summaryrefslogtreecommitdiff
path: root/networkx/classes/multigraph.py
blob: 29bf362a2a830c485e3ffaec19c6456cbcec5924 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
"""Base class for MultiGraph."""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
from copy import deepcopy
import networkx as nx
from networkx.classes.graph import Graph
from networkx import NetworkXError
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                            'Pieter Swart (swart@lanl.gov)',
                            'Dan Schult(dschult@colgate.edu)'])


class MultiGraph(Graph):
    """
    An undirected graph class that can store multiedges.

    Multiedges are multiple edges between two nodes.  Each edge
    can hold optional data or attributes.

    A MultiGraph holds undirected edges.  Self loops are allowed.

    Nodes can be arbitrary (hashable) Python objects with optional
    key/value attributes.

    Edges are represented as links between nodes with optional
    key/value attributes.

    Parameters
    ----------
    data : input graph
        Data to initialize graph.  If data=None (default) an empty
        graph is created.  The data can be an edge list, or any
        NetworkX graph object.  If the corresponding optional Python
        packages are installed the data can also be a NumPy matrix
        or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to graph as key=value pairs.

    See Also
    --------
    Graph
    DiGraph
    MultiDiGraph

    Examples
    --------
    Create an empty graph structure (a "null graph") with no nodes and
    no edges.

    >>> G = nx.MultiGraph()

    G can be grown in several ways.

    **Nodes:**

    Add one node at a time:

    >>> G.add_node(1)

    Add the nodes from any container (a list, dict, set or
    even the lines from a file or the nodes from another graph).

    >>> G.add_nodes_from([2,3])
    >>> G.add_nodes_from(range(100,110))
    >>> H=nx.Graph()
    >>> H.add_path([0,1,2,3,4,5,6,7,8,9])
    >>> G.add_nodes_from(H)

    In addition to strings and integers any hashable Python object
    (except None) can represent a node, e.g. a customized node object,
    or even another Graph.

    >>> G.add_node(H)

    **Edges:**

    G can also be grown by adding edges.

    Add one edge,

    >>> G.add_edge(1, 2)

    a list of edges,

    >>> G.add_edges_from([(1,2),(1,3)])

    or a collection of edges,

    >>> G.add_edges_from(list(H.edges()))

    If some edges connect nodes not yet in the graph, the nodes
    are added automatically.  If an edge already exists, an additional
    edge is created and stored using a key to identify the edge.
    By default the key is the lowest unused integer.

    >>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
    >>> G[4]
    {3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

    **Attributes:**

    Each graph, node, and edge can hold key/value attribute pairs
    in an associated attribute dictionary (the keys must be hashable).
    By default these are empty, but can be added or changed using
    add_edge, add_node or direct manipulation of the attribute
    dictionaries named graph, node and edge respectively.

    >>> G = nx.MultiGraph(day="Friday")
    >>> G.graph
    {'day': 'Friday'}

    Add node attributes using add_node(), add_nodes_from() or G.node

    >>> G.add_node(1, time='5pm')
    >>> G.add_nodes_from([3], time='2pm')
    >>> G.node[1]
    {'time': '5pm'}
    >>> G.node[1]['room'] = 714
    >>> del G.node[1]['room'] # remove attribute
    >>> list(G.nodes(data=True))
    [(1, {'time': '5pm'}), (3, {'time': '2pm'})]

    Warning: adding a node to G.node does not add it to the graph.

    Add edge attributes using add_edge(), add_edges_from(), subscript
    notation, or G.edge.

    >>> G.add_edge(1, 2, weight=4.7 )
    >>> G.add_edges_from([(3,4),(4,5)], color='red')
    >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
    >>> G[1][2][0]['weight'] = 4.7
    >>> G.edge[1][2][0]['weight'] = 4

    **Shortcuts:**

    Many common graph features allow python syntax to speed reporting.

