summaryrefslogtreecommitdiff
path: root/docs/lib/passlib.context-tutorial.rst
blob: e6d3b1dafa369162cffccb44e1949752c86af9e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
.. index:: CryptContext; overview

.. _context-overview:
.. _context-tutorial:

=========================================================
:mod:`passlib.context` - CryptContext Overview & Tutorial
=========================================================

.. module:: passlib.context
    :synopsis: CryptContext class, for managing multiple password hash schemes

Overview
========
The :mod:`passlib.context` module contains one main class: :class:`!passlib.context.CryptContext`.
This class is designed to take care of many of the more frequent
coding patterns which occur in applications that need to handle multiple
password hashes at once:

    * identifying the algorithm used by a hash, and then verify a password.
    * configure the default algorithm, load in support for new algorithms,
      deprecate old ones, set defaults for time-cost parameters, etc.
    * migrate hashes / re-hash passwords when an algorithm has been deprecated.
    * load said configuration from a sysadmin configurable file.

The following sections contain a walkthrough of this class, starting
with some simple examples, and working up to a complex "full-integration" example.

.. seealso:: The :ref:`CryptContext Reference <context-reference>` document,
    which lists all the options and methods supported by this class.

.. index:: CryptContext; usage examples

Tutorial / Walkthrough
======================
* `Basic Usage`_
* `Using Default Settings`_
* `Loading & Saving a CryptContext`_
* `Deprecation & Hash Migration`_
* `Full Integration Example`_

.. todo::
    This tutorial doesn't yet cover the ``vary_rounds`` option,
    or the :ref:`user-categories` system; and a few other parts
    could use elaboration.

.. _context-basic-example:

.. rst-class:: emphasized

Basic Usage
-----------
At it's base, the :class:`!CryptContext` class is just a list of
:class:`~passlib.ifc.PasswordHash` objects, imported by name
from the :mod:`passlib.hash` module. The following snippet creates
a new context object which supports three hash algorithms
(:doc:`sha256_crypt <passlib.hash.sha256_crypt>`,
:doc:`md5_crypt <passlib.hash.md5_crypt>`, and
:doc:`des_crypt <passlib.hash.des_crypt>`)::

    >>> from passlib.context import CryptContext
    >>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt", "des_crypt"])

This new object exposes a very similar set of methods to the :class:`!PasswordHash`
interface, and hashing and verifying passwords is equally as straightforward::

    >>> # this loads first algorithm in the schemes list (sha256_crypt),
    >>> # generates a new salt, and hashes the password:
    >>> hash1 = myctx.encrypt("joshua")
    >>> hash1
    '$5$rounds=80000$HFEGd1wnFknpibRl$VZqjyYcTenv7CtOf986hxuE0pRaGXnuLXyfb7m9xL69'

    >>> # when verifying a password, the algorithm is identified automatically:
    >>> myctx.verify("gtnw", hash1)
    False
    >>> myctx.verify("joshua", hash1)
    True

    >>> # alternately, you can explicitly pick one of the configured algorithms,
    >>> # through this is rarely needed in practice:
    >>> hash2 = myctx.encrypt("dogsnamehere", scheme="md5_crypt")
    >>> hash2
    '$1$e2nig/AC$stejMS1ek6W0/UogYKFao/'

    >>> myctx.verify("letmein", hash2)
    False
    >>> myctx.verify("dogsnamehere", hash2)
    True

If not told otherwise, the context object will use the first algorithm listed
in ``schemes`` when encrypting new hashes. This default can be changed by
using the ``default`` keyword::

    >>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt", "des_crypt"],
                             default="des_crypt")
    >>> hash = myctx.encrypt("password")
    >>> hash
    'bIwNofDzt1LCY'

    >>> myctx.identify(hash)
    'des_crypt'

This concludes the basics of how to use a CryptContext object.
The rest of the sections detail the various features it offers,
which probably provide a better argument for *why* you'd want to use it.

.. seealso::

    * the :meth:`CryptContext.encrypt`, :meth:`~CryptContext.verify`, and :meth:`~CryptContext.identify` methods.
    * the :ref:`schemes <context-schemes-option>` and :ref:`default <context-default-option>` constructor options.

