1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
"""
These method recursively evaluate the SPARQL Algebra
evalQuery is the entry-point, it will setup context and
return the SPARQLResult object
evalPart is called on each level and will delegate to the right method
A rdflib.plugins.sparql.sparql.QueryContext is passed along, keeping
information needed for evaluation
A list of dicts (solution mappings) is returned, apart from GroupBy which may
also return a dict of list of dicts
"""
import collections
from rdflib import Variable, Graph, BNode, URIRef, Literal
from rdflib.plugins.sparql import CUSTOM_EVALS
from rdflib.plugins.sparql.parserutils import value
from rdflib.plugins.sparql.sparql import (
QueryContext, AlreadyBound, FrozenBindings, SPARQLError)
from rdflib.plugins.sparql.evalutils import (
_filter, _eval, _join, _diff, _minus, _fillTemplate, _ebv)
from rdflib.plugins.sparql.aggregates import Aggregator
from rdflib.plugins.sparql.algebra import Join, ToMultiSet, Values
def evalBGP(ctx, bgp):
"""
A basic graph pattern
"""
if not bgp:
yield ctx.solution()
return
s, p, o = bgp[0]
_s = ctx[s]
_p = ctx[p]
_o = ctx[o]
for ss, sp, so in ctx.graph.triples((_s, _p, _o)):
if None in (_s, _p, _o):
c = ctx.push()
else:
c = ctx
if _s is None:
c[s] = ss
try:
if _p is None:
c[p] = sp
except AlreadyBound:
continue
try:
if _o is None:
c[o] = so
except AlreadyBound:
continue
for x in evalBGP(c, bgp[1:]):
yield x
def evalExtend(ctx, extend):
# TODO: Deal with dict returned from evalPart from GROUP BY
for c in evalPart(ctx, extend.p):
try:
e = _eval(extend.expr, c.forget(ctx, _except=extend._vars))
if isinstance(e, SPARQLError):
raise e
yield c.merge({extend.var: e})
except SPARQLError:
yield c
def evalLazyJoin(ctx, join):
"""
A lazy join will push the variables bound
in the first part to the second part,
essentially doing the join implicitly
hopefully evaluating much fewer triples
"""
for a in evalPart(ctx, join.p1):
c = ctx.thaw(a)
for b in evalPart(c, join.p2):
yield b
def evalJoin(ctx, join):
# TODO: Deal with dict returned from evalPart from GROUP BY
# only ever for join.p1
if join.lazy:
return evalLazyJoin(ctx, join)
else:
a = evalPart(ctx, join.p1)
b = set(evalPart(ctx, join.p2))
return _join(a, b)
def evalUnion(ctx, union):
res = set()
for x in evalPart(ctx, union.p1):
res.add(x)
yield x
for x in evalPart(ctx, union.p2):
if x not in res:
yield x
def evalMinus(ctx, minus):
a = evalPart(ctx, minus.p1)
b = set(evalPart(ctx, minus.p2))
return _minus(a, b)
def evalLeftJoin(ctx, join):
# import pdb; pdb.set_trace()
for a in evalPart(ctx, join.p1):
ok = False
c = ctx.thaw(a)
for b in evalPart(c, join.p2):
if _ebv(join.expr, b.forget(ctx)):
ok = True
yield b
if not ok:
# we've cheated, the ctx above may contain
# vars bound outside our scope
# before we yield a solution without the OPTIONAL part
# check that we would have had no OPTIONAL matches
# even without prior bindings...
p1_vars = join.p1._vars
if p1_vars is None \
or not any(_ebv(join.expr, b) for b in
evalPart(ctx.thaw(a.remember(p1_vars)), join.p2)):
yield a
def evalFilter(ctx, part):
# TODO: Deal with dict returned from evalPart!
for c in evalPart(ctx, part.p):
if _ebv(part.expr, c.forget(ctx) if not part.no_isolated_scope else c):
yield c
def evalGraph(ctx, part):
if ctx.dataset is None:
raise Exception(
"Non-conjunctive-graph doesn't know about " +
"graphs. Try a query without GRAPH.")