    >>> 1 in G     # check if node in graph
    True
    >>> [n for n in G if n<3]   # iterate through nodes
    [1, 2]
    >>> len(G)  # number of nodes in graph
    5
    >>> G[1] # adjacency dict keyed by neighbor to edge attributes
    ...            # Note: you should not change this dict manually!
    {2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

    The fastest way to traverse all edges of a graph is via
    adjacency(), but the edges() method is often more convenient.

    >>> for n,nbrsdict in G.adjacency():
    ...     for nbr,keydict in nbrsdict.items():
    ...        for key,eattr in keydict.items():
    ...            if 'weight' in eattr:
    ...                (n,nbr,key,eattr['weight'])
    (1, 2, 0, 4)
    (2, 1, 0, 4)
    (2, 3, 0, 8)
    (3, 2, 0, 8)
    >>> list(G.edges(data='weight', keys=True))
    [(1, 2, 0, 4), (1, 2, 1, None), (2, 3, 0, 8), (3, 4, 0, None), (4, 5, 0, None)]

    **Reporting:**

    Simple graph information is obtained using methods.
    Iterator versions of many reporting methods exist for efficiency.
    Methods exist for reporting nodes(), edges(), neighbors() and degree()
    as well as the number of nodes and edges.

    For details on these and other miscellaneous methods, see below.

    **Subclasses (Advanced):**

    The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.
    The outer dict (node_dict) holds adjacency lists keyed by node.
    The next dict (adjlist) represents the adjacency list and holds
    edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
    dict keyed by edge key. The inner dict (edge_attr) represents
    the edge data and holds edge attribute values keyed by attribute names.

    Each of these four dicts in the dict-of-dict-of-dict-of-dict
    structure can be replaced by a user defined dict-like object.
    In general, the dict-like features should be maintained but
    extra features can be added. To replace one of the dicts create
    a new graph class by changing the class(!) variable holding the
    factory for that dict-like structure. The variable names
    are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory
    and edge_attr_dict_factory.

    node_dict_factory : function, (default: dict)
        Factory function to be used to create the outer-most dict
        in the data structure that holds adjacency lists keyed by node.
        It should require no arguments and return a dict-like object.

    adjlist_dict_factory : function, (default: dict)
        Factory function to be used to create the adjacency list
        dict which holds multiedge key dicts keyed by neighbor.
        It should require no arguments and return a dict-like object.

    edge_key_dict_factory : function, (default: dict)
        Factory function to be used to create the edge key dict
        which holds edge data keyed by edge key.
        It should require no arguments and return a dict-like object.

    edge_attr_dict_factory : function, (default: dict)
        Factory function to be used to create the edge attribute
        dict which holds attrbute values keyed by attribute name.
        It should require no arguments and return a dict-like object.

    Examples
    --------
    Create a multigraph object that tracks the order nodes are added.

    >>> from collections import OrderedDict
    >>> class OrderedGraph(nx.MultiGraph):
    ...    node_dict_factory = OrderedDict
    >>> G = OrderedGraph()
    >>> G.add_nodes_from( (2,1) )
    >>> list(G.nodes())
    [2, 1]
    >>> G.add_edges_from( ((2,2), (2,1), (2,1), (1,1)) )
    >>> list(G.edges())
    [(2, 1), (2, 1), (2, 2), (1, 1)]

    Create a multgraph object that tracks the order nodes are added
    and for each node track the order that neighbors are added and for
    each neighbor tracks the order that multiedges are added.

    >>> class OrderedGraph(nx.MultiGraph):
    ...    node_dict_factory = OrderedDict
    ...    adjlist_dict_factory = OrderedDict
    ...    edge_key_dict_factory = OrderedDict
    >>> G = OrderedGraph()
    >>> G.add_nodes_from( (2,1) )
    >>> list(G.nodes())
    [2, 1]
    >>> G.add_edges_from( ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) )
    >>> list(G.edges(keys=True))
    [(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

    """
    # node_dict_factory=dict    # already assigned in Graph
    # adjlist_dict_factory=dict
    edge_key_dict_factory = dict
    # edge_attr_dict_factory=dict

    def __init__(self, data=None, **attr):
        self.edge_key_dict_factory = self.edge_key_dict_factory
        Graph.__init__(self, data, **attr)

    def add_edge(self, u, v, key=None, attr_dict=None, **attr):
        """Add an edge between u and v.

