1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
# -*- coding: utf-8 -*-
#
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for generating random numbers."""
# Source inspired by code by Yesudeep Mangalapilly <yesudeep@gmail.com>
import os
import struct
from rsa import common, transform
def read_random_bits(nbits):
"""Reads 'nbits' random bits.
If nbits isn't a whole number of bytes, an extra byte will be appended with
only the lower bits set.
"""
nbytes, rbits = divmod(nbits, 8)
# Get the random bytes
randomdata = os.urandom(nbytes)
# Add the remaining random bits
if rbits > 0:
randomvalue = ord(os.urandom(1))
randomvalue >>= (8 - rbits)
randomdata = struct.pack("B", randomvalue) + randomdata
return randomdata
def read_random_int(nbits):
"""Reads a random integer of approximately nbits bits.
"""
randomdata = read_random_bits(nbits)
value = transform.bytes2int(randomdata)
# Ensure that the number is large enough to just fill out the required
# number of bits.
value |= 1 << (nbits - 1)
return value
def read_random_odd_int(nbits):
"""Reads a random odd integer of approximately nbits bits.
>>> read_random_odd_int(512) & 1
1
"""
value = read_random_int(nbits)
# Make sure it's odd
return value | 1
def randint(maxvalue):
"""Returns a random integer x with 1 <= x <= maxvalue
May take a very long time in specific situations. If maxvalue needs N bits
to store, the closer maxvalue is to (2 ** N) - 1, the faster this function
is.
"""
bit_size = common.bit_size(maxvalue)
tries = 0
while True:
value = read_random_int(bit_size)
if value <= maxvalue:
break
if tries % 10 == 0 and tries:
# After a lot of tries to get the right number of bits but still
# smaller than maxvalue, decrease the number of bits by 1. That'll
# dramatically increase the chances to get a large enough number.
bit_size -= 1
tries += 1
return value
|