diff options
Diffstat (limited to 'doc/build/orm/mapped_sql_expr.rst')
-rw-r--r-- | doc/build/orm/mapped_sql_expr.rst | 208 |
1 files changed, 208 insertions, 0 deletions
diff --git a/doc/build/orm/mapped_sql_expr.rst b/doc/build/orm/mapped_sql_expr.rst new file mode 100644 index 000000000..1ae5b1285 --- /dev/null +++ b/doc/build/orm/mapped_sql_expr.rst @@ -0,0 +1,208 @@ +.. module:: sqlalchemy.orm + +.. _mapper_sql_expressions: + +SQL Expressions as Mapped Attributes +===================================== + +Attributes on a mapped class can be linked to SQL expressions, which can +be used in queries. + +Using a Hybrid +-------------- + +The easiest and most flexible way to link relatively simple SQL expressions to a class is to use a so-called +"hybrid attribute", +described in the section :ref:`hybrids_toplevel`. The hybrid provides +for an expression that works at both the Python level as well as at the +SQL expression level. For example, below we map a class ``User``, +containing attributes ``firstname`` and ``lastname``, and include a hybrid that +will provide for us the ``fullname``, which is the string concatenation of the two:: + + from sqlalchemy.ext.hybrid import hybrid_property + + class User(Base): + __tablename__ = 'user' + id = Column(Integer, primary_key=True) + firstname = Column(String(50)) + lastname = Column(String(50)) + + @hybrid_property + def fullname(self): + return self.firstname + " " + self.lastname + +Above, the ``fullname`` attribute is interpreted at both the instance and +class level, so that it is available from an instance:: + + some_user = session.query(User).first() + print some_user.fullname + +as well as usable wtihin queries:: + + some_user = session.query(User).filter(User.fullname == "John Smith").first() + +The string concatenation example is a simple one, where the Python expression +can be dual purposed at the instance and class level. Often, the SQL expression +must be distinguished from the Python expression, which can be achieved using +:meth:`.hybrid_property.expression`. Below we illustrate the case where a conditional +needs to be present inside the hybrid, using the ``if`` statement in Python and the +:func:`.sql.expression.case` construct for SQL expressions:: + + from sqlalchemy.ext.hybrid import hybrid_property + from sqlalchemy.sql import case + + class User(Base): + __tablename__ = 'user' + id = Column(Integer, primary_key=True) + firstname = Column(String(50)) + lastname = Column(String(50)) + + @hybrid_property + def fullname(self): + if self.firstname is not None: + return self.firstname + " " + self.lastname + else: + return self.lastname + + @fullname.expression + def fullname(cls): + return case([ + (cls.firstname != None, cls.firstname + " " + cls.lastname), + ], else_ = cls.lastname) + +.. _mapper_column_property_sql_expressions: + +Using column_property +--------------------- + +The :func:`.orm.column_property` function can be used to map a SQL +expression in a manner similar to a regularly mapped :class:`.Column`. +With this technique, the attribute is loaded +along with all other column-mapped attributes at load time. This is in some +cases an advantage over the usage of hybrids, as the value can be loaded +up front at the same time as the parent row of the object, particularly if +the expression is one which links to other tables (typically as a correlated +subquery) to access data that wouldn't normally be +available on an already loaded object. + +Disadvantages to using :func:`.orm.column_property` for SQL expressions include that +the expression must be compatible with the SELECT statement emitted for the class +as a whole, and there are also some configurational quirks which can occur +when using :func:`.orm.column_property` from declarative mixins. + +Our "fullname" example can be expressed using :func:`.orm.column_property` as +follows:: + + from sqlalchemy.orm import column_property + + class User(Base): + __tablename__ = 'user' + id = Column(Integer, primary_key=True) + firstname = Column(String(50)) + lastname = Column(String(50)) + fullname = column_property(firstname + " " + lastname) + +Correlated subqueries may be used as well. Below we use the :func:`.select` +construct to create a SELECT that links together the count of ``Address`` +objects available for a particular ``User``:: + + from sqlalchemy.orm import column_property + from sqlalchemy import select, func + from sqlalchemy import Column, Integer, String, ForeignKey + + from sqlalchemy.ext.declarative import declarative_base + + Base = declarative_base() + + class Address(Base): + __tablename__ = 'address' + id = Column(Integer, primary_key=True) + user_id = Column(Integer, ForeignKey('user.id')) + + class User(Base): + __tablename__ = 'user' + id = Column(Integer, primary_key=True) + address_count = column_property( + select([func.count(Address.id)]).\ + where(Address.user_id==id).\ + correlate_except(Address) + ) + +In the above example, we define a :func:`.select` construct like the following:: + + select([func.count(Address.id)]).\ + where(Address.user_id==id).\ + correlate_except(Address) + +The meaning of the above statement is, select the count of ``Address.id`` rows +where the ``Address.user_id`` column is equated to ``id``, which in the context +of the ``User`` class is the :class:`.Column` named ``id`` (note that ``id`` is +also the name of a Python built in function, which is not what we want to use +here - if we were outside of the ``User`` class definition, we'd use ``User.id``). + +The :meth:`.select.correlate_except` directive indicates that each element in the +FROM clause of this :func:`.select` may be omitted from the FROM list (that is, correlated +to the enclosing SELECT statement against ``User``) except for the one corresponding +to ``Address``. This isn't strictly necessary, but prevents ``Address`` from +being inadvertently omitted from the FROM list in the case of a long string +of joins between ``User`` and ``Address`` tables where SELECT statements against +``Address`` are nested. + +If import issues prevent the :func:`.column_property` from being defined +inline with the class, it can be assigned to the class after both +are configured. In Declarative this has the effect of calling :meth:`.Mapper.add_property` +to add an additional property after the fact:: + + User.address_count = column_property( + select([func.count(Address.id)]).\ + where(Address.user_id==User.id) + ) + +For many-to-many relationships, use :func:`.and_` to join the fields of the +association table to both tables in a relation, illustrated +here with a classical mapping:: + + from sqlalchemy import and_ + + mapper(Author, authors, properties={ + 'book_count': column_property( + select([func.count(books.c.id)], + and_( + book_authors.c.author_id==authors.c.id, + book_authors.c.book_id==books.c.id + ))) + }) + +Using a plain descriptor +------------------------- + +In cases where a SQL query more elaborate than what :func:`.orm.column_property` +or :class:`.hybrid_property` can provide must be emitted, a regular Python +function accessed as an attribute can be used, assuming the expression +only needs to be available on an already-loaded instance. The function +is decorated with Python's own ``@property`` decorator to mark it as a read-only +attribute. Within the function, :func:`.object_session` +is used to locate the :class:`.Session` corresponding to the current object, +which is then used to emit a query:: + + from sqlalchemy.orm import object_session + from sqlalchemy import select, func + + class User(Base): + __tablename__ = 'user' + id = Column(Integer, primary_key=True) + firstname = Column(String(50)) + lastname = Column(String(50)) + + @property + def address_count(self): + return object_session(self).\ + scalar( + select([func.count(Address.id)]).\ + where(Address.user_id==self.id) + ) + +The plain descriptor approach is useful as a last resort, but is less performant +in the usual case than both the hybrid and column property approaches, in that +it needs to emit a SQL query upon each access. + |