        The nodes u and v will be automatically added if they are
        not already in the graph.

        Edge attributes can be specified with keywords or by providing
        a dictionary with key/value pairs.  See examples below.

        Parameters
        ----------
        u,v : nodes
            Nodes can be, for example, strings or numbers.
            Nodes must be hashable (and not None) Python objects.
        key : hashable identifier, optional (default=lowest unused integer)
            Used to distinguish multiedges between a pair of nodes.
        attr_dict : dictionary, optional (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with the edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.

        See Also
        --------
        add_edges_from : add a collection of edges

        Notes
        -----
        To replace/update edge data, use the optional key argument
        to identify a unique edge.  Otherwise a new edge will be created.

        NetworkX algorithms designed for weighted graphs cannot use
        multigraphs directly because it is not clear how to handle
        multiedge weights.  Convert to Graph using edge attribute
        'weight' to enable weighted graph algorithms.

        Examples
        --------
        The following all add the edge e=(1,2) to graph G:

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> e = (1,2)
        >>> G.add_edge(1, 2)           # explicit two-node form
        >>> G.add_edge(*e)             # single edge as tuple of two nodes
        >>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

        Associate data to edges using keywords:

        >>> G.add_edge(1, 2, weight=3)
        >>> G.add_edge(1, 2, key=0, weight=4)   # update data for key=0
        >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        # add nodes
        if u not in self.adj:
            self.adj[u] = self.adjlist_dict_factory()
            self.node[u] = {}
        if v not in self.adj:
            self.adj[v] = self.adjlist_dict_factory()
            self.node[v] = {}
        if v in self.adj[u]:
            keydict = self.adj[u][v]
            if key is None:
                # find a unique integer key
                # other methods might be better here?
                key = len(keydict)
                while key in keydict:
                    key += 1
            datadict = keydict.get(key, self.edge_attr_dict_factory())
            datadict.update(attr_dict)
            keydict[key] = datadict
        else:
            # selfloops work this way without special treatment
            if key is None:
                key = 0
            datadict = self.edge_attr_dict_factory()
            datadict.update(attr_dict)
            keydict = self.edge_key_dict_factory()
            keydict[key] = datadict
            self.adj[u][v] = keydict
            self.adj[v][u] = keydict

    def add_edges_from(self, ebunch, attr_dict=None, **attr):
        """Add all the edges in ebunch.

        Parameters
        ----------
        ebunch : container of edges
            Each edge given in the container will be added to the
            graph. The edges can be:

                - 2-tuples (u,v) or
                - 3-tuples (u,v,d) for an edge attribute dict d, or
                - 4-tuples (u,v,k,d) for an edge identified by key k

        attr_dict : dictionary, optional  (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with each edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.


        See Also
        --------
        add_edge : add a single edge
        add_weighted_edges_from : convenient way to add weighted edges

        Notes
        -----
        Adding the same edge twice has no effect but any edge data
        will be updated when each duplicate edge is added.

        Edge attributes specified in edges take precedence
        over attributes specified generally.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
        >>> e = zip(range(0,3),range(1,4))
        >>> G.add_edges_from(e) # Add the path graph 0-1-2-3

        Associate data to edges

        >>> G.add_edges_from([(1,2),(2,3)], weight=3)
        >>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        # process ebunch
        for e in ebunch:
            ne = len(e)
            if ne == 4:
                u, v, key, dd = e
            elif ne == 3:
                u, v, dd = e
                key = None
            elif ne == 2:
                u, v = e
                dd = {}
                key = None
            else:
                raise NetworkXError(
                    "Edge tuple %s must be a 2-tuple, 3-tuple or 4-tuple." % (e,))
            ddd = {}
            ddd.update(attr_dict)
            ddd.update(dd)
            self.add_edge(u, v, key, ddd)

    def remove_edge(self, u, v, key=None):
        """Remove an edge between u and v.

