summaryrefslogtreecommitdiff
path: root/networkx/generators/random_graphs.py
blob: 5e1a2f0692b310b25a422966d1ef2d9fa46d0cd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
"""
Generators for random graphs.

"""

import itertools
import math

import networkx as nx
from networkx.utils import py_random_state
from .classic import empty_graph, path_graph, complete_graph
from .degree_seq import degree_sequence_tree
from collections import defaultdict

__all__ = [
    "fast_gnp_random_graph",
    "gnp_random_graph",
    "dense_gnm_random_graph",
    "gnm_random_graph",
    "erdos_renyi_graph",
    "binomial_graph",
    "newman_watts_strogatz_graph",
    "watts_strogatz_graph",
    "connected_watts_strogatz_graph",
    "random_regular_graph",
    "barabasi_albert_graph",
    "dual_barabasi_albert_graph",
    "extended_barabasi_albert_graph",
    "powerlaw_cluster_graph",
    "random_lobster",
    "random_shell_graph",
    "random_powerlaw_tree",
    "random_powerlaw_tree_sequence",
    "random_kernel_graph",
]


@py_random_state(2)
def fast_gnp_random_graph(n, p, seed=None, directed=False):
    """Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
    a binomial graph.

    Parameters
    ----------
    n : int
        The number of nodes.
    p : float
        Probability for edge creation.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    directed : bool, optional (default=False)
        If True, this function returns a directed graph.

    Notes
    -----
    The $G_{n,p}$ graph algorithm chooses each of the $[n (n - 1)] / 2$
    (undirected) or $n (n - 1)$ (directed) possible edges with probability $p$.

    This algorithm [1]_ runs in $O(n + m)$ time, where `m` is the expected number of
    edges, which equals $p n (n - 1) / 2$. This should be faster than
    :func:`gnp_random_graph` when $p$ is small and the expected number of edges
    is small (that is, the graph is sparse).

    See Also
    --------
    gnp_random_graph

    References
    ----------
    .. [1] Vladimir Batagelj and Ulrik Brandes,
       "Efficient generation of large random networks",
       Phys. Rev. E, 71, 036113, 2005.
    """
    G = empty_graph(n)

    if p <= 0 or p >= 1:
        return nx.gnp_random_graph(n, p, seed=seed, directed=directed)

    w = -1
    lp = math.log(1.0 - p)

    if directed:
        G = nx.DiGraph(G)
        # Nodes in graph are from 0,n-1 (start with v as the first node index).
        v = 0
        while v < n:
            lr = math.log(1.0 - seed.random())
            w = w + 1 + int(lr / lp)
            if v == w:  # avoid self loops
                w = w + 1
            while v < n <= w:
                w = w - n
                v = v + 1
                if v == w:  # avoid self loops
                    w = w + 1
            if v < n:
                G.add_edge(v, w)
    else:
        # Nodes in graph are from 0,n-1 (start with v as the second node index).
        v = 1
        while v < n:
            lr = math.log(1.0 - seed.random())
            w = w + 1 + int(lr / lp)
            while w >= v and v < n:
                w = w - v
                v = v + 1
            if v < n:
                G.add_edge(v, w)
    return G


@py_random_state(2)
def gnp_random_graph(n, p, seed=None, directed=False):
    """Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph
    or a binomial graph.

    The $G_{n,p}$ model chooses each of the possible edges with probability $p$.

    Parameters
    ----------
    n : int
        The number of nodes.
    p : float
        Probability for edge creation.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    directed : bool, optional (default=False)
        If True, this function returns a directed graph.

    See Also
    --------
    fast_gnp_random_graph

    Notes
    -----
    This algorithm [2]_ runs in $O(n^2)$ time.  For sparse graphs (that is, for
    small values of $p$), :func:`fast_gnp_random_graph` is a faster algorithm.

    :func:`binomial_graph` and :func:`erdos_renyi_graph` are
    aliases for :func:`gnp_random_graph`.

    >>> nx.binomial_graph is nx.gnp_random_graph
    True
    >>> nx.erdos_renyi_graph is nx.gnp_random_graph
    True

    References
    ----------
    .. [1] P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
    .. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
    """
    if directed:
        edges = itertools.permutations(range(n), 2)
        G = nx.DiGraph()
    else:
        edges = itertools.combinations(range(n), 2)
        G = nx.Graph()
    G.add_nodes_from(range(n))
    if p <= 0:
        return G
    if p >= 1:
        return complete_graph(n, create_using=G)

    for e in edges:
        if seed.random() < p:
            G.add_edge(*e)
    return G


# add some aliases to common names
binomial_graph = gnp_random_graph
erdos_renyi_graph = gnp_random_graph


@py_random_state(2)
def dense_gnm_random_graph(n, m, seed=None):
    """Returns a $G_{n,m}$ random graph.

