summaryrefslogtreecommitdiff
path: root/networkx/generators/tests/test_random_graphs.py
blob: d0068cd6d2457fbce09faa105b095a68871b6190 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""Unit tests for the :mod:`networkx.generators.random_graphs` module.

"""
import networkx as nx
import pytest


class TestGeneratorsRandom:
    def test_random_graph(self):
        seed = 42
        G = nx.gnp_random_graph(100, 0.25, seed)
        G = nx.gnp_random_graph(100, 0.25, seed, directed=True)
        G = nx.binomial_graph(100, 0.25, seed)
        G = nx.erdos_renyi_graph(100, 0.25, seed)
        G = nx.fast_gnp_random_graph(100, 0.25, seed)
        G = nx.fast_gnp_random_graph(100, 0.25, seed, directed=True)
        G = nx.gnm_random_graph(100, 20, seed)
        G = nx.gnm_random_graph(100, 20, seed, directed=True)
        G = nx.dense_gnm_random_graph(100, 20, seed)

        G = nx.watts_strogatz_graph(10, 2, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10

        G = nx.connected_watts_strogatz_graph(10, 2, 0.1, tries=10, seed=seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10
        pytest.raises(
            nx.NetworkXError, nx.connected_watts_strogatz_graph, 10, 2, 0.1, tries=0
        )

        G = nx.watts_strogatz_graph(10, 4, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 20

        G = nx.newman_watts_strogatz_graph(10, 2, 0.0, seed)
        assert len(G) == 10
        assert G.number_of_edges() == 10

        G = nx.newman_watts_strogatz_graph(10, 4, 0.25, seed)
        assert len(G) == 10
        assert G.number_of_edges() >= 20

        G = nx.barabasi_albert_graph(100, 1, seed)
        G = nx.barabasi_albert_graph(100, 3, seed)
        assert G.number_of_edges() == (97 * 3)

        G = nx.barabasi_albert_graph(100, 3, seed, nx.complete_graph(5))
        assert G.number_of_edges() == (10 + 95 * 3)

        G = nx.extended_barabasi_albert_graph(100, 1, 0, 0, seed)
        assert G.number_of_edges() == 99
        G = nx.extended_barabasi_albert_graph(100, 3, 0, 0, seed)
        assert G.number_of_edges() == 97 * 3
        G = nx.extended_barabasi_albert_graph(100, 1, 0, 0.5, seed)
        assert G.number_of_edges() == 99
        G = nx.extended_barabasi_albert_graph(100, 2, 0.5, 0, seed)
        assert G.number_of_edges() > 100 * 3
        assert G.number_of_edges() < 100 * 4

        G = nx.extended_barabasi_albert_graph(100, 2, 0.3, 0.3, seed)
        assert G.number_of_edges() > 100 * 2
        assert G.number_of_edges() < 100 * 4

        G = nx.powerlaw_cluster_graph(100, 1, 1.0, seed)
        G = nx.powerlaw_cluster_graph(100, 3, 0.0, seed)
        assert G.number_of_edges() == (97 * 3)

        G = nx.random_regular_graph(10, 20, seed)

        pytest.raises(nx.NetworkXError, nx.random_regular_graph, 3, 21)
        pytest.raises(nx.NetworkXError, nx.random_regular_graph, 33, 21)

        constructor = [(10, 20, 0.8), (20, 40, 0.8)]
        G = nx.random_shell_graph(constructor, seed)

        def is_caterpillar(g):
            """
            A tree is a caterpillar iff all nodes of degree >=3 are surrounded
            by at most two nodes of degree two or greater.
            ref: http://mathworld.wolfram.com/CaterpillarGraph.html
            """
            deg_over_3 = [n for n in g if g.degree(n) >= 3]
            for n in deg_over_3:
                nbh_deg_over_2 = [nbh for nbh in g.neighbors(n) if g.degree(nbh) >= 2]
                if not len(nbh_deg_over_2) <= 2:
                    return False
            return True

        def is_lobster(g):
            """
            A tree is a lobster if it has the property that the removal of leaf
            nodes leaves a caterpillar graph (Gallian 2007)
            ref: http://mathworld.wolfram.com/LobsterGraph.html
            """
            non_leafs = [n for n in g if g.degree(n) > 1]
            return is_caterpillar(g.subgraph(non_leafs))

