_identity':'manager', - 'concrete':True} - - class Engineer(Employee): - __tablename__ = 'engineer' - employee_id = Column(Integer, primary_key=True) - name = Column(String(50)) - engineer_info = Column(String(40)) - __mapper_args__ = {'polymorphic_identity':'engineer', - 'concrete':True} - - -The :class:`.AbstractConcreteBase` class is itself mapped, and can be -used as a target of relationships:: - - class Company(Base): - __tablename__ = 'company' - - id = Column(Integer, primary_key=True) - employees = relationship("Employee", - primaryjoin="Company.id == Employee.company_id") - - -.. versionchanged:: 0.9.3 Support for use of :class:`.AbstractConcreteBase` - as the target of a :func:`.relationship` has been improved. - -It can also be queried directly:: - - for employee in session.query(Employee).filter(Employee.name == 'qbert'): - print(employee) - - -.. _declarative_mixins: - -Mixin and Custom Base Classes -============================== - -A common need when using :mod:`~sqlalchemy.ext.declarative` is to -share some functionality, such as a set of common columns, some common -table options, or other mapped properties, across many -classes. The standard Python idioms for this is to have the classes -inherit from a base which includes these common features. - -When using :mod:`~sqlalchemy.ext.declarative`, this idiom is allowed -via the usage of a custom declarative base class, as well as a "mixin" class -which is inherited from in addition to the primary base. Declarative -includes several helper features to make this work in terms of how -mappings are declared. An example of some commonly mixed-in -idioms is below:: - - from sqlalchemy.ext.declarative import declared_attr - - class MyMixin(object): - - @declared_attr - def __tablename__(cls): - return cls.__name__.lower() - - __table_args__ = {'mysql_engine': 'InnoDB'} - __mapper_args__= {'always_refresh': True} - - id = Column(Integer, primary_key=True) - - class MyModel(MyMixin, Base): - name = Column(String(1000)) - -Where above, the class ``MyModel`` will contain an "id" column -as the primary key, a ``__tablename__`` attribute that derives -from the name of the class itself, as well as ``__table_args__`` -and ``__mapper_args__`` defined by the ``MyMixin`` mixin class. - -There's no fixed convention over whether ``MyMixin`` precedes -``Base`` or not. Normal Python method resolution rules apply, and -the above example would work just as well with:: - - class MyModel(Base, MyMixin): - name = Column(String(1000)) - -This works because ``Base`` here doesn't define any of the -variables that ``MyMixin`` defines, i.e. ``__tablename__``, -``__table_args__``, ``id``, etc. If the ``Base`` did define -an attribute of the same name, the class placed first in the -inherits list would determine which attribute is used on the -newly defined class. - -Augmenting the Base -~~~~~~~~~~~~~~~~~~~ - -In addition to using a pure mixin, most of the techniques in this -section can also be applied to the base class itself, for patterns that -should apply to all classes derived from a particular base. This is achieved -using the ``cls`` argument of the :func:`.declarative_base` function:: - - from sqlalchemy.ext.declarative import declared_attr - - class Base(object): - @declared_attr - def __tablename__(cls): - return cls.__name__.lower() - - __table_args__ = {'mysql_engine': 'InnoDB'} - - id = Column(Integer, primary_key=True) - - from sqlalchemy.ext.declarative import declarative_base - - Base = declarative_base(cls=Base) - - class MyModel(Base): - name = Column(String(1000)) - -Where above, ``MyModel`` and all other classes that derive from ``Base`` will -have a table name derived from the class name, an ``id`` primary key column, -as well as the "InnoDB" engine for MySQL. - -Mixing in Columns -~~~~~~~~~~~~~~~~~ - -The most basic way to specify a column on a mixin is by simple -declaration:: - - class TimestampMixin(object): - created_at = Column(DateTime, default=func.now()) - - class MyModel(TimestampMixin, Base): - __tablename__ = 'test' - - id = Column(Integer, primary_key=True) - name = Column(String(1000)) - -Where above, all declarative classes that include ``TimestampMixin`` -will also have a column ``created_at`` that applies a timestamp to -all row insertions. - -Those familiar with the SQLAlchemy expression language know that -the object identity of clause elements defines their role in a schema. -Two ``Table`` objects ``a`` and ``b`` may both have a column called -``id``, but the way these