summaryrefslogtreecommitdiff
path: root/networkx/tests/test_convert.py
blob: a99b6001cb45203b2a979b22e43ae00411c74761 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import pytest

import networkx as nx
from networkx.utils import nodes_equal, edges_equal, graphs_equal
from networkx.convert import (
    to_networkx_graph,
    to_dict_of_dicts,
    from_dict_of_dicts,
    to_dict_of_lists,
    from_dict_of_lists,
)
from networkx.generators.classic import barbell_graph, cycle_graph


class TestConvert:
    def edgelists_equal(self, e1, e2):
        return sorted(sorted(e) for e in e1) == sorted(sorted(e) for e in e2)

    def test_simple_graphs(self):
        for dest, source in [
            (to_dict_of_dicts, from_dict_of_dicts),
            (to_dict_of_lists, from_dict_of_lists),
        ]:
            G = barbell_graph(10, 3)
            G.graph = {}
            dod = dest(G)

            # Dict of [dicts, lists]
            GG = source(dod)
            assert graphs_equal(G, GG)
            GW = to_networkx_graph(dod)
            assert graphs_equal(G, GW)
            GI = nx.Graph(dod)
            assert graphs_equal(G, GI)

            # With nodelist keyword
            P4 = nx.path_graph(4)
            P3 = nx.path_graph(3)
            P4.graph = {}
            P3.graph = {}
            dod = dest(P4, nodelist=[0, 1, 2])
            Gdod = nx.Graph(dod)
            assert graphs_equal(Gdod, P3)

    def test_exceptions(self):
        # NX graph
        class G:
            adj = None

        pytest.raises(nx.NetworkXError, to_networkx_graph, G)

        # pygraphviz  agraph
        class G:
            is_strict = None

        pytest.raises(nx.NetworkXError, to_networkx_graph, G)

        # Dict of [dicts, lists]
        G = {"a": 0}
        pytest.raises(TypeError, to_networkx_graph, G)

        # list or generator of edges
        class G:
            next = None

        pytest.raises(nx.NetworkXError, to_networkx_graph, G)

        # no match
        pytest.raises(nx.NetworkXError, to_networkx_graph, "a")

    def test_digraphs(self):
        for dest, source in [
            (to_dict_of_dicts, from_dict_of_dicts),
            (to_dict_of_lists, from_dict_of_lists),
        ]:
            G = cycle_graph(10)

            # Dict of [dicts, lists]
            dod = dest(G)
            GG = source(dod)
            assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
            assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
            GW = to_networkx_graph(dod)
            assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
            assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
            GI = nx.Graph(dod)
            assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
            assert edges_equal(sorted(G.edges()), sorted(GI.edges()))

            G = cycle_graph(10, create_using=nx.DiGraph)
            dod = dest(G)
            GG = source(dod, create_using=nx.DiGraph)
            assert sorted(G.nodes()) == sorted(GG.nodes())
            assert sorted(G.edges()) == sorted(GG.edges())
            GW = to_networkx_graph(dod, create_using=nx.DiGraph)
            assert sorted(G.nodes()) == sorted(GW.nodes())
            assert sorted(G.edges()) == sorted(GW.edges())
            GI = nx.DiGraph(dod)
            assert sorted(G.nodes()) == sorted(GI.nodes())
            assert sorted(G.edges()) == sorted(GI.edges())

    def test_graph(self):
        g = nx.cycle_graph(10)
        G = nx.Graph()
        G.add_nodes_from(g)
        G.add_weighted_edges_from((u, v, u) for u, v in g.edges())

        # Dict of dicts
        dod = to_dict_of_dicts(G)
        GG = from_dict_of_dicts(dod, create_using=nx.Graph)
        assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
        GW = to_networkx_graph(dod, create_using=nx.Graph)
        assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
        GI = nx.Graph(dod)
        assert sorted(G.nodes()) == sorted(GI.nodes())
        assert sorted(G.edges()) == sorted(GI.edges())

