summaryrefslogtreecommitdiff
path: root/networkx/classes/graph.py
blob: 9967953e0da2cbbf23be7877a31d02acf6e1b650 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
"""Base class for undirected graphs.

The Graph class allows any hashable object as a node
and can associate key/value attribute pairs with each undirected edge.

Self-loops are allowed but multiple edges are not (see MultiGraph).

For directed graphs see DiGraph and MultiDiGraph.
"""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
from copy import deepcopy
import networkx as nx
from networkx.exception import NetworkXError
import networkx.convert as convert

__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                            'Pieter Swart (swart@lanl.gov)',
                            'Dan Schult(dschult@colgate.edu)'])


class Graph(object):
    """
    Base class for undirected graphs.

    A Graph stores nodes and edges with optional data, or attributes.

    Graphs hold undirected edges.  Self loops are allowed but multiple
    (parallel) edges are not.

    Nodes can be arbitrary (hashable) Python objects with optional
    key/value attributes.

    Edges are represented as links between nodes with optional
    key/value attributes.

    Parameters
    ----------
    data : input graph
        Data to initialize graph.  If data=None (default) an empty
        graph is created.  The data can be an edge list, or any
        NetworkX graph object.  If the corresponding optional Python
        packages are installed the data can also be a NumPy matrix
        or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to graph as key=value pairs.

    See Also
    --------
    DiGraph
    MultiGraph
    MultiDiGraph

    Examples
    --------
    Create an empty graph structure (a "null graph") with no nodes and
    no edges.

    >>> G = nx.Graph()

    G can be grown in several ways.

    **Nodes:**

    Add one node at a time:

    >>> G.add_node(1)

    Add the nodes from any container (a list, dict, set or
    even the lines from a file or the nodes from another graph).

    >>> G.add_nodes_from([2,3])
    >>> G.add_nodes_from(range(100,110))
    >>> H=nx.Graph()
    >>> H.add_path([0,1,2,3,4,5,6,7,8,9])
    >>> G.add_nodes_from(H)

    In addition to strings and integers any hashable Python object
    (except None) can represent a node, e.g. a customized node object,
    or even another Graph.

    >>> G.add_node(H)

    **Edges:**

    G can also be grown by adding edges.

    Add one edge,

    >>> G.add_edge(1, 2)

    a list of edges,

    >>> G.add_edges_from([(1,2),(1,3)])

    or a collection of edges,

    >>> G.add_edges_from(H.edges())

    If some edges connect nodes not yet in the graph, the nodes
    are added automatically.  There are no errors when adding
    nodes or edges that already exist.

    **Attributes:**

    Each graph, node, and edge can hold key/value attribute pairs
    in an associated attribute dictionary (the keys must be hashable).
    By default these are empty, but can be added or changed using
    add_edge, add_node or direct manipulation of the attribute
    dictionaries named graph, node and edge respectively.

    >>> G = nx.Graph(day="Friday")
    >>> G.graph
    {'day': 'Friday'}

    Add node attributes using add_node(), add_nodes_from() or G.node

    >>> G.add_node(1, time='5pm')
    >>> G.add_nodes_from([3], time='2pm')
    >>> G.node[1]
    {'time': '5pm'}
    >>> G.node[1]['room'] = 714
    >>> del G.node[1]['room'] # remove attribute
    >>> list(G.nodes(data=True))
    [(1, {'time': '5pm'}), (3, {'time': '2pm'})]

    Warning: adding a node to G.node does not add it to the graph.

    Add edge attributes using add_edge(), add_edges_from(), subscript
    notation, or G.edge.

    >>> G.add_edge(1, 2, weight=4.7 )
    >>> G.add_edges_from([(3,4),(4,5)], color='red')
    >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
    >>> G[1][2]['weight'] = 4.7
    >>> G.edge[1][2]['weight'] = 4

    **Shortcuts:**

    Many common graph features allow python syntax to speed reporting.

    >>> 1 in G     # check if node in graph
    True
    >>> [n for n in G if n<3]   # iterate through nodes
    [1, 2]
    >>> len(G)  # number of nodes in graph
    5

    The fastest way to traverse all edges of a graph is via
    adjacency_iter(), but the edges() method is often more convenient.