are differentiated is that ``a.c.id`` -and ``b.c.id`` are two distinct Python objects, referencing their -parent tables ``a`` and ``b`` respectively. - -In the case of the mixin column, it seems that only one -:class:`.Column` object is explicitly created, yet the ultimate -``created_at`` column above must exist as a distinct Python object -for each separate destination class. To accomplish this, the declarative -extension creates a **copy** of each :class:`.Column` object encountered on -a class that is detected as a mixin. - -This copy mechanism is limited to simple columns that have no foreign -keys, as a :class:`.ForeignKey` itself contains references to columns -which can't be properly recreated at this level. For columns that -have foreign keys, as well as for the variety of mapper-level constructs -that require destination-explicit context, the -:class:`~.declared_attr` decorator is provided so that -patterns common to many classes can be defined as callables:: - - from sqlalchemy.ext.declarative import declared_attr - - class ReferenceAddressMixin(object): - @declared_attr - def address_id(cls): - return Column(Integer, ForeignKey('address.id')) - - class User(ReferenceAddressMixin, Base): - __tablename__ = 'user' - id = Column(Integer, primary_key=True) - -Where above, the ``address_id`` class-level callable is executed at the -point at which the ``User`` class is constructed, and the declarative -extension can use the resulting :class:`.Column` object as returned by -the method without the need to copy it. - -.. versionchanged:: > 0.6.5 - Rename 0.6.5 ``sqlalchemy.util.classproperty`` - into :class:`~.declared_attr`. - -Columns generated by :class:`~.declared_attr` can also be -referenced by ``__mapper_args__`` to a limited degree, currently -by ``polymorphic_on`` and ``version_id_col``; the declarative extension -will resolve them at class construction time:: - - class MyMixin: - @declared_attr - def type_(cls): - return Column(String(50)) - - __mapper_args__= {'polymorphic_on':type_} - - class MyModel(MyMixin, Base): - __tablename__='test' - id = Column(Integer, primary_key=True) - - -Mixing in Relationships -~~~~~~~~~~~~~~~~~~~~~~~ - -Relationships created by :func:`~sqlalchemy.orm.relationship` are provided -with declarative mixin classes exclusively using the -:class:`.declared_attr` approach, eliminating any ambiguity -which could arise when copying a relationship and its possibly column-bound -contents. Below is an example which combines a foreign key column and a -relationship so that two classes ``Foo`` and ``Bar`` can both be configured to -reference a common target class via many-to-one:: - - class RefTargetMixin(object): - @declared_attr - def target_id(cls): - return Column('target_id', ForeignKey('target.id')) - - @declared_attr - def target(cls): - return relationship("Target") - - class Foo(RefTargetMixin, Base): - __tablename__ = 'foo' - id = Column(Integer, primary_key=True) - - class Bar(RefTargetMixin, Base): - __tablename__ = 'bar' - id = Column(Integer, primary_key=True) - - class Target(Base): - __tablename__ = 'target' - id = Column(Integer, primary_key=True) - - -Using Advanced Relationship Arguments (e.g. ``primaryjoin``, etc.) -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -:func:`~sqlalchemy.orm.relationship` definitions which require explicit -primaryjoin, order_by etc. expressions should in all but the most -simplistic cases use **late bound** forms -for these arguments, meaning, using either the string form or a lambda. -The reason for this is that the related :class:`.Column` objects which are to -be configured using ``@declared_attr`` are not available to another -``@declared_attr`` attribute; while the methods will work and return new -:class:`.Column` objects, those are not the :class:`.Column` objects that -Declarative will be using as it calls the methods on its own, thus using -*different* :class:`.Column` objects. - -The canonical example is the primaryjoin condition that depends upon -another mixed-in column:: - - class RefTargetMixin(object): - @declared_attr - def target_id(cls): - return Column('target_id', ForeignKey('target.id')) - - @declared_attr - def target(cls): - return relationship(Target, - primaryjoin=Target.id==cls.target_id # this is *incorrect* - ) - -Mapping a class using the above mixin, we will get an error like:: - - sqlalchemy.exc.InvalidRequestError: this ForeignKey's parent column is not - yet associated with a Table. - -This is because the ``target_id`` :class:`.Column` we've