        G = nx.random_lobster(10, 0.1, 0.5, seed)
        assert max([G.degree(n) for n in G.nodes()]) > 3
        assert is_lobster(G)
        pytest.raises(nx.NetworkXError, nx.random_lobster, 10, 0.1, 1, seed)
        pytest.raises(nx.NetworkXError, nx.random_lobster, 10, 1, 1, seed)
        pytest.raises(nx.NetworkXError, nx.random_lobster, 10, 1, 0.5, seed)

        # docstring says this should be a caterpillar
        G = nx.random_lobster(10, 0.1, 0.0, seed)
        assert is_caterpillar(G)

        # difficult to find seed that requires few tries
        seq = nx.random_powerlaw_tree_sequence(10, 3, seed=14, tries=1)
        G = nx.random_powerlaw_tree(10, 3, seed=14, tries=1)

    def test_dual_barabasi_albert(self, m1=1, m2=4, p=0.5):
        """
        Tests that the dual BA random graph generated behaves consistently.

        Tests the exceptions are raised as expected.

        The graphs generation are repeated several times to prevent lucky shots

        """
        seeds = [42, 314, 2718]
        initial_graph = nx.complete_graph(10)

        for seed in seeds:

            # This should be BA with m = m1
            BA1 = nx.barabasi_albert_graph(100, m1, seed)
            DBA1 = nx.dual_barabasi_albert_graph(100, m1, m2, 1, seed)
            assert BA1.edges() == DBA1.edges()

            # This should be BA with m = m2
            BA2 = nx.barabasi_albert_graph(100, m2, seed)
            DBA2 = nx.dual_barabasi_albert_graph(100, m1, m2, 0, seed)
            assert BA2.edges() == DBA2.edges()

            BA3 = nx.barabasi_albert_graph(100, m1, seed)
            DBA3 = nx.dual_barabasi_albert_graph(100, m1, m1, p, seed)
            # We can't compare edges here since randomness is "consumed" when drawing
            # between m1 and m2
            assert BA3.size() == DBA3.size()

            DBA = nx.dual_barabasi_albert_graph(100, m1, m2, p, seed, initial_graph)
            BA1 = nx.barabasi_albert_graph(100, m1, seed, initial_graph)
            BA2 = nx.barabasi_albert_graph(100, m2, seed, initial_graph)
            assert (
                min(BA1.size(), BA2.size()) <= DBA.size() <= max(BA1.size(), BA2.size())
            )

        # Testing exceptions
        dbag = nx.dual_barabasi_albert_graph
        pytest.raises(nx.NetworkXError, dbag, m1, m1, m2, 0)
        pytest.raises(nx.NetworkXError, dbag, m2, m1, m2, 0)
        pytest.raises(nx.NetworkXError, dbag, 100, m1, m2, -0.5)
        pytest.raises(nx.NetworkXError, dbag, 100, m1, m2, 1.5)
        initial = nx.complete_graph(max(m1, m2) - 1)
        pytest.raises(nx.NetworkXError, dbag, 100, m1, m2, p, initial_graph=initial)

    def test_extended_barabasi_albert(self, m=2):
        """
        Tests that the extended BA random graph generated behaves consistently.

        Tests the exceptions are raised as expected.

        The graphs generation are repeated several times to prevent lucky-shots

        """
        seeds = [42, 314, 2718]

        for seed in seeds:
            BA_model = nx.barabasi_albert_graph(100, m, seed)
            BA_model_edges = BA_model.number_of_edges()

            # This behaves just like BA, the number of edges must be the same
            G1 = nx.extended_barabasi_albert_graph(100, m, 0, 0, seed)
            assert G1.size() == BA_model_edges

            # More than twice more edges should have been added
            G1 = nx.extended_barabasi_albert_graph(100, m, 0.8, 0, seed)
            assert G1.size() > BA_model_edges * 2

