summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2017-09-18 17:35:07 -0600
committerCharles Harris <charlesr.harris@gmail.com>2017-09-21 10:22:56 -0600
commit0dc06b36dc3567e9bb79d9ba404c85fec7e7f799 (patch)
tree6f83d1550e36f5880f64f76f3dd48a7c15bc7967
parent8344c2cfcb6f46224f64106a5d5aa6c62ab38a24 (diff)
downloadnumpy-0dc06b36dc3567e9bb79d9ba404c85fec7e7f799.tar.gz
BUG: Make scalar function elision check writeable.
Add checks for writeable and updateifcopy in the can_elide_temp_unary function. Closes #9679.
-rw-r--r--numpy/core/src/multiarray/temp_elide.c2
-rw-r--r--numpy/core/tests/test_multiarray.py9
2 files changed, 11 insertions, 0 deletions
diff --git a/numpy/core/src/multiarray/temp_elide.c b/numpy/core/src/multiarray/temp_elide.c
index abca0ecd6..3822f5d0d 100644
--- a/numpy/core/src/multiarray/temp_elide.c
+++ b/numpy/core/src/multiarray/temp_elide.c
@@ -363,6 +363,8 @@ can_elide_temp_unary(PyArrayObject * m1)
if (Py_REFCNT(m1) != 1 || !PyArray_CheckExact(m1) ||
!PyArray_ISNUMBER(m1) ||
!(PyArray_FLAGS(m1) & NPY_ARRAY_OWNDATA) ||
+ !PyArray_ISWRITEABLE(m1) ||
+ PyArray_CHKFLAGS(m1, NPY_ARRAY_UPDATEIFCOPY) ||
PyArray_NBYTES(m1) < NPY_MIN_ELIDE_BYTES) {
return 0;
}
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index 31868026b..4d085a340 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -3172,6 +3172,15 @@ class TestTemporaryElide(TestCase):
a = np.bool_()
assert_(type(~(a & a)) is np.bool_)
+ def test_elide_scalar_readonly(self):
+ # The imaginary part of a real array is readonly. This needs to go
+ # through fast_scalar_power which is only called for powers of
+ # +1, -1, 0, 0.5, and 2, so use 2. Also need valid refcount for
+ # elision which can be gotten for the imaginary part of a real
+ # array. Should not error.
+ a = np.empty(100000, dtype=np.float64)
+ a.imag ** 2
+
def test_elide_readonly(self):
# don't try to elide readonly temporaries
r = np.asarray(np.broadcast_to(np.zeros(1), 100000).flat) * 0.0