.. _context-default-settings-example:

.. rst-class:: emphasized

Using Default Settings
----------------------
While encrypting and verifying hashes is useful enough, it's not much
more than could be done by importing the objects into a list.
The next feature of the :class:`!CryptContext` class is that it
can store various customized settings for the different algorithms,
instead of hardcoding them into each :meth:`!encrypt` call.
As an example, the :class:`sha256_crypt <passlib.hash.sha256_crypt>`
algorithm supports a ``rounds`` parameter which defaults to 80000,
and the :class:`ldap_salted_md5 <passlib.hash.ldap_salted_md5>` algorithm uses
8-byte salts by default::

    >>> from passlib.context import CryptContext
    >>> myctx = CryptContext(["sha256_crypt", "ldap_salted_md5"])

    >>> # sha256_crypt using 80000 rounds...
    >>> myctx.encrypt("password", scheme="sha256_crypt")
    '$5$rounds=80000$GgU/gwNBs9SaObqs$ohY23/zm.8O0TpkGx5fxk0aeVdFpaeKo9GUkMJ0VrMC'
               ^^^^^

    >>> # ldap_salted_md5 with an 8 byte salt...
    >>> myctx.encrypt("password", scheme="ldap_salted_md5")
    '{SMD5}cIYrPh5f/TeUKg9oghECB5fSeu8='
           ^^^^^^^^^^

Instead of having to pass ``rounds=91234`` or ``salt_size=16`` every time
:meth:`encrypt` is called, CryptContext supports setting algorithm-specific
defaults which will be used every time a CryptContext method is invoked.
These is done by passing the CryptContext constructor a keyword with the format :samp:`{scheme}__{setting}`::

    >>> # this reconfigures the existing context object so that
    >>> # sha256_crypt now uses 91234 rounds,
    >>> # and ldap_salted_md5 will use 16 byte salts:
    >>> myctx.update(sha256_crypt__default_rounds=91234,
    ...              ldap_salted_md5__salt_size=16)

    >>> # the effect of this can be seen the next time encrypt is called:
    >>> myctx.encrypt("password", scheme="sha256_crypt")
    '$5$rounds=91234$GgU/gwNBs9SaObqs$ohY23/zm.8O0TpkGx5fxk0aeVdFpaeKo9GUkMJ0VrMC'
               ^^^^^

    >>> myctx.encrypt("password", scheme="ldap_salted_md5")
    '{SMD5}NnQh2S2pjnFxwtMhjbVH59TaG6P0/l/r3RsDwPj/n/M='
           ^^^^^^^^^^^^^^^^^^^^^

.. seealso::

    * the :meth:`CryptContext.update` method.
    * the :ref:`default_rounds <context-default-rounds-option>` and
      :ref:`per-scheme setting <context-other-option>` constructor options.

.. _context-serialization-example:

.. rst-class:: emphasized

Loading & Saving a CryptContext
-------------------------------
The previous example built up a :class:`!CryptContext` instance
in two stages, first by calling the constructor, and then the :meth:`update`
method to make some additional changes. The same configuration
could of course be done in one step::

    >>> from passlib.context import CryptContext
    >>> myctx = CryptContext(schemes=["sha256_crypt", "ldap_salted_md5"],
    ...                      sha256_crypt__default_rounds=91234,
    ...                      ldap_salted_md5__salt_size=16)

This is not much more useful, since these settings still have to be
hardcoded somewhere in the application. This is where the CryptContext's
serialization abilities come into play. As a starting point,
every CryptContext object can dump it's configuration as a dictionary
suitable for passing back into it's constructor::

    >>> myctx.to_dict()
    {'schemes': ['sha256_crypt', 'ldap_salted_md5'],
    'ldap_salted_md5__salt_size': 16,
    'sha256_crypt__default_rounds': 91234}

However, this has been taken a step further, as CryptContext objects
can also dump their configuration into a `ConfigParser <http://docs.python.org/library/configparser.html>`_-compatible
string, allowing the configuration to be written to a file::