    >>> for n,nbrsdict in G.adjacency_iter():
    ...     for nbr,eattr in nbrsdict.items():
    ...        if 'weight' in eattr:
    ...            (n,nbr,eattr['weight'])
    (1, 2, 4)
    (2, 1, 4)
    (2, 3, 8)
    (3, 2, 8)
    >>> list(G.edges(data='weight'))
    [(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

    **Reporting:**

    Simple graph information is obtained using methods.
    Iterator versions of many reporting methods exist for efficiency.
    Methods exist for reporting nodes(), edges(), neighbors() and degree()
    as well as the number of nodes and edges.

    For details on these and other miscellaneous methods, see below.

    **Subclasses (Advanced):**

    The Graph class uses a dict-of-dict-of-dict data structure.
    The outer dict (node_dict) holds adjacency lists keyed by node.
    The next dict (adjlist) represents the adjacency list and holds
    edge data keyed by neighbor.  The inner dict (edge_attr) represents
    the edge data and holds edge attribute values keyed by attribute names.

    Each of these three dicts can be replaced by a user defined
    dict-like object. In general, the dict-like features should be
    maintained but extra features can be added. To replace one of the
    dicts create a new graph class by changing the class(!) variable
    holding the factory for that dict-like structure. The variable names
    are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

    node_dict_factory : function, (default: dict)
        Factory function to be used to create the outer-most dict
        in the data structure that holds adjacency lists keyed by node.
        It should require no arguments and return a dict-like object.

    adjlist_dict_factory : function, (default: dict)
        Factory function to be used to create the adjacency list
        dict which holds edge data keyed by neighbor.
        It should require no arguments and return a dict-like object

    edge_attr_dict_factory : function, (default: dict)
        Factory function to be used to create the edge attribute
        dict which holds attrbute values keyed by attribute name.
        It should require no arguments and return a dict-like object.

    Examples
    --------
    Create a graph object that tracks the order nodes are added.

    >>> from collections import OrderedDict
    >>> class OrderedNodeGraph(nx.Graph):
    ...     node_dict_factory=OrderedDict
    >>> G=OrderedNodeGraph()
    >>> G.add_nodes_from( (2,1) )
    >>> list(G.nodes())
    [2, 1]
    >>> G.add_edges_from( ((2,2), (2,1), (1,1)) )
    >>> list(G.edges())
    [(2, 1), (2, 2), (1, 1)]

    Create a graph object that tracks the order nodes are added
    and for each node track the order that neighbors are added.

    >>> class OrderedGraph(nx.Graph):
    ...    node_dict_factory = OrderedDict
    ...    adjlist_dict_factory = OrderedDict
    >>> G = OrderedGraph()
    >>> G.add_nodes_from( (2,1) )
    >>> list(G.nodes())
    [2, 1]
    >>> G.add_edges_from( ((2,2), (2,1), (1,1)) )
    >>> list(G.edges())
    [(2, 2), (2, 1), (1, 1)]

    Create a low memory graph class that effectively disallows edge
    attributes by using a single attribute dict for all edges.
    This reduces the memory used, but you lose edge attributes.

    >>> class ThinGraph(nx.Graph):
    ...     all_edge_dict = {'weight': 1}
    ...     def single_edge_dict(self):
    ...         return self.all_edge_dict
    ...     edge_attr_dict_factory = single_edge_dict
    >>> G = ThinGraph()
    >>> G.add_edge(2,1)
    >>> list(G.edges(data= True))
    [(1, 2, {'weight': 1})]
    >>> G.add_edge(2,2)
    >>> G[2][1] is G[2][2]
    True

    """
    node_dict_factory = dict
    adjlist_dict_factory = dict
    edge_attr_dict_factory = dict

    def __init__(self, data=None, **attr):
        """Initialize a graph with edges, name, graph attributes.

        Parameters
        ----------
        data : input graph
            Data to initialize graph.  If data=None (default) an empty
            graph is created.  The data can be an edge list, or any
            NetworkX graph object.  If the corresponding optional Python
            packages are installed the data can also be a NumPy matrix
            or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
        name : string, optional (default='')
            An optional name for the graph.
        attr : keyword arguments, optional (default= no attributes)
            Attributes to add to graph as key=value pairs.