        Parameters
        ----------
        u,v: nodes
            Remove an edge between nodes u and v.
        key : hashable identifier, optional (default=None)
            Used to distinguish multiple edges between a pair of nodes.
            If None remove a single (abritrary) edge between u and v.

        Raises
        ------
        NetworkXError
            If there is not an edge between u and v, or
            if there is no edge with the specified key.

        See Also
        --------
        remove_edges_from : remove a collection of edges

        Examples
        --------
        >>> G = nx.MultiGraph()
        >>> G.add_path([0,1,2,3])
        >>> G.remove_edge(0,1)
        >>> e = (1,2)
        >>> G.remove_edge(*e) # unpacks e from an edge tuple

        For multiple edges

        >>> G = nx.MultiGraph()   # or MultiDiGraph, etc
        >>> G.add_edges_from([(1,2),(1,2),(1,2)])
        >>> G.remove_edge(1,2) # remove a single (arbitrary) edge

        For edges with keys

        >>> G = nx.MultiGraph()   # or MultiDiGraph, etc
        >>> G.add_edge(1,2,key='first')
        >>> G.add_edge(1,2,key='second')
        >>> G.remove_edge(1,2,key='second')

        """
        try:
            d = self.adj[u][v]
        except (KeyError):
            raise NetworkXError(
                "The edge %s-%s is not in the graph." % (u, v))
        # remove the edge with specified data
        if key is None:
            d.popitem()
        else:
            try:
                del d[key]
            except (KeyError):
                raise NetworkXError(
                    "The edge %s-%s with key %s is not in the graph." % (
                        u, v, key))
        if len(d) == 0:
            # remove the key entries if last edge
            del self.adj[u][v]
            if u!=v:  # check for selfloop
                del self.adj[v][u]

    def remove_edges_from(self, ebunch):
        """Remove all edges specified in ebunch.

        Parameters
        ----------
        ebunch: list or container of edge tuples
            Each edge given in the list or container will be removed
            from the graph. The edges can be:

                - 2-tuples (u,v) All edges between u and v are removed.
                - 3-tuples (u,v,key) The edge identified by key is removed.
                - 4-tuples (u,v,key,data) where data is ignored.

        See Also
        --------
        remove_edge : remove a single edge

        Notes
        -----
        Will fail silently if an edge in ebunch is not in the graph.

        Examples
        --------
        >>> G = nx.MultiGraph() # or MultiDiGraph
        >>> G.add_path([0,1,2,3])
        >>> ebunch=[(1,2),(2,3)]
        >>> G.remove_edges_from(ebunch)

        Removing multiple copies of edges

        >>> G = nx.MultiGraph()
        >>> G.add_edges_from([(1,2),(1,2),(1,2)])
        >>> G.remove_edges_from([(1,2),(1,2)])
        >>> list(G.edges())
        [(1, 2)]
        >>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
        >>> list(G.edges()) # now empty graph
        []
        """
        for e in ebunch:
            try:
                self.remove_edge(*e[:3])
            except NetworkXError:
                pass

    def has_edge(self, u, v, key=None):
        """Return True if the graph has an edge between nodes u and v.

        Parameters
        ----------
        u,v : nodes
            Nodes can be, for example, strings or numbers.

        key : hashable identifier, optional (default=None)
            If specified return True only if the edge with
            key is found.

        Returns
        -------
        edge_ind : bool
            True if edge is in the graph, False otherwise.

        Examples
        --------
        Can be called either using two nodes u,v, an edge tuple (u,v),
        or an edge tuple (u,v,key).