ctx = ctx.clone()
graph = ctx[part.term]
if graph is None:
for graph in ctx.dataset.contexts():
# in SPARQL the default graph is NOT a named graph
if graph == ctx.dataset.default_context:
continue
c = ctx.pushGraph(graph)
c = c.push()
graphSolution = [{part.term: graph.identifier}]
for x in _join(evalPart(c, part.p), graphSolution):
yield x
else:
c = ctx.pushGraph(ctx.dataset.get_context(graph))
for x in evalPart(c, part.p):
yield x
def evalValues(ctx, part):
for r in part.p.res:
c = ctx.push()
try:
for k, v in r.iteritems():
if v != 'UNDEF':
c[k] = v
except AlreadyBound:
continue
yield c.solution()
def evalMultiset(ctx, part):
if part.p.name == 'values':
return evalValues(ctx, part)
return evalPart(ctx, part.p)
def evalPart(ctx, part):
# try custom evaluation functions
for name, c in CUSTOM_EVALS.items():
try:
return c(ctx, part)
except NotImplementedError:
pass # the given custome-function did not handle this part
if part.name == 'BGP':
# Reorder triples patterns by number of bound nodes in the current ctx
# Do patterns with more bound nodes first
triples = sorted(part.triples, key=lambda t: len([n for n in t if ctx[n] is None]))
return evalBGP(ctx, triples)
elif part.name == 'Filter':
return evalFilter(ctx, part)
elif part.name == 'Join':
return evalJoin(ctx, part)
elif part.name == 'LeftJoin':
return evalLeftJoin(ctx, part)
elif part.name == 'Graph':
return evalGraph(ctx, part)
elif part.name == 'Union':
return evalUnion(ctx, part)
elif part.name == 'ToMultiSet':
return evalMultiset(ctx, part)
elif part.name == 'Extend':
return evalExtend(ctx, part)
elif part.name == 'Minus':
return evalMinus(ctx, part)
elif part.name == 'Project':
return evalProject(ctx, part)
elif part.name == 'Slice':
return evalSlice(ctx, part)
elif part.name == 'Distinct':
return evalDistinct(ctx, part)
elif part.name == 'Reduced':
return evalReduced(ctx, part)
elif part.name == 'OrderBy':
return evalOrderBy(ctx, part)
elif part.name == 'Group':
return evalGroup(ctx, part)
elif part.name == 'AggregateJoin':
return evalAggregateJoin(ctx, part)
elif part.name == 'SelectQuery':
return evalSelectQuery(ctx, part)
elif part.name == 'AskQuery':
return evalAskQuery(ctx, part)
elif part.name == 'ConstructQuery':
return evalConstructQuery(ctx, part)
elif part.name == 'ServiceGraphPattern':
raise Exception('ServiceGraphPattern not implemented')
elif part.name == 'DescribeQuery':
raise Exception('DESCRIBE not implemented')
else:
# import pdb ; pdb.set_trace()
raise Exception('I dont know: %s' % part.name)
def evalGroup(ctx, group):
"""
http://www.w3.org/TR/sparql11-query/#defn_algGroup
"""
# grouping should be implemented by evalAggregateJoin
return evalPart(ctx, group.p)
def evalAggregateJoin(ctx, agg):
# import pdb ; pdb.set_trace()
p = evalPart(ctx, agg.p)
# p is always a Group, we always get a dict back
group_expr = agg.p.expr
res = collections.defaultdict(lambda: Aggregator(aggregations=agg.A))
if group_expr is None:
# no grouping, just COUNT in SELECT clause
# get 1 aggregator for counting
aggregator = res[True]
for row in p:
aggregator.update(row)
else:
for row in p:
# determine right group aggregator for row
k = tuple(_eval(e, row, False) for e in group_expr)
res[k].update(row)
# all rows are done; yield aggregated values
for aggregator in res.itervalues():
yield FrozenBindings(ctx, aggregator.get_bindings())
# there were no matches
if len(res) == 0:
yield FrozenBindings(ctx)
def evalOrderBy(ctx, part):
res = evalPart(ctx, part.p)
for e in reversed(part.expr):
def val(x):
v = value(x, e.expr, variables=True)
if isinstance(v, Variable):
return (0, v)
elif isinstance(v, BNode):
return (1, v)
elif isinstance(v, URIRef):
return (2, v)
elif isinstance(v, Literal):
return (3, v)
reverse = bool(e.order and e.order == 'DESC')
res = sorted(res, key=val, reverse=reverse)
return res
def evalSlice(ctx, slice):
# import pdb; pdb.set_trace()
res = evalPart(ctx, slice.p)
i = 0
while i < slice.start:
res.next()
i += 1
i = 0
for x in res:
i += 1
if slice.length is None:
yield x
else:
if i <= slice.length:
yield x
else:
break
def evalReduced(ctx, part):
"""apply REDUCED to result
REDUCED is not as strict as DISTINCT, but if the incoming rows were sorted
it should produce the same result with limited extra memory and time per
incoming row.
