1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
# -*- coding: utf-8 -*-
"""
sphinx.search
~~~~~~~~~~~~~
Create a full-text search index for offline search.
:copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
import re
import cPickle as pickle
from docutils.nodes import comment, Text, NodeVisitor, SkipNode
from sphinx.util import jsdump, rpartition
class SearchLanguage(object):
"""
This class is the base class for search natural language preprocessors. If
you want to add support for a new language, you should override the methods
of this class.
You should override `lang` class property too (e.g. 'en', 'fr' and so on).
.. attribute:: stopwords
This is a set of stop words of the target language. Default `stopwords`
is empty. This word is used for building index and embedded in JS.
.. attribute:: js_stemmer_code
Return stemmer class of JavaScript version. This class' name should be
``Stemmer`` and this class must have ``stemWord`` method. This string is
embedded as-is in searchtools.js.
This class is used to preprocess search word which Sphinx HTML readers
type, before searching index. Default implementation does nothing.
"""
lang = None
stopwords = set()
js_stemmer_code = """
/**
* Dummy stemmer for languages without stemming rules.
*/
var Stemmer = function() {
this.stemWord = function(w) {
return w;
}
}
"""
_word_re = re.compile(r'\w+(?u)')
def __init__(self, options):
self.options = options
self.init(options)
def init(self, options):
"""
Initialize the class with the options the user has given.
"""
def split(self, input):
"""
This method splits a sentence into words. Default splitter splits input
at white spaces, which should be enough for most languages except CJK
languages.
"""
return self._word_re.findall(input)
def stem(self, word):
"""
This method implements stemming algorithm of the Python version.
Default implementation does nothing. You should implement this if the
language has any stemming rules.
This class is used to preprocess search words before registering them in
the search index. The stemming of the Python version and the JS version
(given in the js_stemmer_code attribute) must be compatible.
"""
return word
def word_filter(self, word):
"""
Return true if the target word should be registered in the search index.
This method is called after stemming.
"""
return not (((len(word) < 3) and (12353 < ord(word[0]) < 12436)) or
(ord(word[0]) < 256 and (len(word) < 3 or word in self.stopwords or
word.isdigit())))
from sphinx.search import en, ja
languages = {
'en': en.SearchEnglish,
'ja': ja.SearchJapanese,
}
class _JavaScriptIndex(object):
"""
The search index as javascript file that calls a function
on the documentation search object to register the index.
"""
PREFIX = 'Search.setIndex('
SUFFIX = ')'
def dumps(self, data):
return self.PREFIX + jsdump.dumps(data) + self.SUFFIX
def loads(self, s):
data = s[len(self.PREFIX):-len(self.SUFFIX)]
if not data or not s.startswith(self.PREFIX) or not \
s.endswith(self.SUFFIX):
raise ValueError('invalid data')
return jsdump.loads(data)
def dump(self, data, f):
f.write(self.dumps(data))
def load(self, f):
return self.loads(f.read())
js_index = _JavaScriptIndex()
class WordCollector(NodeVisitor):
"""
A special visitor that collects words for the `IndexBuilder`.
"""
def __init__(self, document, lang):
NodeVisitor.__init__(self, document)
self.found_words = []
self.lang = lang
def dispatch_visit(self, node):
if node.__class__ is comment:
raise SkipNode
if node.__class__ is Text:
self.found_words.extend(self.lang.split(node.astext()))
class IndexBuilder(object):
"""
Helper class that creates a searchindex based on the doctrees
passed to the `feed` method.
"""
formats = {
'jsdump': jsdump,
'pickle': pickle
}
def __init__(self, env, lang, options):
self.env = env
# filename -> title
self._titles = {}
# stemmed word -> set(filenames)
self._mapping = {}
# objtype -> index
self._objtypes = {}
# objtype index -> (domain, type, objname (localized))
self._objnames = {}
# add language-specific SearchLanguage instance
self.lang = languages[lang](options)
def load(self, stream, format):
"""Reconstruct from frozen data."""
if isinstance(format, basestring):
format = self.formats[format]
frozen = format.load(stream)
# if an old index is present, we treat it as not existing.
if not isinstance(frozen, dict):
raise ValueError('old format')
index2fn = frozen['filenames']
self._titles = dict(zip(index2fn, frozen['titles']))
self._mapping = {}
for k, v in frozen['terms'].iteritems():
if isinstance(v, int):
self._mapping[k] = set([index2fn[v]])
else:
self._mapping[k] = set(index2fn[i] for i in v)
# no need to load keywords/objtypes
def dump(self, stream, format):
"""Dump the frozen index to a stream."""
if isinstance(format, basestring):
format = self.formats[format]
format.dump(self.freeze(), stream)
def get_objects(self, fn2index):
rv = {}
otypes = self._objtypes
onames = self._objnames
for domainname, domain in self.env.domains.iteritems():
for fullname, dispname, type, docname, anchor, prio in \
domain.get_objects():
# XXX use dispname?
if docname not in fn2index:
continue
if prio < 0:
continue
prefix, name = rpartition(fullname, '.')
pdict = rv.setdefault(prefix, {})
try:
typeindex = otypes[domainname, type]
except KeyError:
typeindex = len(otypes)
otypes[domainname, type] = typeindex
otype = domain.object_types.get(type)
if otype:
# use unicode() to fire translation proxies
onames[typeindex] = (domainname, type,
unicode(domain.get_type_name(otype)))
else:
onames[typeindex] = (domainname, type, type)
if anchor == fullname:
shortanchor = ''
elif anchor == type + '-' + fullname:
shortanchor = '-'
else:
shortanchor = anchor
pdict[name] = (fn2index[docname], typeindex, prio, shortanchor)
return rv
def get_terms(self, fn2index):
rv = {}
for k, v in self._mapping.iteritems():
if len(v) == 1:
fn, = v
if fn in fn2index:
rv[k] = fn2index[fn]
else:
rv[k] = [fn2index[fn] for fn in v if fn in fn2index]
return rv
def freeze(self):
"""Create a usable data structure for serializing."""
filenames = self._titles.keys()
titles = self._titles.values()
fn2index = dict((f, i) for (i, f) in enumerate(filenames))
terms = self.get_terms(fn2index)
objects = self.get_objects(fn2index) # populates _objtypes
objtypes = dict((v, k[0] + ':' + k[1])
for (k, v) in self._objtypes.iteritems())
objnames = self._objnames
return dict(filenames=filenames, titles=titles, terms=terms,
objects=objects, objtypes=objtypes, objnames=objnames)
def prune(self, filenames):
"""Remove data for all filenames not in the list."""
new_titles = {}
for filename in filenames:
if filename in self._titles:
new_titles[filename] = self._titles[filename]
self._titles = new_titles
for wordnames in self._mapping.itervalues():
wordnames.intersection_update(filenames)
def feed(self, filename, title, doctree):
"""Feed a doctree to the index."""
self._titles[filename] = title
visitor = WordCollector(doctree, self.lang)
doctree.walk(visitor)
def add_term(word, stem=self.lang.stem):
word = stem(word)
if self.lang.word_filter(word):
self._mapping.setdefault(word, set()).add(filename)
for word in self.lang.split(title):
add_term(word)
for word in visitor.found_words:
add_term(word)
def context_for_searchtool(self):
return dict(
search_language_stemming_code = self.lang.js_stemmer_code,
search_language_stop_words = jsdump.dumps(self.lang.stopwords),
)
|