    >>> cfg = print myctx.to_string()
    >>> print cfg
    [passlib]
    schemes = sha256_crypt, ldap_salted_md5
    ldap_salted_md5__salt_size = 16
    sha256_crypt__default_rounds = 912345

This "INI" format consists of a section named ``"[passlib]"``,
following by key/value pairs which correspond exactly to the CryptContext
constructor keywords (Keywords which accepts lists of names (such as ``schemes``)
are automatically converted to/from a comma-separated string)
This format allows CryptContext configurations to be created
in a separate file (say as part of an application's larger config file),
and loaded into the CryptContext at runtime. Such strings can be
loaded directly when creating the context object::

    >>> # using the special from_string() constructor to
    >>> # load the exported configuration created in the previous step:
    >>> myctx2 = CryptContext.from_string(cfg)

    >>> # or it can be loaded from a local file:
    >>> myctx3 = CryptContext.from_path("/some/path/on/local/system")

This allows applications to completely extract their password hashing
policies from the code, and into a configuration file with other security settings.

.. note::

    For CryptContext instances which already exist,
    the :meth:`~CryptContext.load` and :meth:`~CryptContext.load_path`
    methods can be used to replace the existing state.

.. seealso::

    * the :meth:`~CryptContext.to_dict` and :meth:`~CryptContext.to_string` methods.
    * the :meth:`CryptContext.from_string` and :meth:`CryptContext.from_path` constructors.

.. _context-migration-example:

.. rst-class:: emphasized

Deprecation & Hash Migration
----------------------------
The final and possibly most useful feature of the :class:`CryptContext` class
is that it can take care of deprecating and migrating existing hashes,
re-hashing them using the current default algorithm and settings.
All that is required is that a few settings be added to the configuration,
and that the application call one extra method whenever a user logs in.

Deprecating Algorithms
......................
The first setting that enables the hash migration features is the ``deprecated``
setting. This should be a list algorithms which are no longer desirable to have
around, but are included in ``schemes`` to provide legacy support.
For example::

    >>> # this sets a context that supports 3 algorithms, but considers
    >>> # two of them (md5_crypt and des_crypt) to be deprecated...
    >>> from passlib.context import CryptContext
    >>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt", "des_crypt"],
                             deprecated=["md5_crypt", "des_crypt"])

All of the basic methods of this object will behave normally, but after
an application has verified the user entered the correct password, it can
check to see if the hash has been deprecated using the
:meth:`~CryptContext.needs_update` method::

    >>> # assume the user's password was stored as a sha256_crypt hash,
    >>> # needs_update will show that the hash is still allowed.
    >>> hash = '$5$rounds=80000$zWZFpsA2egmQY8R9$xp89Vvg1HeDCJ/bTDDN6qkdsCwcMM61vHtM1RNxXur.'
    >>> myctx.needs_update(hash)
    False

    >>> # but if the user's password was stored as md5_crypt hash,
    >>> # need_update will indicate that it is deprecated,
    >>> # and that the original password needs to be re-hashed...
    >>> hash = '$1$fmWm78VW$uWjT69xZNMHWyEQjq852d1'
    >>> myctx.needs_update(hash)
    True

.. note::

    Internally, this is not the only thing :meth:`!needs_update` does.
    It also checks for other issues, such as rounds / salts which are
    known to be weak under certain algorithms, improperly encoded hash
    strings, and other configurable behaviors that are detailed later.

Integrating Hash Migration
..........................
To summarize the process described in the previous section,
all the actions an application would usually need to
perform can be combined into the following bit of skeleton code:

.. code-block:: python
    :linenos:

    hash = get_hash_from_user(user)
    if pass_ctx.verify(password, hash):
        if pass_ctx.needs_update(hash):
            new_hash = pass_ctx.encrypt(password)
            replace_user_hash(user, new_hash)
        do_successful_things()
    else:
        reject_user_login()

Since this is a very common pattern, the CryptContext object provides
a shortcut: the :meth:`~CryptContext.verify_and_update` method,
which allows replacing the above skeleton code with the following
that uses 2 fewer calls (and is much more efficient internally):