"""
# This implementation uses a most recently used strategy and a limited
# buffer size. It relates to a LRU caching algorithm:
# https://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used_.28LRU.29
MAX = 1
# TODO: add configuration or determine "best" size for most use cases
# 0: No reduction
# 1: compare only with the last row, almost no reduction with
# unordered incoming rows
# N: The greater the buffer size the greater the reduction but more
# memory and time are needed
# mixed data structure: set for lookup, deque for append/pop/remove
mru_set = set()
mru_queue = collections.deque()
for row in evalPart(ctx, part.p):
if row in mru_set:
# forget last position of row
mru_queue.remove(row)
else:
#row seems to be new
yield row
mru_set.add(row)
if len(mru_set) > MAX:
# drop the least recently used row from buffer
mru_set.remove(mru_queue.pop())
# put row to the front
mru_queue.appendleft(row)
def evalDistinct(ctx, part):
res = evalPart(ctx, part.p)
done = set()
for x in res:
if x not in done:
yield x
done.add(x)
def evalProject(ctx, project):
res = evalPart(ctx, project.p)
return (row.project(project.PV) for row in res)
def evalSelectQuery(ctx, query):
res = {}
res["type_"] = "SELECT"
res["bindings"] = evalPart(ctx, query.p)
res["vars_"] = query.PV
return res
def evalAskQuery(ctx, query):
res = {}
res["type_"] = "ASK"
res["askAnswer"] = False
for x in evalPart(ctx, query.p):
res["askAnswer"] = True
break
return res
def evalConstructQuery(ctx, query):
template = query.template
if not template:
# a construct-where query
template = query.p.p.triples # query->project->bgp ...
graph = Graph()
for c in evalPart(ctx, query.p):
graph += _fillTemplate(template, c)
res = {}
res["type_"] = "CONSTRUCT"
res["graph"] = graph
return res
def evalQuery(graph, query, initBindings, base=None):
ctx = QueryContext(graph)
ctx.prologue = query.prologue
main = query.algebra
if initBindings:
# add initBindings as a values clause
values = {} # no dict comprehension in 2.6 :(
for k,v in initBindings.iteritems():
if not isinstance(k, Variable):
k = Variable(k)
values[k] = v
main = main.clone() # clone to not change prepared q
main['p'] = main.p.clone()
# Find the right place to insert MultiSet join
repl = main.p
if repl.name == 'Slice':
repl['p'] = repl.p.clone()
repl = repl.p
if repl.name == 'Distinct':
repl['p'] = repl.p.clone()
repl = repl.p
if repl.p.name == 'OrderBy':
repl['p'] = repl.p.clone()
repl = repl.p
if repl.p.name == 'Extend':
repl['p'] = repl.p.clone()
repl = repl.p
repl['p'] = Join(repl.p, ToMultiSet(Values([values])))
# TODO: Vars?
if main.datasetClause:
if ctx.dataset is None:
raise Exception(
"Non-conjunctive-graph doesn't know about " +
"graphs! Try a query without FROM (NAMED).")
ctx = ctx.clone() # or push/pop?
firstDefault = False
for d in main.datasetClause:
if d.default:
if firstDefault:
# replace current default graph
dg = ctx.dataset.get_context(BNode())
ctx = ctx.pushGraph(dg)
firstDefault = True
ctx.load(d.default, default=True)
elif d.named:
g = d.named
ctx.load(g, default=False)
return evalPart(ctx, main)
|