    In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set
    of all graphs with $n$ nodes and $m$ edges.

    This algorithm should be faster than :func:`gnm_random_graph` for dense
    graphs.

    Parameters
    ----------
    n : int
        The number of nodes.
    m : int
        The number of edges.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    See Also
    --------
    gnm_random_graph

    Notes
    -----
    Algorithm by Keith M. Briggs Mar 31, 2006.
    Inspired by Knuth's Algorithm S (Selection sampling technique),
    in section 3.4.2 of [1]_.

    References
    ----------
    .. [1] Donald E. Knuth, The Art of Computer Programming,
        Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
    """
    mmax = n * (n - 1) / 2
    if m >= mmax:
        G = complete_graph(n)
    else:
        G = empty_graph(n)

    if n == 1 or m >= mmax:
        return G

    u = 0
    v = 1
    t = 0
    k = 0
    while True:
        if seed.randrange(mmax - t) < m - k:
            G.add_edge(u, v)
            k += 1
            if k == m:
                return G
        t += 1
        v += 1
        if v == n:  # go to next row of adjacency matrix
            u += 1
            v = u + 1


@py_random_state(2)
def gnm_random_graph(n, m, seed=None, directed=False):
    """Returns a $G_{n,m}$ random graph.

    In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set
    of all graphs with $n$ nodes and $m$ edges.

    This algorithm should be faster than :func:`dense_gnm_random_graph` for
    sparse graphs.

    Parameters
    ----------
    n : int
        The number of nodes.
    m : int
        The number of edges.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    directed : bool, optional (default=False)
        If True return a directed graph

    See also
    --------
    dense_gnm_random_graph

    """
    if directed:
        G = nx.DiGraph()
    else:
        G = nx.Graph()
    G.add_nodes_from(range(n))

    if n == 1:
        return G
    max_edges = n * (n - 1)
    if not directed:
        max_edges /= 2.0
    if m >= max_edges:
        return complete_graph(n, create_using=G)

    nlist = list(G)
    edge_count = 0
    while edge_count < m:
        # generate random edge,u,v
        u = seed.choice(nlist)
        v = seed.choice(nlist)
        if u == v or G.has_edge(u, v):
            continue
        else:
            G.add_edge(u, v)
            edge_count = edge_count + 1
    return G


@py_random_state(3)
def newman_watts_strogatz_graph(n, k, p, seed=None):
    """Returns a Newman–Watts–Strogatz small-world graph.

    Parameters
    ----------
    n : int
        The number of nodes.
    k : int
        Each node is joined with its `k` nearest neighbors in a ring
        topology.
    p : float
        The probability of adding a new edge for each edge.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Notes
    -----
    First create a ring over $n$ nodes [1]_.  Then each node in the ring is
    connected with its $k$ nearest neighbors (or $k - 1$ neighbors if $k$
    is odd).  Then shortcuts are created by adding new edges as follows: for
    each edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest
    neighbors" with probability $p$ add a new edge $(u, w)$ with
    randomly-chosen existing node $w$.  In contrast with
    :func:`watts_strogatz_graph`, no edges are removed.

    See Also
    --------
    watts_strogatz_graph

    References
    ----------
    .. [1] M. E. J. Newman and D. J. Watts,
       Renormalization group analysis of the small-world network model,
       Physics Letters A, 263, 341, 1999.
       https://doi.org/10.1016/S0375-9601(99)00757-4
    """
    if k > n:
        raise nx.NetworkXError("k>=n, choose smaller k or larger n")

    # If k == n the graph return is a complete graph
    if k == n:
        return nx.complete_graph(n)

    G = empty_graph(n)
    nlist = list(G.nodes())
    fromv = nlist
    # connect the k/2 neighbors
    for j in range(1, k // 2 + 1):
        tov = fromv[j:] + fromv[0:j]  # the first j are now last
        for i in range(len(fromv)):
            G.add_edge(fromv[i], tov[i])
    # for each edge u-v, with probability p, randomly select existing
    # node w and add new edge u-w
    e = list(G.edges())
    for (u, v) in e:
        if seed.random() < p:
            w = seed.choice(nlist)
            # no self-loops and reject if edge u-w exists
            # is that the correct NWS model?
            while w == u or G.has_edge(u, w):
                w = seed.choice(nlist)
                if G.degree(u) >= n - 1:
                    break  # skip this rewiring
            else:
                G.add_edge(u, w)
    return G


@py_random_state(3)
def watts_strogatz_graph(n, k, p, seed=None):
    """Returns a Watts–Strogatz small-world graph.