.. code-block:: python
    :linenos:

    hash = get_hash_from_user(user)
    valid, new_hash = pass_ctx.verify_and_update(password, hash)
    if valid:
        if new_hash:
            replace_user_hash(user, new_hash)
        do_successful_things()
    else:
        reject_user_login()

.. _context-min-rounds-example:

Settings Rounds Limitations
...........................
In addition to deprecating entire algorithms, the deprecations system
also allows you to place limits on algorithms that support the
variable time-cost parameter ``rounds``:

As an example, take a typical system containing a number of user passwords,
all stored using :class:`~passlib.hash.sha256_crypt`.
As computers get faster, the minimum number of rounds that should be used
gets larger, yet the existing passwords will remain in the system
hashed using their original value. To solve this, the CryptContext
object lets you place minimum bounds on what ``rounds``
values are allowed, using the :samp:`{scheme}__min_rounds` set of keywords...
any hashes whose rounds are outside this limit are considered deprecated,
and in need of re-encoding using the current policy:

First, we set up a context which requires all :class:`!sha256_crypt` hashes
to have at least 131072 rounds::

    >>> from passlib.context import CryptContext
    >>> myctx = CryptContext(schemes="sha256_crypt",
    ...                      sha256_crypt__min_rounds=131072)

New hashes generated by this context will always honor the minimum
(just as if ``default_rounds`` was set to the same value)::

    >>> # plain call to encrypt:
    >>> hash1 = myctx.encrypt("password")
    '$5$rounds=131072$i6xuFK6j8r66ahGn$r.7H8HUk30qiH7fIWRJFJfhWG925nRZh90aYPMdewr3'
               ^^^^^^
    >>> # hashes with enough rounds won't show up as deprecated...
    >>> myctx.needs_update(hash1)
    False

Explicitly setting the rounds too low will cause a warning,
and the minimum will be used anyways::

    >>> # explicit rounds passed to encrypt...
    >>> myctx.encrypt("password", rounds=1000)
    __main__:1: PasslibConfigWarning: sha256_crypt config requires rounds >= 131072,
                                      increasing value from 80000
    '$5$rounds=131072$86YrzUF3fGwY99oy$03e/pyh4l3N/G0509er9JiQmIxc0y9lrAJaLswX/iv8'
               ^^^^^^

But if an existing hash below the minimum is tested, it will show up as needing rehashing::

    >>> # this has only 80000 rounds:
    >>> hash3 = '$5$rounds=80000$qoCFY.akJr.flB7V$8cIZXLwSTzuCRLcJbgHlxqYKEK0cVCENy6nFIlROj05'
    >>> myctx.needs_update(hash3)
    True

    >>> # and verify_and_update() will upgrade this hash automatically:
    >>> myctx.verify_and_update("wrong", hash3)
    (False, None)
    >>> myctx.verify_and_update("password", hash3)
    (True, '$5$rounds=131072$rnMqBaemVZ6QGu7v$vrAVQLEbsBoxhgem8ynvAbToCae8vpzl6ZuDS3/adlA')
                      ^^^^^^

.. seealso::

    * the :ref:`deprecated <context-deprecated-option>`,
      :ref:`min_rounds <context-min-rounds-option>`,
      and :ref:`max_rounds <context-max-rounds-option>` constructor options.

    * the :meth:`~CryptContext.needs_update` and :meth:`~CryptContext.verify_and_update` methods.

.. rst-class:: html-toggle

Full Integration Example
========================
The following is an extended example showing how to fully interface
a CryptContext object into your application. The sample configuration
is somewhat more ornate that would usually be needed, just to highlight
some features, but should none-the-less be secure.

Policy Configuration File
-------------------------
The first thing to do is setup a configuration string for the CryptContext to use.
This can be a dictionary or string defined in a python config file,
or (in this example), part of a large INI-formatted config file.
All of the documented :ref:`context-options` are allowed.

.. code-block:: ini

    ; the options file uses the INI file format,
    ; and passlib will only read the section named "passlib",
    ; so it can be included along with other application configuration.