        >>> G = nx.MultiGraph()   # or MultiDiGraph
        >>> G.add_path([0,1,2,3])
        >>> G.has_edge(0,1)  # using two nodes
        True
        >>> e = (0,1)
        >>> G.has_edge(*e)  #  e is a 2-tuple (u,v)
        True
        >>> G.add_edge(0,1,key='a')
        >>> G.has_edge(0,1,key='a')  # specify key
        True
        >>> e=(0,1,'a')
        >>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
        True

        The following syntax are equivalent:

        >>> G.has_edge(0,1)
        True
        >>> 1 in G[0]  # though this gives KeyError if 0 not in G
        True



        """
        try:
            if key is None:
                return v in self.adj[u]
            else:
                return key in self.adj[u][v]
        except KeyError:
            return False


    def edges(self, nbunch=None, data=False, keys=False, default=None):
        """Return an iterator over the edges.

        Edges are returned as tuples with optional data and keys
        in the order (node, neighbor, key, data).

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : string or bool, optional (default=False)
            The edge attribute returned in 3-tuple (u,v,ddict[data]).
            If True, return edge attribute dict in 3-tuple (u,v,ddict).
            If False, return 2-tuple (u,v).
        default : value, optional (default=None)
            Value used for edges that dont have the requested attribute.
            Only relevant if data is not True or False.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        edge : iterator
            An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs this returns the out-edges.

        Examples
        --------
        >>> G = nx.MultiGraph()   # or MultiDiGraph
        >>> G.add_path([0,1,2])
        >>> G.add_edge(2,3,weight=5)
        >>> [e for e in G.edges()]
        [(0, 1), (1, 2), (2, 3)]
        >>> list(G.edges(data=True)) # default data is {} (empty dict)
        [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
        >>> list(G.edges(data='weight', default=1))
        [(0, 1, 1), (1, 2, 1), (2, 3, 5)]
        >>> list(G.edges(keys=True)) # default keys are integers
        [(0, 1, 0), (1, 2, 0), (2, 3, 0)]
        >>> list(G.edges(data=True,keys=True)) # default keys are integers
        [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
        >>> list(G.edges(data='weight',default=1,keys=True))
        [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
        >>> list(G.edges([0,3]))
        [(0, 1), (3, 2)]
        >>> list(G.edges(0))
        [(0, 1)]

        """
        seen = {}     # helper dict to keep track of multiply stored edges
        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs = ((n, self.adj[n]) for n in self.nbunch_iter(nbunch))
        if data is True:
            for n, nbrs in nodes_nbrs:
                for nbr, keydict in nbrs.items():
                    if nbr not in seen:
                        for key, ddict in keydict.items():
                            yield (n, nbr, key, ddict) if keys else (n, nbr, ddict)
                seen[n] = 1
        elif data is not False:
            for n, nbrs in nodes_nbrs:
                for nbr, keydict in nbrs.items():
                    if nbr not in seen:
                        for key, ddict in keydict.items():
                            d = ddict[data] if data in ddict else default
                            yield (n, nbr, key, d) if keys else (n, nbr, d)
                seen[n] = 1
        else:
            for n, nbrs in nodes_nbrs:
                for nbr, keydict in nbrs.items():
                    if nbr not in seen:
                        for key in keydict:
                            yield (n, nbr, key) if keys else (n, nbr)
                seen[n] = 1
        del seen


    def get_edge_data(self, u, v, key=None, default=None):
        """Return the attribute dictionary associated with edge (u,v).

        Parameters
        ----------
        u,v : nodes
        default:  any Python object (default=None)
            Value to return if the edge (u,v) is not found.
        key : hashable identifier, optional (default=None)
            Return data only for the edge with specified key.

        Returns
        -------
        edge_dict : dictionary
            The edge attribute dictionary.

        Notes
        -----
        It is faster to use G[u][v][key].