    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is joined with its `k` nearest neighbors in a ring
        topology.
    p : float
        The probability of rewiring each edge
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    See Also
    --------
    newman_watts_strogatz_graph
    connected_watts_strogatz_graph

    Notes
    -----
    First create a ring over $n$ nodes [1]_.  Then each node in the ring is joined
    to its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd).
    Then shortcuts are created by replacing some edges as follows: for each
    edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors"
    with probability $p$ replace it with a new edge $(u, w)$ with uniformly
    random choice of existing node $w$.

    In contrast with :func:`newman_watts_strogatz_graph`, the random rewiring
    does not increase the number of edges. The rewired graph is not guaranteed
    to be connected as in :func:`connected_watts_strogatz_graph`.

    References
    ----------
    .. [1] Duncan J. Watts and Steven H. Strogatz,
       Collective dynamics of small-world networks,
       Nature, 393, pp. 440--442, 1998.
    """
    if k > n:
        raise nx.NetworkXError("k>n, choose smaller k or larger n")

    # If k == n, the graph is complete not Watts-Strogatz
    if k == n:
        return nx.complete_graph(n)

    G = nx.Graph()
    nodes = list(range(n))  # nodes are labeled 0 to n-1
    # connect each node to k/2 neighbors
    for j in range(1, k // 2 + 1):
        targets = nodes[j:] + nodes[0:j]  # first j nodes are now last in list
        G.add_edges_from(zip(nodes, targets))
    # rewire edges from each node
    # loop over all nodes in order (label) and neighbors in order (distance)
    # no self loops or multiple edges allowed
    for j in range(1, k // 2 + 1):  # outer loop is neighbors
        targets = nodes[j:] + nodes[0:j]  # first j nodes are now last in list
        # inner loop in node order
        for u, v in zip(nodes, targets):
            if seed.random() < p:
                w = seed.choice(nodes)
                # Enforce no self-loops or multiple edges
                while w == u or G.has_edge(u, w):
                    w = seed.choice(nodes)
                    if G.degree(u) >= n - 1:
                        break  # skip this rewiring
                else:
                    G.remove_edge(u, v)
                    G.add_edge(u, w)
    return G


@py_random_state(4)
def connected_watts_strogatz_graph(n, k, p, tries=100, seed=None):
    """Returns a connected Watts–Strogatz small-world graph.

    Attempts to generate a connected graph by repeated generation of
    Watts–Strogatz small-world graphs.  An exception is raised if the maximum
    number of tries is exceeded.

    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is joined with its `k` nearest neighbors in a ring
        topology.
    p : float
        The probability of rewiring each edge
    tries : int
        Number of attempts to generate a connected graph.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Notes
    -----
    First create a ring over $n$ nodes [1]_.  Then each node in the ring is joined
    to its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd).
    Then shortcuts are created by replacing some edges as follows: for each
    edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors"
    with probability $p$ replace it with a new edge $(u, w)$ with uniformly
    random choice of existing node $w$.
    The entire process is repeated until a connected graph results.

    See Also
    --------
    newman_watts_strogatz_graph
    watts_strogatz_graph

    References
    ----------
    .. [1] Duncan J. Watts and Steven H. Strogatz,
       Collective dynamics of small-world networks,
       Nature, 393, pp. 440--442, 1998.
    """
    for i in range(tries):
        # seed is an RNG so should change sequence each call
        G = watts_strogatz_graph(n, k, p, seed)
        if nx.is_connected(G):
            return G
    raise nx.NetworkXError("Maximum number of tries exceeded")


@py_random_state(2)
def random_regular_graph(d, n, seed=None):
    r"""Returns a random $d$-regular graph on $n$ nodes.

    The resulting graph has no self-loops or parallel edges.

    Parameters
    ----------
    d : int
      The degree of each node.
    n : integer
      The number of nodes. The value of $n \times d$ must be even.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Notes
    -----
    The nodes are numbered from $0$ to $n - 1$.

    Kim and Vu's paper [2]_ shows that this algorithm samples in an
    asymptotically uniform way from the space of random graphs when
    $d = O(n^{1 / 3 - \epsilon})$.

    Raises
    ------

    NetworkXError
        If $n \times d$ is odd or $d$ is greater than or equal to $n$.