    [passlib]

    ; setup the context to support pbkdf2_sha256, and some other hashes:
    schemes = pbkdf2_sha256, sha512_crypt, sha256_crypt, md5_crypt, des_crypt

    ; flag md5_crypt and des_crypt as deprecated
    deprecated = md5_crypt, des_crypt

    ; set boundaries for the pbkdf2 rounds parameter
    ; (pbkdf2 hashes outside this range will be flagged as needs-updating)
    pbkdf2_sha256__min_rounds = 10000
    pbkdf2_sha256__max_rounds = 50000

    ; set the default rounds to use when encrypting new passwords.
    ; the 'vary' field will cause each new hash to randomly vary
    ; from the default by the specified % of the default (in this case,
    ; 15000 +/- 10% or between 13500 and 16500 rounds).
    pbkdf2_sha1__default_rounds = 15000
    pbkdf2_sha1__vary_rounds = 0.1

    ; applications can choose to treat certain user accounts differently,
    ; by assigning different types of account to a 'user category',
    ; and setting special policy options for that category.
    ; this create a category named 'admin', which will have a larger default
    ; rounds value.
    admin__pbkdf2_sha1__min_rounds = 18000
    admin__pbkdf2_sha1__default_rounds = 20000

Initializing the CryptContext
-----------------------------
Applications which choose to use a policy file will typically want
to create the CryptContext at the module level, and then load
the configuration once the application starts:

1. Within a common module in your application (e.g. ``myapp.model.security``)::

        #
        # create a crypt context that can be imported and used wherever is needed...
        # the instance will be configured later.
        #
        from passlib.context import CryptContext
        user_pwd_context = CryptContext()

2. Within some startup function within your application::

        #
        # when the app starts, import the context from step 1 and
        # configure it... such as by loading a policy file (see above)
        #

        from myapp.model.security import user_pwd_context

        def myapp_startup():

            #
            # ... other code ...
            #

            #
            # load configuration from some application-specified path
            # using load_path() ... or use the load() method, which can
            # load a dict or in-memory string containing the INI file.
            #
            ##user_pwd_context.load(policy_config_string)
            user_pwd_context.load_path(policy_config_path)

            #
            # if you want to reconfigure the context without restarting the application,
            # simply repeat the above step at another point.
            #

            #
            # ... other code ...
            #

Encrypting New Passwords
------------------------
When it comes time to create a new user's password, insert
the following code in the correct function::

    from myapp.model.security import user_pwd_context

    def handle_user_creation():

        #
        # ... other code ...
        #

        # vars:
        #   'secret' containing the putative password
        #   'category' containing a category assigned to the user account
        #

        hash = user_pwd_context.encrypt(secret, category=category)

        #... perform appropriate actions to store hash...

        #
        # ... other code ...
        #

.. note::

    In the above code, the 'category' kwd can be omitted entirely, *OR*
    set to a string matching a user category specified in the policy file.
    In the latter case, any category-specific policy settings will be enforced.

    For the purposes of this example (and the sample config file listed above),
    it's assumed this value will be ``None`` for most users, and ``"admin"`` for special users.
    This namespace is entirely up to the application, it just has to match the
    category names used in the config file.

    See :ref:`user-categories` for more details.

Verifying & Migrating Existing Passwords
----------------------------------------
Finally, when it comes time to check a users' password, insert
the following code at the correct place::

    from myapp.model.security import user_pwd_context

    def handle_user_login():

        #
        # ... other code ...
        #

        #
        # this example both checks the user's password AND upgrades deprecated hashes...
        #
        # vars:
        #   'hash' containing the specified user's hash,
        #   'secret' containing the putative password
        #   'category' containing a category assigned to the user account
        #

        ok, new_hash = user_pwd_context.verify_and_update(secret, hash, category=category)
        if not ok:
            # ... password did not match. do mean things ...
            pass

        else:
            #... password matched ...

            if new_hash:
                # old hash was deprecated by policy.

                # ... replace hash w/ new_hash for user account ...
                pass

            # ... do successful login actions ...