called upon in our -``target()`` method is not the same :class:`.Column` that declarative is -actually going to map to our table. - -The condition above is resolved using a lambda:: - - class RefTargetMixin(object): - @declared_attr - def target_id(cls): - return Column('target_id', ForeignKey('target.id')) - - @declared_attr - def target(cls): - return relationship(Target, - primaryjoin=lambda: Target.id==cls.target_id - ) - -or alternatively, the string form (which ultimately generates a lambda):: - - class RefTargetMixin(object): - @declared_attr - def target_id(cls): - return Column('target_id', ForeignKey('target.id')) - - @declared_attr - def target(cls): - return relationship("Target", - primaryjoin="Target.id==%s.target_id" % cls.__name__ - ) - -Mixing in deferred(), column_property(), and other MapperProperty classes -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Like :func:`~sqlalchemy.orm.relationship`, all -:class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as -:func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`, -etc. ultimately involve references to columns, and therefore, when -used with declarative mixins, have the :class:`.declared_attr` -requirement so that no reliance on copying is needed:: - - class SomethingMixin(object): - - @declared_attr - def dprop(cls): - return deferred(Column(Integer)) - - class Something(SomethingMixin, Base): - __tablename__ = "something" - -The :func:`.column_property` or other construct may refer -to other columns from the mixin. These are copied ahead of time before -the :class:`.declared_attr` is invoked:: - - class SomethingMixin(object): - x = Column(Integer) - - y = Column(Integer) - - @declared_attr - def x_plus_y(cls): - return column_property(cls.x + cls.y) - - -.. versionchanged:: 1.0.0 mixin columns are copied to the final mapped class - so that :class:`.declared_attr` methods can access the actual column - that will be mapped. - -Mixing in Association Proxy and Other Attributes -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Mixins can specify user-defined attributes as well as other extension -units such as :func:`.association_proxy`. The usage of -:class:`.declared_attr` is required in those cases where the attribute must -be tailored specifically to the target subclass. An example is when -constructing multiple :func:`.association_proxy` attributes which each -target a different type of child object. Below is an -:func:`.association_proxy` / mixin example which provides a scalar list of -string values to an implementing class:: - - from sqlalchemy import Column, Integer, ForeignKey, String - from sqlalchemy.orm import relationship - from sqlalchemy.ext.associationproxy import association_proxy - from sqlalchemy.ext.declarative import declarative_base, declared_attr - - Base = declarative_base() - - class HasStringCollection(object): - @declared_attr - def _strings(cls): - class StringAttribute(Base): - __tablename__ = cls.string_table_name - id = Column(Integer, primary_key=True) - value = Column(String(50), nullable=False) - parent_id = Column(Integer, - ForeignKey('%s.id' % cls.__tablename__), - nullable=False) - def __init__(self, value): - self.value = value - - return relationship(StringAttribute) - - @declared_attr - def strings(cls): - return association_proxy('_strings', 'value') - - class TypeA(HasStringCollection, Base): - __tablename__ = 'type_a' - string_table_name = 'type_a_strings' - id = Column(Integer(), primary_key=True) - - class TypeB(HasStringCollection, Base): - __tablename__ = 'type_b' - string_table_name = 'type_b_strings' - id = Column(Integer(), primary_key=True) - -Above, the ``HasStringCollection`` mixin produces a :func:`.relationship` -which refers to a newly generated class called ``StringAttribute``. The -``StringAttribute`` class is generated with its own :class:`.Table` -definition which is local to the parent class making usage of the -``HasStringCollection`` mixin. It also produces an :func:`.association_proxy` -object which proxies references to the ``strings`` attribute onto the ``value`` -attribute of each ``StringAttribute`` instance. - -``TypeA`` or ``TypeB`` can be instantiated given the constructor -argument ``strings``, a list of strings:: - - ta = TypeA(strings=['foo', 'bar']) - tb = TypeA(strings=['bat', 'bar']) - -This list will generate a collection -of ``StringAttribute`` objects, which are persisted into a table that's -local to either the ``type_a_strings`` or ``type_b_strings`` table:: - - >>> print