        See Also
        --------
        convert

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G = nx.Graph(name='my graph')
        >>> e = [(1,2),(2,3),(3,4)] # list of edges
        >>> G = nx.Graph(e)

        Arbitrary graph attribute pairs (key=value) may be assigned

        >>> G=nx.Graph(e, day="Friday")
        >>> G.graph
        {'day': 'Friday'}

        """
        self.node_dict_factory = ndf = self.node_dict_factory
        self.adjlist_dict_factory = self.adjlist_dict_factory
        self.edge_attr_dict_factory = self.edge_attr_dict_factory

        self.graph = {}   # dictionary for graph attributes
        self.node = ndf()  # empty node attribute dict
        self.adj = ndf()  # empty adjacency dict
        # attempt to load graph with data
        if data is not None:
            convert.to_networkx_graph(data, create_using=self)
        # load graph attributes (must be after convert)
        self.graph.update(attr)
        self.edge = self.adj

    @property
    def name(self):
        return self.graph.get('name', '')

    @name.setter
    def name(self, s):
        self.graph['name'] = s

    def __str__(self):
        """Return the graph name.

        Returns
        -------
        name : string
            The name of the graph.

        Examples
        --------
        >>> G = nx.Graph(name='foo')
        >>> str(G)
        'foo'
        """
        return self.name

    def __iter__(self):
        """Iterate over the nodes. Use the expression 'for n in G'.

        Returns
        -------
        niter : iterator
            An iterator over all nodes in the graph.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        """
        return iter(self.node)

    def __contains__(self, n):
        """Return True if n is a node, False otherwise. Use the expression
        'n in G'.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> 1 in G
        True
        """
        try:
            return n in self.node
        except TypeError:
            return False

    def __len__(self):
        """Return the number of nodes. Use the expression 'len(G)'.

        Returns
        -------
        nnodes : int
            The number of nodes in the graph.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> len(G)
        4

        """
        return len(self.node)

    def __getitem__(self, n):
        """Return a dict of neighbors of node n.  Use the expression 'G[n]'.

        Parameters
        ----------
        n : node
           A node in the graph.

        Returns
        -------
        adj_dict : dictionary
           The adjacency dictionary for nodes connected to n.

        Notes
        -----
        G[n] is similar to G.neighbors(n) but the internal data dictionary
        is returned instead of a list.

        Assigning G[n] will corrupt the internal graph data structure.
        Use G[n] for reading data only.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G[0]
        {1: {}}
        """
        return self.adj[n]

    def add_node(self, n, attr_dict=None, **attr):
        """Add a single node n and update node attributes.

        Parameters
        ----------
        n : node
            A node can be any hashable Python object except None.
        attr_dict : dictionary, optional (default= no attributes)
            Dictionary of node attributes.  Key/value pairs will
            update existing data associated with the node.
        attr : keyword arguments, optional
            Set or change attributes using key=value.

        See Also
        --------
        add_nodes_from

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_node(1)
        >>> G.add_node('Hello')
        >>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
        >>> G.add_node(K3)
        >>> G.number_of_nodes()
        3

        Use keywords set/change node attributes:

        >>> G.add_node(1,size=10)
        >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

        Notes
        -----
        A hashable object is one that can be used as a key in a Python
        dictionary. This includes strings, numbers, tuples of strings
        and numbers, etc.

        On many platforms hashable items also include mutables such as
        NetworkX Graphs, though one should be careful that the hash
        doesn't change on mutables.
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        if n not in self.node:
            self.adj[n] = self.adjlist_dict_factory()
            self.node[n] = attr_dict
        else:  # update attr even if node already exists
            self.node[n].update(attr_dict)

    def add_nodes_from(self, nodes, **attr):
        """Add multiple nodes.

        Parameters
        ----------
        nodes : iterable container
            A container of nodes (list, dict, set, etc.).
            OR
            A container of (node, attribute dict) tuples.
            Node attributes are updated using the attribute dict.
        attr : keyword arguments, optional (default= no attributes)
            Update attributes for all nodes in nodes.
            Node attributes specified in nodes as a tuple
            take precedence over attributes specified generally.

        See Also
        --------
        add_node

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_nodes_from('Hello')
        >>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
        >>> G.add_nodes_from(K3)
        >>> sorted(G.nodes(),key=str)
        [0, 1, 2, 'H', 'e', 'l', 'o']

        Use keywords to update specific node attributes for every node.

        >>> G.add_nodes_from([1,2], size=10)
        >>> G.add_nodes_from([3,4], weight=0.4)

        Use (node, attrdict) tuples to update attributes for specific
        nodes.