    References
    ----------
    .. [1] A. Steger and N. Wormald,
       Generating random regular graphs quickly,
       Probability and Computing 8 (1999), 377-396, 1999.
       http://citeseer.ist.psu.edu/steger99generating.html

    .. [2] Jeong Han Kim and Van H. Vu,
       Generating random regular graphs,
       Proceedings of the thirty-fifth ACM symposium on Theory of computing,
       San Diego, CA, USA, pp 213--222, 2003.
       http://portal.acm.org/citation.cfm?id=780542.780576
    """
    if (n * d) % 2 != 0:
        raise nx.NetworkXError("n * d must be even")

    if not 0 <= d < n:
        raise nx.NetworkXError("the 0 <= d < n inequality must be satisfied")

    if d == 0:
        return empty_graph(n)

    def _suitable(edges, potential_edges):
        # Helper subroutine to check if there are suitable edges remaining
        # If False, the generation of the graph has failed
        if not potential_edges:
            return True
        for s1 in potential_edges:
            for s2 in potential_edges:
                # Two iterators on the same dictionary are guaranteed
                # to visit it in the same order if there are no
                # intervening modifications.
                if s1 == s2:
                    # Only need to consider s1-s2 pair one time
                    break
                if s1 > s2:
                    s1, s2 = s2, s1
                if (s1, s2) not in edges:
                    return True
        return False

    def _try_creation():
        # Attempt to create an edge set

        edges = set()
        stubs = list(range(n)) * d

        while stubs:
            potential_edges = defaultdict(lambda: 0)
            seed.shuffle(stubs)
            stubiter = iter(stubs)
            for s1, s2 in zip(stubiter, stubiter):
                if s1 > s2:
                    s1, s2 = s2, s1
                if s1 != s2 and ((s1, s2) not in edges):
                    edges.add((s1, s2))
                else:
                    potential_edges[s1] += 1
                    potential_edges[s2] += 1

            if not _suitable(edges, potential_edges):
                return None  # failed to find suitable edge set

            stubs = [
                node
                for node, potential in potential_edges.items()
                for _ in range(potential)
            ]
        return edges

    # Even though a suitable edge set exists,
    # the generation of such a set is not guaranteed.
    # Try repeatedly to find one.
    edges = _try_creation()
    while edges is None:
        edges = _try_creation()

    G = nx.Graph()
    G.add_edges_from(edges)

    return G


def _random_subset(seq, m, rng):
    """Return m unique elements from seq.

    This differs from random.sample which can return repeated
    elements if seq holds repeated elements.

    Note: rng is a random.Random or numpy.random.RandomState instance.
    """
    targets = set()
    while len(targets) < m:
        x = rng.choice(seq)
        targets.add(x)
    return targets


@py_random_state(2)
def barabasi_albert_graph(n, m, seed=None):
    """Returns a random graph according to the Barabási–Albert preferential
    attachment model.

    A graph of $n$ nodes is grown by attaching new nodes each with $m$
    edges that are preferentially attached to existing nodes with high degree.

    Parameters
    ----------
    n : int
        Number of nodes
    m : int
        Number of edges to attach from a new node to existing nodes
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : Graph

    Raises
    ------
    NetworkXError
        If `m` does not satisfy ``1 <= m < n``.

    References
    ----------
    .. [1] A. L. Barabási and R. Albert "Emergence of scaling in
       random networks", Science 286, pp 509-512, 1999.
    """

    if m < 1 or m >= n:
        raise nx.NetworkXError(
            f"Barabási–Albert network must have m >= 1 and m < n, m = {m}, n = {n}"
        )

    # Add m initial nodes (m0 in barabasi-speak)
    G = empty_graph(m)
    # Target nodes for new edges
    targets = list(range(m))
    # List of existing nodes, with nodes repeated once for each adjacent edge
    repeated_nodes = []
    # Start adding the other n-m nodes. The first node is m.
    source = m
    while source < n:
        # Add edges to m nodes from the source.
        G.add_edges_from(zip([source] * m, targets))
        # Add one node to the list for each new edge just created.
        repeated_nodes.extend(targets)
        # And the new node "source" has m edges to add to the list.
        repeated_nodes.extend([source] * m)
        # Now choose m unique nodes from the existing nodes
        # Pick uniformly from repeated_nodes (preferential attachment)
        targets = _random_subset(repeated_nodes, m, seed)
        source += 1
    return G


@py_random_state(4)
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None):
    """Returns a random graph according to the dual Barabási–Albert preferential
    attachment model.

    A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$
    edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that
    are preferentially attached to existing nodes with high degree.

    Parameters
    ----------
    n : int
        Number of nodes
    m1 : int
        Number of edges to attach from a new node to existing nodes with probability $p$
    m2 : int
        Number of edges to attach from a new node to existing nodes with probability $1-p$
    p : float
        The probability of attaching $m_1$ edges (as opposed to $m_2$ edges)
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : Graph

    Raises
    ------
    NetworkXError
        If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n`` or `p` does not satisfy ``0 <= p <= 1``.