ta._strings - [<__main__.StringAttribute object at 0x10151cd90>, - <__main__.StringAttribute object at 0x10151ce10>] - -When constructing the :func:`.association_proxy`, the -:class:`.declared_attr` decorator must be used so that a distinct -:func:`.association_proxy` object is created for each of the ``TypeA`` -and ``TypeB`` classes. - -.. versionadded:: 0.8 :class:`.declared_attr` is usable with non-mapped - attributes, including user-defined attributes as well as - :func:`.association_proxy`. - - -Controlling table inheritance with mixins -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -The ``__tablename__`` attribute may be used to provide a function that -will determine the name of the table used for each class in an inheritance -hierarchy, as well as whether a class has its own distinct table. - -This is achieved using the :class:`.declared_attr` indicator in conjunction -with a method named ``__tablename__()``. Declarative will always -invoke :class:`.declared_attr` for the special names -``__tablename__``, ``__mapper_args__`` and ``__table_args__`` -function **for each mapped class in the hierarchy**. The function therefore -needs to expect to receive each class individually and to provide the -correct answer for each. - -For example, to create a mixin that gives every class a simple table -name based on class name:: - - from sqlalchemy.ext.declarative import declared_attr - - class Tablename: - @declared_attr - def __tablename__(cls): - return cls.__name__.lower() - - class Person(Tablename, Base): - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __tablename__ = None - __mapper_args__ = {'polymorphic_identity': 'engineer'} - primary_language = Column(String(50)) - -Alternatively, we can modify our ``__tablename__`` function to return -``None`` for subclasses, using :func:`.has_inherited_table`. This has -the effect of those subclasses being mapped with single table inheritance -agaisnt the parent:: - - from sqlalchemy.ext.declarative import declared_attr - from sqlalchemy.ext.declarative import has_inherited_table - - class Tablename(object): - @declared_attr - def __tablename__(cls): - if has_inherited_table(cls): - return None - return cls.__name__.lower() - - class Person(Tablename, Base): - id = Column(Integer, primary_key=True) - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - primary_language = Column(String(50)) - __mapper_args__ = {'polymorphic_identity': 'engineer'} - -.. _mixin_inheritance_columns: - -Mixing in Columns in Inheritance Scenarios -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -In constrast to how ``__tablename__`` and other special names are handled when -used with :class:`.declared_attr`, when we mix in columns and properties (e.g. -relationships, column properties, etc.), the function is -invoked for the **base class only** in the hierarchy. Below, only the -``Person`` class will receive a column -called ``id``; the mapping will fail on ``Engineer``, which is not given -a primary key:: - - class HasId(object): - @declared_attr - def id(cls): - return Column('id', Integer, primary_key=True) - - class Person(HasId, Base): - __tablename__ = 'person' - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __tablename__ = 'engineer' - primary_language = Column(String(50)) - __mapper_args__ = {'polymorphic_identity': 'engineer'} - -It is usually the case in joined-table inheritance that we want distinctly -named columns on each subclass. However in this case, we may want to have -an ``id`` column on every table, and have them refer to each other via -foreign key. We can achieve this as a mixin by using the -:attr:`.declared_attr.cascading` modifier, which indicates that the -function should be invoked **for each class in the hierarchy**, just like -it does for ``__tablename__``:: - - class HasId(object): - @declared_attr.cascading - def id(cls): - if has_inherited_table(cls): - return Column('id', - Integer, - ForeignKey('person.id'), primary_key=True) - else: - return Column('id', Integer, primary_key=True) - - class Person(HasId, Base): - __tablename__ = 'person' - discriminator = Column('type', String(50)) - __mapper_args__ = {'polymorphic_on': discriminator} - - class Engineer(Person): - __tablename__ = 'engineer' - primary_language = Column(String(50)) - __mapper_args__ = {'polymorphic_identity': 'engineer'} - - -.. versionadded:: 1.0.0 added :attr:`.declared_attr.cascading`. - -Combining Table/Mapper Arguments from Multiple Mixins -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -In the case of ``__table_args__`` or ``__mapper_args__`` -specified with declarative mixins, you may want to combine -some parameters from several mixins with those you wish to -define on the class iteself. The -:class:`.declared_attr` decorator can be used -here to create user-defined collation routines that pull -from multiple collections:: - - from sqlalchemy.ext.declarative import declared_attr - - class MySQLSettings(object): - __table_args__ = {'mysql_engine':'InnoDB'} - - class MyOtherMixin(object): - __table_args__ = {'info':'foo'} - - class MyModel(MySQLSettings, MyOtherMixin, Base): - __tablename__='my_model' - - @declared_attr - def __table_args__(cls): - args = dict() - args.update(MySQLSettings.__table_args__) - args.update(MyOtherMixin.__table_args__) - return args - - id = Column(Integer, primary_key=True) - -Creating Indexes with Mixins -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -To define a named, potentially multicolumn :class:`.Index` that applies to all -tables derived from a mixin, use the "inline" form of :class:`.Index` and -establish it as part of ``__table_args__``:: - - class MyMixin(object): - a = Column(Integer) - b = Column(Integer) - - @declared_attr - def __table_args__(cls): - return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),) - - class MyModel(MyMixin, Base): - __tablename__ = 'atable' - c = Column(Integer,primary_key=True) - -Special Directives -================== - -``__declare_last__()`` -~~~~~~~~~~~~~~~~~~~~~~ - -The ``__declare_last__()`` hook allows definition of -a class level function that is automatically called by the -:meth:`.MapperEvents.after_configured` event, which occurs after mappings are -assumed to be completed and the 'configure' step has finished:: - - class MyClass(Base): - @classmethod - def __declare_last__(cls): - "" - # do something with mappings - -.. versionadded:: 0.7.3 - -``__declare_first__()`` -~~~~~~~~~~~~~~~~~~~~~~~ - -Like ``__declare_last__()``, but is called at the beginning of mapper -configuration via the :meth:`.MapperEvents.before_configured` event:: - - class MyClass(Base): - @classmethod - def __declare_first__(cls): - "" - # do something before mappings are configured - -.. versionadded:: 0.9.3 - -.. _declarative_abstract: - -``__abstract__`` -~~~~~~~~~~~~~~~~~~~ - -``__abstract__`` causes declarative to skip the production -of a table or mapper for the class entirely. A class can be added within a -hierarchy in the same way as mixin (see :ref:`declarative_mixins`), allowing -subclasses to extend just from the special class:: - - class SomeAbstractBase(Base): - __abstract__ = True - - def some_helpful_method(self): - "" - - @declared_attr - def __mapper_args__(cls): - return {"helpful mapper arguments":True} - - class MyMappedClass(SomeAbstractBase): - "" - -One possible use of ``__abstract__`` is to use a distinct -:class:`.MetaData` for different bases:: - - Base = declarative_base() - - class DefaultBase(Base): - __abstract__ = True - metadata = MetaData() - - class OtherBase(Base): - __abstract__ = True - metadata = MetaData() - -Above, classes which inherit from ``DefaultBase`` will use one -:class:`.MetaData` as the registry of tables, and those which inherit from -``OtherBase`` will use a different one. The tables themselves can then be -created perhaps within distinct databases:: - - DefaultBase.metadata.create_all(some_engine) - OtherBase.metadata_create_all(some_other_engine) - -.. versionadded:: 0.7.3 - -Class Constructor -================= - -As a convenience feature, the :func:`declarative_base` sets a default -constructor on classes which takes keyword arguments, and assigns them -to the named attributes:: - - e = Engineer(primary_language='python') - -Sessions -======== - -Note that ``declarative`` does nothing special with sessions, and is -only intended as an easier way to configure mappers and -:class:`~sqlalchemy.schema.Table` objects. A typical application -setup using :class:`~sqlalchemy.orm.scoping.scoped_session` might look like:: - - engine = create_engine('postgresql://scott:tiger@localhost/test') - Session = scoped_session(sessionmaker(autocommit=False, - autoflush=False, - bind=engine)) - Base = declarative_base() - -Mapped instances then make usage of -:class:`~sqlalchemy.orm.session.Session` in the usual way. - -""" - from .api import declarative_base, synonym_for, comparable_using, \ instrument_declarative, ConcreteBase, AbstractConcreteBase, \ DeclarativeMeta, DeferredReflection, has_inherited_table,\ |