        >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
        >>> G.node[1]['size']
        11
        >>> H = nx.Graph()
        >>> H.add_nodes_from(G.nodes(data=True))
        >>> H.node[1]['size']
        11

        """
        for n in nodes:
            # keep all this inside try/except because
            # CPython throws TypeError on n not in self.succ,
            # while pre-2.7.5 ironpython throws on self.succ[n]
            try:
                if n not in self.node:
                    self.adj[n] = self.adjlist_dict_factory()
                    self.node[n] = attr.copy()
                else:
                    self.node[n].update(attr)
            except TypeError:
                nn, ndict = n
                if nn not in self.node:
                    self.adj[nn] = self.adjlist_dict_factory()
                    newdict = attr.copy()
                    newdict.update(ndict)
                    self.node[nn] = newdict
                else:
                    olddict = self.node[nn]
                    olddict.update(attr)
                    olddict.update(ndict)

    def remove_node(self, n):
        """Remove node n.

        Removes the node n and all adjacent edges.
        Attempting to remove a non-existent node will raise an exception.

        Parameters
        ----------
        n : node
           A node in the graph

        Raises
        -------
        NetworkXError
           If n is not in the graph.

        See Also
        --------
        remove_nodes_from

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2])
        >>> list(G.edges())
        [(0, 1), (1, 2)]
        >>> G.remove_node(1)
        >>> list(G.edges())
        []

        """
        adj = self.adj
        try:
            nbrs = list(adj[n].keys())  # keys handles self-loops (allow mutation later)
            del self.node[n]
        except KeyError:  # NetworkXError if n not in self
            raise NetworkXError("The node %s is not in the graph." % (n,))
        for u in nbrs:
            del adj[u][n]   # remove all edges n-u in graph
        del adj[n]          # now remove node

    def remove_nodes_from(self, nodes):
        """Remove multiple nodes.

        Parameters
        ----------
        nodes : iterable container
            A container of nodes (list, dict, set, etc.).  If a node
            in the container is not in the graph it is silently
            ignored.

        See Also
        --------
        remove_node

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2])
        >>> e = list(G.nodes())
        >>> e
        [0, 1, 2]
        >>> G.remove_nodes_from(e)
        >>> list(G.nodes())
        []

        """
        adj = self.adj
        for n in nodes:
            try:
                del self.node[n]
                for u in list(adj[n].keys()):   # keys() handles self-loops
                    del adj[u][n]  # (allows mutation of dict in loop)
                del adj[n]
            except KeyError:
                pass

    def nodes(self, data=False):
        """Returns an iterator over the nodes.

        Parameters
        ----------
        data : boolean, optional (default=False)
               If ``False``, the iterator returns nodes.  If ``True``,
               the iterator return a two-tuple of node and node data
               dictionary.

        Returns
        -------
        iterator
            An iterator over nodes, or if ``data`` is ``True``, an
            iterator over two-tuples of the form ``(node, node data
            dictionary)``.

        Notes
        -----
        If the node data is not required, it is simpler and equivalent
        to use the expression ``for n in G``, or ``list(G)``.

        Examples
        --------
        There are two simple ways of getting a list of all nodes in the graph::
        >>> G = nx.Graph()
        >>> G.add_nodes_from(range(3))
        >>> list(G.nodes())
        [0, 1, 2]
        >>> list(G)
        [0, 1, 2]

        To get the node data along with the nodes::

        >>> G.add_node(1, time='5pm')
        >>> G.node[0]['foo'] = 'bar'
        >>> list(G.nodes(data=True))
        [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]

        """
        if data:
            return iter(self.node.items())
        return iter(self.node)

    def number_of_nodes(self):
        """Return the number of nodes in the graph.

        Returns
        -------
        nnodes : int
            The number of nodes in the graph.

        See Also
        --------
        order, __len__  which are identical

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2])
        >>> len(G)
        3
        """
        return len(self.node)

    def order(self):
        """Return the number of nodes in the graph.

        Returns
        -------
        nnodes : int
            The number of nodes in the graph.

        See Also
        --------
        number_of_nodes, __len__  which are identical

        """
        return len(self.node)

    def has_node(self, n):
        """Return True if the graph contains the node n.