    References
    ----------
    .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538.
    """

    if m1 < 1 or m1 >= n:
        raise nx.NetworkXError(
            f"Dual Barabási–Albert network must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}"
        )
    if m2 < 1 or m2 >= n:
        raise nx.NetworkXError(
            f"Dual Barabási–Albert network must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}"
        )
    if p < 0 or p > 1:
        raise nx.NetworkXError(
            f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}"
        )

    # For simplicity, if p == 0 or 1, just return BA
    if p == 1:
        return barabasi_albert_graph(n, m1, seed)
    elif p == 0:
        return barabasi_albert_graph(n, m2, seed)

    # Add max(m1,m2) initial nodes (m0 in barabasi-speak)
    G = empty_graph(max(m1, m2))
    # Target nodes for new edges
    targets = list(range(max(m1, m2)))
    # List of existing nodes, with nodes repeated once for each adjacent edge
    repeated_nodes = []
    # Start adding the remaining nodes.
    source = max(m1, m2)
    # Pick which m to use first time (m1 or m2)
    if seed.random() < p:
        m = m1
    else:
        m = m2
    while source < n:
        # Add edges to m nodes from the source.
        G.add_edges_from(zip([source] * m, targets))
        # Add one node to the list for each new edge just created.
        repeated_nodes.extend(targets)
        # And the new node "source" has m edges to add to the list.
        repeated_nodes.extend([source] * m)
        # Pick which m to use next time (m1 or m2)
        if seed.random() < p:
            m = m1
        else:
            m = m2
        # Now choose m unique nodes from the existing nodes
        # Pick uniformly from repeated_nodes (preferential attachment)
        targets = _random_subset(repeated_nodes, m, seed)
        source += 1
    return G


@py_random_state(4)
def extended_barabasi_albert_graph(n, m, p, q, seed=None):
    """Returns an extended Barabási–Albert model graph.

    An extended Barabási–Albert model graph is a random graph constructed
    using preferential attachment. The extended model allows new edges,
    rewired edges or new nodes. Based on the probabilities $p$ and $q$
    with $p + q < 1$, the growing behavior of the graph is determined as:

    1) With $p$ probability, $m$ new edges are added to the graph,
    starting from randomly chosen existing nodes and attached preferentially at the other end.

    2) With $q$ probability, $m$ existing edges are rewired
    by randomly choosing an edge and rewiring one end to a preferentially chosen node.

    3) With $(1 - p - q)$ probability, $m$ new nodes are added to the graph
    with edges attached preferentially.

    When $p = q = 0$, the model behaves just like the Barabási–Alber model.

    Parameters
    ----------
    n : int
        Number of nodes
    m : int
        Number of edges with which a new node attaches to existing nodes
    p : float
        Probability value for adding an edge between existing nodes. p + q < 1
    q : float
        Probability value of rewiring of existing edges. p + q < 1
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : Graph

    Raises
    ------
    NetworkXError
        If `m` does not satisfy ``1 <= m < n`` or ``1 >= p + q``

    References
    ----------
    .. [1] Albert, R., & Barabási, A. L. (2000)
       Topology of evolving networks: local events and universality
       Physical review letters, 85(24), 5234.
    """
    if m < 1 or m >= n:
        msg = f"Extended Barabasi-Albert network needs m>=1 and m<n, m={m}, n={n}"
        raise nx.NetworkXError(msg)
    if p + q >= 1:
        msg = f"Extended Barabasi-Albert network needs p + q <= 1, p={p}, q={q}"
        raise nx.NetworkXError(msg)

    # Add m initial nodes (m0 in barabasi-speak)
    G = empty_graph(m)

    # List of nodes to represent the preferential attachment random selection.
    # At the creation of the graph, all nodes are added to the list
    # so that even nodes that are not connected have a chance to get selected,
    # for rewiring and adding of edges.
    # With each new edge, nodes at the ends of the edge are added to the list.
    attachment_preference = []
    attachment_preference.extend(range(m))

    # Start adding the other n-m nodes. The first node is m.
    new_node = m
    while new_node < n:
        a_probability = seed.random()

        # Total number of edges of a Clique of all the nodes
        clique_degree = len(G) - 1
        clique_size = (len(G) * clique_degree) / 2

        # Adding m new edges, if there is room to add them
        if a_probability < p and G.size() <= clique_size - m:
            # Select the nodes where an edge can be added
            elligible_nodes = [nd for nd, deg in G.degree() if deg < clique_degree]
            for i in range(m):
                # Choosing a random source node from elligible_nodes
                src_node = seed.choice(elligible_nodes)

                # Picking a possible node that is not 'src_node' or
                # neighbor with 'src_node', with preferential attachment
                prohibited_nodes = list(G[src_node])
                prohibited_nodes.append(src_node)
                # This will raise an exception if the sequence is empty
                dest_node = seed.choice(
                    [nd for nd in attachment_preference if nd not in prohibited_nodes]
                )
                # Adding the new edge
                G.add_edge(src_node, dest_node)