        # Dict of lists
        dol = to_dict_of_lists(G)
        GG = from_dict_of_lists(dol, create_using=nx.Graph)
        # dict of lists throws away edge data so set it to none
        enone = [(u, v, {}) for (u, v, d) in G.edges(data=True)]
        assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
        assert edges_equal(enone, sorted(GG.edges(data=True)))
        GW = to_networkx_graph(dol, create_using=nx.Graph)
        assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
        assert edges_equal(enone, sorted(GW.edges(data=True)))
        GI = nx.Graph(dol)
        assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
        assert edges_equal(enone, sorted(GI.edges(data=True)))

    def test_with_multiedges_self_loops(self):
        G = cycle_graph(10)
        XG = nx.Graph()
        XG.add_nodes_from(G)
        XG.add_weighted_edges_from((u, v, u) for u, v in G.edges())
        XGM = nx.MultiGraph()
        XGM.add_nodes_from(G)
        XGM.add_weighted_edges_from((u, v, u) for u, v in G.edges())
        XGM.add_edge(0, 1, weight=2)  # multiedge
        XGS = nx.Graph()
        XGS.add_nodes_from(G)
        XGS.add_weighted_edges_from((u, v, u) for u, v in G.edges())
        XGS.add_edge(0, 0, weight=100)  # self loop

        # Dict of dicts
        # with self loops, OK
        dod = to_dict_of_dicts(XGS)
        GG = from_dict_of_dicts(dod, create_using=nx.Graph)
        assert nodes_equal(XGS.nodes(), GG.nodes())
        assert edges_equal(XGS.edges(), GG.edges())
        GW = to_networkx_graph(dod, create_using=nx.Graph)
        assert nodes_equal(XGS.nodes(), GW.nodes())
        assert edges_equal(XGS.edges(), GW.edges())
        GI = nx.Graph(dod)
        assert nodes_equal(XGS.nodes(), GI.nodes())
        assert edges_equal(XGS.edges(), GI.edges())

        # Dict of lists
        # with self loops, OK
        dol = to_dict_of_lists(XGS)
        GG = from_dict_of_lists(dol, create_using=nx.Graph)
        # dict of lists throws away edge data so set it to none
        enone = [(u, v, {}) for (u, v, d) in XGS.edges(data=True)]
        assert nodes_equal(sorted(XGS.nodes()), sorted(GG.nodes()))
        assert edges_equal(enone, sorted(GG.edges(data=True)))
        GW = to_networkx_graph(dol, create_using=nx.Graph)
        assert nodes_equal(sorted(XGS.nodes()), sorted(GW.nodes()))
        assert edges_equal(enone, sorted(GW.edges(data=True)))
        GI = nx.Graph(dol)
        assert nodes_equal(sorted(XGS.nodes()), sorted(GI.nodes()))
        assert edges_equal(enone, sorted(GI.edges(data=True)))

        # Dict of dicts
        # with multiedges, OK
        dod = to_dict_of_dicts(XGM)
        GG = from_dict_of_dicts(dod, create_using=nx.MultiGraph, multigraph_input=True)
        assert nodes_equal(sorted(XGM.nodes()), sorted(GG.nodes()))
        assert edges_equal(sorted(XGM.edges()), sorted(GG.edges()))
        GW = to_networkx_graph(dod, create_using=nx.MultiGraph, multigraph_input=True)
        assert nodes_equal(sorted(XGM.nodes()), sorted(GW.nodes()))
        assert edges_equal(sorted(XGM.edges()), sorted(GW.edges()))
        GI = nx.MultiGraph(dod)  # convert can't tell whether to duplicate edges!
        assert nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
        # assert_not_equal(sorted(XGM.edges()), sorted(GI.edges()))
        assert not sorted(XGM.edges()) == sorted(GI.edges())
        GE = from_dict_of_dicts(dod, create_using=nx.MultiGraph, multigraph_input=False)
        assert nodes_equal(sorted(XGM.nodes()), sorted(GE.nodes()))
        assert sorted(XGM.edges()) != sorted(GE.edges())
        GI = nx.MultiGraph(XGM)
        assert nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
        assert edges_equal(sorted(XGM.edges()), sorted(GI.edges()))
        GM = nx.MultiGraph(G)
        assert nodes_equal(sorted(GM.nodes()), sorted(G.nodes()))
        assert edges_equal(sorted(GM.edges()), sorted(G.edges()))