        Parameters
        ----------
        n : node

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2])
        >>> G.has_node(0)
        True

        It is more readable and simpler to use

        >>> 0 in G
        True

        """
        try:
            return n in self.node
        except TypeError:
            return False

    def add_edge(self, u, v, attr_dict=None, **attr):
        """Add an edge between u and v.

        The nodes u and v will be automatically added if they are
        not already in the graph.

        Edge attributes can be specified with keywords or by providing
        a dictionary with key/value pairs.  See examples below.

        Parameters
        ----------
        u,v : nodes
            Nodes can be, for example, strings or numbers.
            Nodes must be hashable (and not None) Python objects.
        attr_dict : dictionary, optional (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with the edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.

        See Also
        --------
        add_edges_from : add a collection of edges

        Notes
        -----
        Adding an edge that already exists updates the edge data.

        Many NetworkX algorithms designed for weighted graphs use as
        the edge weight a numerical value assigned to a keyword
        which by default is 'weight'.

        Examples
        --------
        The following all add the edge e=(1,2) to graph G:

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> e = (1,2)
        >>> G.add_edge(1, 2)           # explicit two-node form
        >>> G.add_edge(*e)             # single edge as tuple of two nodes
        >>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

        Associate data to edges using keywords:

        >>> G.add_edge(1, 2, weight=3)
        >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
        """
        # set up attribute dictionary
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        # add nodes
        if u not in self.node:
            self.adj[u] = self.adjlist_dict_factory()
            self.node[u] = {}
        if v not in self.node:
            self.adj[v] = self.adjlist_dict_factory()
            self.node[v] = {}
        # add the edge
        datadict = self.adj[u].get(v, self.edge_attr_dict_factory())
        datadict.update(attr_dict)
        self.adj[u][v] = datadict
        self.adj[v][u] = datadict

    def add_edges_from(self, ebunch, attr_dict=None, **attr):
        """Add all the edges in ebunch.

        Parameters
        ----------
        ebunch : container of edges
            Each edge given in the container will be added to the
            graph. The edges must be given as as 2-tuples (u,v) or
            3-tuples (u,v,d) where d is a dictionary containing edge
            data.
        attr_dict : dictionary, optional (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with each edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.


        See Also
        --------
        add_edge : add a single edge
        add_weighted_edges_from : convenient way to add weighted edges

        Notes
        -----
        Adding the same edge twice has no effect but any edge data
        will be updated when each duplicate edge is added.

        Edge attributes specified in edges take precedence
        over attributes specified generally.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
        >>> e = zip(range(0,3),range(1,4))
        >>> G.add_edges_from(e) # Add the path graph 0-1-2-3

        Associate data to edges

        >>> G.add_edges_from([(1,2),(2,3)], weight=3)
        >>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        # process ebunch
        for e in ebunch:
            ne = len(e)
            if ne == 3:
                u, v, dd = e
            elif ne == 2:
                u, v = e
                dd = {}  # doesnt need edge_attr_dict_factory
            else:
                raise NetworkXError(
                    "Edge tuple %s must be a 2-tuple or 3-tuple." % (e,))
            if u not in self.node:
                self.adj[u] = self.adjlist_dict_factory()
                self.node[u] = {}
            if v not in self.node:
                self.adj[v] = self.adjlist_dict_factory()
                self.node[v] = {}
            datadict = self.adj[u].get(v, self.edge_attr_dict_factory())
            datadict.update(attr_dict)
            datadict.update(dd)
            self.adj[u][v] = datadict
            self.adj[v][u] = datadict

    def add_weighted_edges_from(self, ebunch, weight='weight', **attr):
        """Add all the edges in ebunch as weighted edges with specified
        weights.

        Parameters
        ----------
        ebunch : container of edges
            Each edge given in the list or container will be added
            to the graph. The edges must be given as 3-tuples (u,v,w)
            where w is a number.
        weight : string, optional (default= 'weight')
            The attribute name for the edge weights to be added.
        attr : keyword arguments, optional (default= no attributes)
            Edge attributes to add/update for all edges.

        See Also
        --------
        add_edge : add a single edge
        add_edges_from : add multiple edges

        Notes
        -----
        Adding the same edge twice for Graph/DiGraph simply updates
        the edge data.  For MultiGraph/MultiDiGraph, duplicate edges
        are stored.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
        """
        self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch),
                            **attr)

    def remove_edge(self, u, v):
        """Remove the edge between u and v.