        >>> G = nx.MultiGraph() # or MultiDiGraph
        >>> G.add_edge(0,1,key='a',weight=7)
        >>> G[0][1]['a']  # key='a'
        {'weight': 7}

        Warning: Assigning G[u][v][key] corrupts the graph data structure.
        But it is safe to assign attributes to that dictionary,

        >>> G[0][1]['a']['weight'] = 10
        >>> G[0][1]['a']['weight']
        10
        >>> G[1][0]['a']['weight']
        10

        Examples
        --------
        >>> G = nx.MultiGraph() # or MultiDiGraph
        >>> G.add_path([0,1,2,3])
        >>> G.get_edge_data(0,1)
        {0: {}}
        >>> e = (0,1)
        >>> G.get_edge_data(*e) # tuple form
        {0: {}}
        >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
        0
        """
        try:
            if key is None:
                return self.adj[u][v]
            else:
                return self.adj[u][v][key]
        except KeyError:
            return default

    def degree(self, nbunch=None, weight=None):
        """Return an iterator for (node, degree) and degree for single node.

        The node degree is the number of edges adjacent to the node.
        This function returns the degree for a single node and an iterator
        for a bunch of nodes or if nothing is passed as argument.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        deg:
            Degree of the node, if a single node is passed as argument.
        nd_iter : an iterator
            The iterator returns two-tuples of (node, degree).

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.degree(0) # node 0 with degree 1
        1
        >>> list(G.degree([0,1]))
        [(0, 1), (1, 2)]

        """
        if nbunch in self:
            nbrs = self.adj[nbunch]
            if weight is None:
                return sum([len(data) for data in nbrs.values()]) + (nbunch in nbrs and len(nbrs[nbunch]))
            deg = sum([d.get(weight, 1) for data in nbrs.values() for d in data.values()])
            if nbunch in nbrs:
                deg += sum([d.get(weight, 1) for key, d in nbrs[nbunch].items()])
            return deg
        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs = ((n, self.adj[n]) for n in self.nbunch_iter(nbunch))

        if weight is None:
            def d_iter():
                for n, nbrs in nodes_nbrs:
                    deg = sum([len(data) for data in nbrs.values()])
                    yield (n, deg + (n in nbrs and len(nbrs[n])))
        else:
            # edge weighted graph - degree is sum of nbr edge weights
            def d_iter():
                for n, nbrs in nodes_nbrs:
                    deg = sum([d.get(weight, 1)
                               for data in nbrs.values()
                               for d in data.values()])
                    if n in nbrs:
                        deg += sum([d.get(weight, 1)
                                    for key, d in nbrs[n].items()])
                    yield (n, deg)
        return d_iter()

    def is_multigraph(self):
        """Return True if graph is a multigraph, False otherwise."""
        return True

    def is_directed(self):
        """Return True if graph is directed, False otherwise."""
        return False

    def to_directed(self):
        """Return a directed representation of the graph.

        Returns
        -------
        G : MultiDiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar D=DiGraph(G) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.

        Warning: If you have subclassed MultiGraph to use dict-like objects
        in the data structure, those changes do not transfer to the MultiDiGraph
        created by this method.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> list(H.edges())
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> list(H.edges())
        [(0, 1)]
        """
        from networkx.classes.multidigraph import MultiDiGraph
        G = MultiDiGraph()
        G.add_nodes_from(self)
        G.add_edges_from((u, v, key, deepcopy(datadict))
                            for u, nbrs in self.adjacency()
                            for v, keydict in nbrs.items()
                            for key, datadict in keydict.items())
        G.graph = deepcopy(self.graph)
        G.node = deepcopy(self.node)
        return G

    def selfloop_edges(self, data=False, keys=False, default=None):
        """Return a list of selfloop edges.

        A selfloop edge has the same node at both ends.

        Parameters
        ----------
        data : bool, optional (default=False)
            Return selfloop edges as two tuples (u,v) (data=False)
            or three-tuples (u,v,datadict) (data=True)
            or three-tuples (u,v,datavalue) (data='attrname')
        default : value, optional (default=None)
            Value used for edges that dont have the requested attribute.
            Only relevant if data is not True or False.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        edgelist : list of edge tuples
            A list of all selfloop edges.