            # Only edge rewiring, so the number of edges less than original
            G2 = nx.extended_barabasi_albert_graph(100, m, 0, 0.8, seed)
            assert G2.size() == BA_model_edges

            # Mixed scenario: less edges than G1 and more edges than G2
            G3 = nx.extended_barabasi_albert_graph(100, m, 0.3, 0.3, seed)
            assert G3.size() > G2.size()
            assert G3.size() < G1.size()

        # Testing exceptions
        ebag = nx.extended_barabasi_albert_graph
        pytest.raises(nx.NetworkXError, ebag, m, m, 0, 0)
        pytest.raises(nx.NetworkXError, ebag, 1, 0.5, 0, 0)
        pytest.raises(nx.NetworkXError, ebag, 100, 2, 0.5, 0.5)

    def test_random_zero_regular_graph(self):
        """Tests that a 0-regular graph has the correct number of nodes and
        edges.

        """
        seed = 42
        G = nx.random_regular_graph(0, 10, seed)
        assert len(G) == 10
        assert sum(1 for _ in G.edges()) == 0

    def test_gnp(self):
        for generator in [
            nx.gnp_random_graph,
            nx.binomial_graph,
            nx.erdos_renyi_graph,
            nx.fast_gnp_random_graph,
        ]:
            G = generator(10, -1.1)
            assert len(G) == 10
            assert sum(1 for _ in G.edges()) == 0

            G = generator(10, 0.1)
            assert len(G) == 10

            G = generator(10, 0.1, seed=42)
            assert len(G) == 10

            G = generator(10, 1.1)
            assert len(G) == 10
            assert sum(1 for _ in G.edges()) == 45

            G = generator(10, -1.1, directed=True)
            assert G.is_directed()
            assert len(G) == 10
            assert sum(1 for _ in G.edges()) == 0

            G = generator(10, 0.1, directed=True)
            assert G.is_directed()
            assert len(G) == 10

            G = generator(10, 1.1, directed=True)
            assert G.is_directed()
            assert len(G) == 10
            assert sum(1 for _ in G.edges()) == 90

            # assert that random graphs generate all edges for p close to 1
            edges = 0
            runs = 100
            for i in range(runs):
                edges += sum(1 for _ in generator(10, 0.99999, directed=True).edges())
            assert abs(edges / float(runs) - 90) <= runs * 2.0 / 100

    def test_gnm(self):
        G = nx.gnm_random_graph(10, 3)
        assert len(G) == 10
        assert sum(1 for _ in G.edges()) == 3

        G = nx.gnm_random_graph(10, 3, seed=42)
        assert len(G) == 10
        assert sum(1 for _ in G.edges()) == 3

        G = nx.gnm_random_graph(10, 100)
        assert len(G) == 10
        assert sum(1 for _ in G.edges()) == 45

        G = nx.gnm_random_graph(10, 100, directed=True)
        assert len(G) == 10
        assert sum(1 for _ in G.edges()) == 90

        G = nx.gnm_random_graph(10, -1.1)
        assert len(G) == 10
        assert sum(1 for _ in G.edges()) == 0

    def test_watts_strogatz_big_k(self):
        # Test to make sure than n <= k
        pytest.raises(nx.NetworkXError, nx.watts_strogatz_graph, 10, 11, 0.25)
        pytest.raises(nx.NetworkXError, nx.newman_watts_strogatz_graph, 10, 11, 0.25)

        # could create an infinite loop, now doesn't
        # infinite loop used to occur when a node has degree n-1 and needs to rewire
        nx.watts_strogatz_graph(10, 9, 0.25, seed=0)
        nx.newman_watts_strogatz_graph(10, 9, 0.5, seed=0)

        # Test k==n scenario
        nx.watts_strogatz_graph(10, 10, 0.25, seed=0)
        nx.newman_watts_strogatz_graph(10, 10, 0.25, seed=0)

    def test_random_kernel_graph(self):
        def integral(u, w, z):
            return c * (z - w)

        def root(u, w, r):
            return r / c + w

        c = 1
        graph = nx.random_kernel_graph(1000, integral, root)
        graph = nx.random_kernel_graph(1000, integral, root, seed=42)
        assert len(graph) == 1000