                # Appending both nodes to add to their preferential attachment
                attachment_preference.append(src_node)
                attachment_preference.append(dest_node)

                # Adjusting the elligible nodes. Degree may be saturated.
                if G.degree(src_node) == clique_degree:
                    elligible_nodes.remove(src_node)
                if (
                    G.degree(dest_node) == clique_degree
                    and dest_node in elligible_nodes
                ):
                    elligible_nodes.remove(dest_node)

        # Rewiring m edges, if there are enough edges
        elif p <= a_probability < (p + q) and m <= G.size() < clique_size:
            # Selecting nodes that have at least 1 edge but that are not
            # fully connected to ALL other nodes (center of star).
            # These nodes are the pivot nodes of the edges to rewire
            elligible_nodes = [nd for nd, deg in G.degree() if 0 < deg < clique_degree]
            for i in range(m):
                # Choosing a random source node
                node = seed.choice(elligible_nodes)

                # The available nodes do have a neighbor at least.
                neighbor_nodes = list(G[node])

                # Choosing the other end that will get dettached
                src_node = seed.choice(neighbor_nodes)

                # Picking a target node that is not 'node' or
                # neighbor with 'node', with preferential attachment
                neighbor_nodes.append(node)
                dest_node = seed.choice(
                    [nd for nd in attachment_preference if nd not in neighbor_nodes]
                )
                # Rewire
                G.remove_edge(node, src_node)
                G.add_edge(node, dest_node)

                # Adjusting the preferential attachment list
                attachment_preference.remove(src_node)
                attachment_preference.append(dest_node)

                # Adjusting the elligible nodes.
                # nodes may be saturated or isolated.
                if G.degree(src_node) == 0 and src_node in elligible_nodes:
                    elligible_nodes.remove(src_node)
                if dest_node in elligible_nodes:
                    if G.degree(dest_node) == clique_degree:
                        elligible_nodes.remove(dest_node)
                else:
                    if G.degree(dest_node) == 1:
                        elligible_nodes.append(dest_node)

        # Adding new node with m edges
        else:
            # Select the edges' nodes by preferential attachment
            targets = _random_subset(attachment_preference, m, seed)
            G.add_edges_from(zip([new_node] * m, targets))

            # Add one node to the list for each new edge just created.
            attachment_preference.extend(targets)
            # The new node has m edges to it, plus itself: m + 1
            attachment_preference.extend([new_node] * (m + 1))
            new_node += 1
    return G


@py_random_state(3)
def powerlaw_cluster_graph(n, m, p, seed=None):
    """Holme and Kim algorithm for growing graphs with powerlaw
    degree distribution and approximate average clustering.

    Parameters
    ----------
    n : int
        the number of nodes
    m : int
        the number of random edges to add for each new node
    p : float,
        Probability of adding a triangle after adding a random edge
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Notes
    -----
    The average clustering has a hard time getting above a certain
    cutoff that depends on `m`.  This cutoff is often quite low.  The
    transitivity (fraction of triangles to possible triangles) seems to
    decrease with network size.

    It is essentially the Barabási–Albert (BA) growth model with an
    extra step that each random edge is followed by a chance of
    making an edge to one of its neighbors too (and thus a triangle).

    This algorithm improves on BA in the sense that it enables a
    higher average clustering to be attained if desired.

    It seems possible to have a disconnected graph with this algorithm
    since the initial `m` nodes may not be all linked to a new node
    on the first iteration like the BA model.

    Raises
    ------
    NetworkXError
        If `m` does not satisfy ``1 <= m <= n`` or `p` does not
        satisfy ``0 <= p <= 1``.

    References
    ----------
    .. [1] P. Holme and B. J. Kim,
       "Growing scale-free networks with tunable clustering",
       Phys. Rev. E, 65, 026107, 2002.
    """

    if m < 1 or n < m:
        raise nx.NetworkXError(f"NetworkXError must have m>1 and m<n, m={m},n={n}")

    if p > 1 or p < 0:
        raise nx.NetworkXError(f"NetworkXError p must be in [0,1], p={p}")