        Parameters
        ----------
        u,v: nodes
            Remove the edge between nodes u and v.

        Raises
        ------
        NetworkXError
            If there is not an edge between u and v.

        See Also
        --------
        remove_edges_from : remove a collection of edges

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.remove_edge(0,1)
        >>> e = (1,2)
        >>> G.remove_edge(*e) # unpacks e from an edge tuple
        >>> e = (2,3,{'weight':7}) # an edge with attribute data
        >>> G.remove_edge(*e[:2]) # select first part of edge tuple
        """
        try:
            del self.adj[u][v]
            if u != v:  # self-loop needs only one entry removed
                del self.adj[v][u]
        except KeyError:
            raise NetworkXError("The edge %s-%s is not in the graph" % (u, v))

    def remove_edges_from(self, ebunch):
        """Remove all edges specified in ebunch.

        Parameters
        ----------
        ebunch: list or container of edge tuples
            Each edge given in the list or container will be removed
            from the graph. The edges can be:

                - 2-tuples (u,v) edge between u and v.
                - 3-tuples (u,v,k) where k is ignored.

        See Also
        --------
        remove_edge : remove a single edge

        Notes
        -----
        Will fail silently if an edge in ebunch is not in the graph.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> ebunch=[(1,2),(2,3)]
        >>> G.remove_edges_from(ebunch)
        """
        adj = self.adj
        for e in ebunch:
            u, v = e[:2]  # ignore edge data if present
            if u in adj and v in adj[u]:
                del adj[u][v]
                if u != v:  # self loop needs only one entry removed
                    del adj[v][u]

    def has_edge(self, u, v):
        """Return True if the edge (u,v) is in the graph.

        Parameters
        ----------
        u,v : nodes
            Nodes can be, for example, strings or numbers.
            Nodes must be hashable (and not None) Python objects.

        Returns
        -------
        edge_ind : bool
            True if edge is in the graph, False otherwise.

        Examples
        --------
        Can be called either using two nodes u,v or edge tuple (u,v)

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.has_edge(0,1)  # using two nodes
        True
        >>> e = (0,1)
        >>> G.has_edge(*e)  #  e is a 2-tuple (u,v)
        True
        >>> e = (0,1,{'weight':7})
        >>> G.has_edge(*e[:2])  # e is a 3-tuple (u,v,data_dictionary)
        True

        The following syntax are all equivalent:

        >>> G.has_edge(0,1)
        True
        >>> 1 in G[0]  # though this gives KeyError if 0 not in G
        True

        """
        try:
            return v in self.adj[u]
        except KeyError:
            return False


    def neighbors(self, n):
        """Return an iterator over all neighbors of node n.

        Parameters
        ----------
        n : node
           A node in the graph

        Returns
        -------
        neighbors : iterator
            An iterator over all neighbors of node n

        Raises
        ------
        NetworkXError
            If the node n is not in the graph.

        Notes
        -----
        It is usually more convenient (and faster) to access the
        adjacency dictionary as G[n]:

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edge('a','b',weight=7)
        >>> G['a']
        {'b': {'weight': 7}}

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> [n for n in G.neighbors(0)]
        [1]

        Notes
        -----
        It is faster to use the idiom "in G[0]", e.g.

        >>> G = nx.path_graph(4)
        >>> [n for n in G[0]]
        [1]
        """
        try:
            return iter(self.adj[n])
        except KeyError:
            raise NetworkXError("The node %s is not in the graph." % (n,))


    def edges(self, nbunch=None, data=False, default=None):
        """Return an iterator over the edges.

        Edges are returned as tuples with optional data
        in the order (node, neighbor, data).

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : string or bool, optional (default=False)
            The edge attribute returned in 3-tuple (u,v,ddict[data]).
            If True, return edge attribute dict in 3-tuple (u,v,ddict).
            If False, return 2-tuple (u,v).
        default : value, optional (default=None)
            Value used for edges that dont have the requested attribute.
            Only relevant if data is not True or False.

        Returns
        -------
        edges : iterator
            An iterator of (u,v) or (u,v,d) tuples of edges.