        # Dict of lists
        # with multiedges, OK, but better write as DiGraph else you'll
        # get double edges
        dol = to_dict_of_lists(G)
        GG = from_dict_of_lists(dol, create_using=nx.MultiGraph)
        assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
        GW = to_networkx_graph(dol, create_using=nx.MultiGraph)
        assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
        GI = nx.MultiGraph(dol)
        assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(GI.edges()))

    def test_edgelists(self):
        P = nx.path_graph(4)
        e = [(0, 1), (1, 2), (2, 3)]
        G = nx.Graph(e)
        assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(P.edges()))
        assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))

        e = [(0, 1, {}), (1, 2, {}), (2, 3, {})]
        G = nx.Graph(e)
        assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(P.edges()))
        assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))

        e = ((n, n + 1) for n in range(3))
        G = nx.Graph(e)
        assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
        assert edges_equal(sorted(G.edges()), sorted(P.edges()))
        assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))

    def test_directed_to_undirected(self):
        edges1 = [(0, 1), (1, 2), (2, 0)]
        edges2 = [(0, 1), (1, 2), (0, 2)]
        assert self.edgelists_equal(nx.Graph(nx.DiGraph(edges1)).edges(), edges1)
        assert self.edgelists_equal(nx.Graph(nx.DiGraph(edges2)).edges(), edges1)
        assert self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges1)).edges(), edges1)
        assert self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges2)).edges(), edges1)

        assert self.edgelists_equal(
            nx.MultiGraph(nx.MultiDiGraph(edges1)).edges(), edges1
        )
        assert self.edgelists_equal(
            nx.MultiGraph(nx.MultiDiGraph(edges2)).edges(), edges1
        )

        assert self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges1)).edges(), edges1)
        assert self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges2)).edges(), edges1)

    def test_attribute_dict_integrity(self):
        # we must not replace dict-like graph data structures with dicts
        G = nx.OrderedGraph()
        G.add_nodes_from("abc")
        H = to_networkx_graph(G, create_using=nx.OrderedGraph)
        assert list(H.nodes) == list(G.nodes)
        H = nx.OrderedDiGraph(G)
        assert list(H.nodes) == list(G.nodes)

    def test_to_edgelist(self):
        G = nx.Graph([(1, 1)])
        elist = nx.to_edgelist(G, nodelist=list(G))
        assert edges_equal(G.edges(data=True), elist)

    def test_custom_node_attr_dict_safekeeping(self):
        class custom_dict(dict):
            pass

        class Custom(nx.Graph):
            node_attr_dict_factory = custom_dict

        g = nx.Graph()
        g.add_node(1, weight=1)

        h = Custom(g)
        assert isinstance(g._node[1], dict)
        assert isinstance(h._node[1], custom_dict)

        # this raise exception
        # h._node.update((n, dd.copy()) for n, dd in g.nodes.items())
        # assert isinstance(h._node[1], custom_dict)


@pytest.mark.parametrize(
    "edgelist",
    (
        # Graph with no edge data
        [(0, 1), (1, 2)],
        # Graph with edge data
        [(0, 1, {"weight": 1.0}), (1, 2, {"weight": 2.0})],
    ),
)
def test_to_dict_of_dicts_with_edgedata_param(edgelist):
    G = nx.Graph()
    G.add_edges_from(edgelist)
    # Innermost dict value == edge_data when edge_data != None.
    # In the case when G has edge data, it is overwritten
    expected = {0: {1: 10}, 1: {0: 10, 2: 10}, 2: {1: 10}}
    assert nx.to_dict_of_dicts(G, edge_data=10) == expected


def test_to_dict_of_dicts_with_edgedata_and_nodelist():
    G = nx.path_graph(5)
    nodelist = [2, 3, 4]
    expected = {2: {3: 10}, 3: {2: 10, 4: 10}, 4: {3: 10}}
    assert nx.to_dict_of_dicts(G, nodelist=nodelist, edge_data=10) == expected


def test_to_dict_of_dicts_with_edgedata_multigraph():
    """Multi edge data overwritten when edge_data != None"""
    G = nx.MultiGraph()
    G.add_edge(0, 1, key="a")
    G.add_edge(0, 1, key="b")
    # Multi edge data lost when edge_data is not None
    expected = {0: {1: 10}, 1: {0: 10}}
    assert nx.to_dict_of_dicts(G, edge_data=10) == expected


def test_to_networkx_graph_non_edgelist():
    invalid_edgelist = [1, 2, 3]
    with pytest.raises(nx.NetworkXError, match="Input is not a valid edge list"):
        nx.to_networkx_graph(invalid_edgelist)