    G = empty_graph(m)  # add m initial nodes (m0 in barabasi-speak)
    repeated_nodes = list(G.nodes())  # list of existing nodes to sample from
    # with nodes repeated once for each adjacent edge
    source = m  # next node is m
    while source < n:  # Now add the other n-1 nodes
        possible_targets = _random_subset(repeated_nodes, m, seed)
        # do one preferential attachment for new node
        target = possible_targets.pop()
        G.add_edge(source, target)
        repeated_nodes.append(target)  # add one node to list for each new link
        count = 1
        while count < m:  # add m-1 more new links
            if seed.random() < p:  # clustering step: add triangle
                neighborhood = [
                    nbr
                    for nbr in G.neighbors(target)
                    if not G.has_edge(source, nbr) and not nbr == source
                ]
                if neighborhood:  # if there is a neighbor without a link
                    nbr = seed.choice(neighborhood)
                    G.add_edge(source, nbr)  # add triangle
                    repeated_nodes.append(nbr)
                    count = count + 1
                    continue  # go to top of while loop
            # else do preferential attachment step if above fails
            target = possible_targets.pop()
            G.add_edge(source, target)
            repeated_nodes.append(target)
            count = count + 1

        repeated_nodes.extend([source] * m)  # add source node to list m times
        source += 1
    return G


@py_random_state(3)
def random_lobster(n, p1, p2, seed=None):
    """Returns a random lobster graph.

    A lobster is a tree that reduces to a caterpillar when pruning all
    leaf nodes. A caterpillar is a tree that reduces to a path graph
    when pruning all leaf nodes; setting `p2` to zero produces a caterpillar.

    This implementation iterates on the probabilities `p1` and `p2` to add
    edges at levels 1 and 2, respectively. Graphs are therefore constructed
    iteratively with uniform randomness at each level rather than being selected
    uniformly at random from the set of all possible lobsters.

    Parameters
    ----------
    n : int
        The expected number of nodes in the backbone
    p1 : float
        Probability of adding an edge to the backbone
    p2 : float
        Probability of adding an edge one level beyond backbone
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Raises
    ------
    NetworkXError
        If `p1` or `p2` parameters are >= 1 because the while loops would never finish.
    """
    p1, p2 = abs(p1), abs(p2)
    if any([p >= 1 for p in [p1, p2]]):
        raise nx.NetworkXError("Probability values for `p1` and `p2` must both be < 1.")

    # a necessary ingredient in any self-respecting graph library
    llen = int(2 * seed.random() * n + 0.5)
    L = path_graph(llen)
    # build caterpillar: add edges to path graph with probability p1
    current_node = llen - 1
    for n in range(llen):
        while seed.random() < p1:  # add fuzzy caterpillar parts
            current_node += 1
            L.add_edge(n, current_node)
            cat_node = current_node
            while seed.random() < p2:  # add crunchy lobster bits
                current_node += 1
                L.add_edge(cat_node, current_node)
    return L  # voila, un lobster!


@py_random_state(1)
def random_shell_graph(constructor, seed=None):
    """Returns a random shell graph for the constructor given.

    Parameters
    ----------
    constructor : list of three-tuples
        Represents the parameters for a shell, starting at the center
        shell.  Each element of the list must be of the form `(n, m,
        d)`, where `n` is the number of nodes in the shell, `m` is
        the number of edges in the shell, and `d` is the ratio of
        inter-shell (next) edges to intra-shell edges. If `d` is zero,
        there will be no intra-shell edges, and if `d` is one there
        will be all possible intra-shell edges.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Examples
    --------
    >>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
    >>> G = nx.random_shell_graph(constructor)

    """
    G = empty_graph(0)

    glist = []
    intra_edges = []
    nnodes = 0
    # create gnm graphs for each shell
    for (n, m, d) in constructor:
        inter_edges = int(m * d)
        intra_edges.append(m - inter_edges)
        g = nx.convert_node_labels_to_integers(
            gnm_random_graph(n, inter_edges, seed=seed), first_label=nnodes
        )
        glist.append(g)
        nnodes += n
        G = nx.operators.union(G, g)

    # connect the shells randomly
    for gi in range(len(glist) - 1):
        nlist1 = list(glist[gi])
        nlist2 = list(glist[gi + 1])
        total_edges = intra_edges[gi]
        edge_count = 0
        while edge_count < total_edges:
            u = seed.choice(nlist1)
            v = seed.choice(nlist2)
            if u == v or G.has_edge(u, v):
                continue
            else:
                G.add_edge(u, v)
                edge_count = edge_count + 1
    return G


@py_random_state(2)
def random_powerlaw_tree(n, gamma=3, seed=None, tries=100):
    """Returns a tree with a power law degree distribution.

    Parameters
    ----------
    n : int
        The number of nodes.
    gamma : float
        Exponent of the power law.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    tries : int
        Number of attempts to adjust the sequence to make it a tree.

    Raises
    ------
    NetworkXError
        If no valid sequence is found within the maximum number of
        attempts.

    Notes
    -----
    A trial power law degree sequence is chosen and then elements are
    swapped with new elements from a powerlaw distribution until the
    sequence makes a tree (by checking, for example, that the number of
    edges is one smaller than the number of nodes).