        See Also
        --------
        nodes_with_selfloops, number_of_selfloops

        Examples
        --------
        >>> G = nx.MultiGraph()   # or MultiDiGraph
        >>> G.add_edge(1,1)
        >>> G.add_edge(1,2)
        >>> G.selfloop_edges()
        [(1, 1)]
        >>> G.selfloop_edges(data=True)
        [(1, 1, {})]
        >>> G.selfloop_edges(keys=True)
        [(1, 1, 0)]
        >>> G.selfloop_edges(keys=True, data=True)
        [(1, 1, 0, {})]
        """
        if data is True:
            if keys:
                return [(n, n, k, d)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for k, d in nbrs[n].items()]
            else:
                return [(n, n, d)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for d in nbrs[n].values()]
        elif data is not False:
            if keys:
                return [(n, n, k, d.get(data, default))
                        for n, nbrs in self.adj.items()
                        if n in nbrs for k, d in nbrs[n].items()]
            else:
                return [(n, n, d.get(data, default))
                        for n, nbrs in self.adj.items()
                        if n in nbrs for d in nbrs[n].values()]
        else:
            if keys:
                return [(n, n, k)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for k in nbrs[n].keys()]
            else:
                return [(n, n)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for d in nbrs[n].values()]

    def number_of_edges(self, u=None, v=None):
        """Return the number of edges between two nodes.

        Parameters
        ----------
        u,v : nodes, optional (default=all edges)
            If u and v are specified, return the number of edges between
            u and v. Otherwise return the total number of all edges.

        Returns
        -------
        nedges : int
            The number of edges in the graph.  If nodes u and v are specified
            return the number of edges between those nodes.

        See Also
        --------
        size

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.number_of_edges()
        3
        >>> G.number_of_edges(0,1)
        1
        >>> e = (0,1)
        >>> G.number_of_edges(*e)
        1
        """
        if u is None: return self.size()
        try:
            edgedata = self.adj[u][v]
        except KeyError:
            return 0  # no such edge
        return len(edgedata)

    def subgraph(self, nbunch):
        """Return the subgraph induced on nodes in nbunch.

        The induced subgraph of the graph contains the nodes in nbunch
        and the edges between those nodes.

        Parameters
        ----------
        nbunch : list, iterable
            A container of nodes which will be iterated through once.

        Returns
        -------
        G : Graph
            A subgraph of the graph with the same edge attributes.

        Notes
        -----
        The graph, edge or node attributes just point to the original graph.
        So changes to the node or edge structure will not be reflected in
        the original graph while changes to the attributes will.

        To create a subgraph with its own copy of the edge/node attributes use:
        nx.Graph(G.subgraph(nbunch))

        If edge attributes are containers, a deep copy can be obtained using:
        G.subgraph(nbunch).copy()

        For an inplace reduction of a graph to a subgraph you can remove nodes:
        G.remove_nodes_from([ n in G if n not in set(nbunch)])

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> H = G.subgraph([0,1,2])
        >>> list(H.edges())
        [(0, 1), (1, 2)]
        """
        bunch = self.nbunch_iter(nbunch)
        # create new graph and copy subgraph into it
        H = self.__class__()
        # copy node and attribute dictionaries
        for n in bunch:
            H.node[n] = self.node[n]
        # namespace shortcuts for speed
        H_adj = H.adj
        self_adj = self.adj
        # add nodes and edges (undirected method)
        for n in H:
            Hnbrs = H.adjlist_dict_factory()
            H_adj[n] = Hnbrs
            for nbr, edgedict in self_adj[n].items():
                if nbr in H_adj:
                    # add both representations of edge: n-nbr and nbr-n
                    # they share the same edgedict
                    ed = edgedict.copy()
                    Hnbrs[nbr] = ed
                    H_adj[nbr][n] = ed
        H.graph = self.graph
        return H