    """
    # This call may raise a NetworkXError if the number of tries is succeeded.
    seq = random_powerlaw_tree_sequence(n, gamma=gamma, seed=seed, tries=tries)
    G = degree_sequence_tree(seq)
    return G


@py_random_state(2)
def random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100):
    """Returns a degree sequence for a tree with a power law distribution.

    Parameters
    ----------
    n : int,
        The number of nodes.
    gamma : float
        Exponent of the power law.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    tries : int
        Number of attempts to adjust the sequence to make it a tree.

    Raises
    ------
    NetworkXError
        If no valid sequence is found within the maximum number of
        attempts.

    Notes
    -----
    A trial power law degree sequence is chosen and then elements are
    swapped with new elements from a power law distribution until
    the sequence makes a tree (by checking, for example, that the number of
    edges is one smaller than the number of nodes).

    """
    # get trial sequence
    z = nx.utils.powerlaw_sequence(n, exponent=gamma, seed=seed)
    # round to integer values in the range [0,n]
    zseq = [min(n, max(int(round(s)), 0)) for s in z]

    # another sequence to swap values from
    z = nx.utils.powerlaw_sequence(tries, exponent=gamma, seed=seed)
    # round to integer values in the range [0,n]
    swap = [min(n, max(int(round(s)), 0)) for s in z]

    for deg in swap:
        # If this degree sequence can be the degree sequence of a tree, return
        # it. It can be a tree if the number of edges is one fewer than the
        # number of nodes, or in other words, `n - sum(zseq) / 2 == 1`. We
        # use an equivalent condition below that avoids floating point
        # operations.
        if 2 * n - sum(zseq) == 2:
            return zseq
        index = seed.randint(0, n - 1)
        zseq[index] = swap.pop()

    raise nx.NetworkXError(
        f"Exceeded max ({tries}) attempts for a valid tree sequence."
    )


@py_random_state(3)
def random_kernel_graph(n, kernel_integral, kernel_root=None, seed=None):
    r"""Returns an random graph based on the specified kernel.

    The algorithm chooses each of the $[n(n-1)]/2$ possible edges with
    probability specified by a kernel $\kappa(x,y)$ [1]_.  The kernel
    $\kappa(x,y)$ must be a symmetric (in $x,y$), non-negative,
    bounded function.

    Parameters
    ----------
    n : int
        The number of nodes
    kernel_integral : function
        Function that returns the definite integral of the kernel $\kappa(x,y)$,
        $F(y,a,b) := \int_a^b \kappa(x,y)dx$
    kernel_root: function (optional)
        Function that returns the root $b$ of the equation $F(y,a,b) = r$.
        If None, the root is found using :func:`scipy.optimize.brentq`
        (this requires SciPy).
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Notes
    -----
    The kernel is specified through its definite integral which must be
    provided as one of the arguments. If the integral and root of the
    kernel integral can be found in $O(1)$ time then this algorithm runs in
    time $O(n+m)$ where m is the expected number of edges [2]_.

    The nodes are set to integers from $0$ to $n-1$.

    Examples
    --------
    Generate an Erdős–Rényi random graph $G(n,c/n)$, with kernel
    $\kappa(x,y)=c$ where $c$ is the mean expected degree.

    >>> def integral(u, w, z):
    ...     return c * (z - w)
    >>> def root(u, w, r):
    ...     return r / c + w
    >>> c = 1
    >>> graph = nx.random_kernel_graph(1000, integral, root)

    See Also
    --------
    gnp_random_graph
    expected_degree_graph

    References
    ----------
    .. [1] Bollobás, Béla,  Janson, S. and Riordan, O.
       "The phase transition in inhomogeneous random graphs",
       *Random Structures Algorithms*, 31, 3--122, 2007.

    .. [2] Hagberg A, Lemons N (2015),
       "Fast Generation of Sparse Random Kernel Graphs".
       PLoS ONE 10(9): e0135177, 2015. doi:10.1371/journal.pone.0135177
    """
    if kernel_root is None:
        import scipy as sp
        import scipy.optimize  # call as sp.optimize

        def kernel_root(y, a, r):
            def my_function(b):
                return kernel_integral(y, a, b) - r

            return sp.optimize.brentq(my_function, a, 1)

    graph = nx.Graph()
    graph.add_nodes_from(range(n))
    (i, j) = (1, 1)
    while i < n:
        r = -math.log(1 - seed.random())  # (1-seed.random()) in (0, 1]
        if kernel_integral(i / n, j / n, 1) <= r:
            i, j = i + 1, i + 1
        else:
            j = int(math.ceil(n * kernel_root(i / n, j / n, r)))
            graph.add_edge(i - 1, j - 1)
    return graph