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs this returns the out-edges.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1,2])
        >>> G.add_edge(2,3,weight=5)
        >>> [e for e in G.edges()]
        [(0, 1), (1, 2), (2, 3)]
        >>> list(G.edges(data=True)) # default data is {} (empty dict)
        [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
        >>> list(G.edges(data='weight', default=1))
        [(0, 1, 1), (1, 2, 1), (2, 3, 5)]
        >>> list(G.edges([0,3]))
        [(0, 1), (3, 2)]
        >>> list(G.edges(0))
        [(0, 1)]

        """
        seen = {}     # helper dict to keep track of multiply stored edges
        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs = ((n, self.adj[n]) for n in self.nbunch_iter(nbunch))
        if data is True:
            for n, nbrs in nodes_nbrs:
                for nbr, ddict in nbrs.items():
                    if nbr not in seen:
                        yield (n, nbr, ddict)
                seen[n] = 1
        elif data is not False:
            for n, nbrs in nodes_nbrs:
                for nbr, ddict in nbrs.items():
                    if nbr not in seen:
                        d = ddict[data] if data in ddict else default
                        yield (n, nbr, d)
                seen[n] = 1
        else:  # data is False
            for n, nbrs in nodes_nbrs:
                for nbr in nbrs:
                    if nbr not in seen:
                        yield (n, nbr)
                seen[n] = 1
        del seen

    def get_edge_data(self, u, v, default=None):
        """Return the attribute dictionary associated with edge (u,v).

        Parameters
        ----------
        u,v : nodes
        default:  any Python object (default=None)
            Value to return if the edge (u,v) is not found.

        Returns
        -------
        edge_dict : dictionary
            The edge attribute dictionary.

        Notes
        -----
        It is faster to use G[u][v].

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G[0][1]
        {}

        Warning: Assigning G[u][v] corrupts the graph data structure.
        But it is safe to assign attributes to that dictionary,

        >>> G[0][1]['weight'] = 7
        >>> G[0][1]['weight']
        7
        >>> G[1][0]['weight']
        7

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.get_edge_data(0,1) # default edge data is {}
        {}
        >>> e = (0,1)
        >>> G.get_edge_data(*e) # tuple form
        {}
        >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
        0
        """
        try:
            return self.adj[u][v]
        except KeyError:
            return default

    def adjacency_list(self):
        """Return an adjacency list representation of the graph.

        The output adjacency list is in the order of G.nodes().
        For directed graphs, only outgoing adjacencies are included.

        Returns
        -------
        adj_list : lists of lists
            The adjacency structure of the graph as a list of lists.

        See Also
        --------
        adjacency_iter

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.adjacency_list() # in order given by G.nodes()
        [[1], [0, 2], [1, 3], [2]]

        """
        return list(map(list, iter(self.adj.values())))

    def adjacency_iter(self):
        """Return an iterator of (node, adjacency dict) tuples for all nodes.

        This is the fastest way to look at every edge.
        For directed graphs, only outgoing adjacencies are included.

        Returns
        -------
        adj_iter : iterator
           An iterator of (node, adjacency dictionary) for all nodes in
           the graph.

        See Also
        --------
        adjacency_list

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
        [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

        """
        return iter(self.adj.items())

    def degree(self, nbunch=None, weight=None):
        """Return an iterator for (node, degree) and degree for single node.

        The node degree is the number of edges adjacent to the node.
        This function returns the degree for a single node and an iterator
        for a bunch of nodes or if nothing is passed as argument.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        deg:
            Degree of the node, if a single node is passed as argument.
        nd_iter : an iterator
            The iterator returns two-tuples of (node, degree).

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.degree(0) # node 0 with degree 1
        1
        >>> list(G.degree([0,1]))
        [(0, 1), (1, 2)]
        """
        if nbunch in self:
            nbrs = self.adj[nbunch]
            if weight is None:
                return len(nbrs) + (1 if nbunch in nbrs else 0) # handle self-loops
            return sum(dd.get(weight, 1) for nbr,dd in nbrs.items()) +\
                    (nbrs[nbunch].get(weight, 1) if nbunch in nbrs else 0)

        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs = ((n, self.adj[n]) for n in self.nbunch_iter(nbunch))
        if weight is None:
            def d_iter():
                for n, nbrs in nodes_nbrs:
                    yield (n, len(nbrs) + (1 if n in nbrs else 0))  # return tuple (n,degree)
        else:
            def d_iter():
                for n, nbrs in nodes_nbrs:
                    yield (n, sum((nbrs[nbr].get(weight, 1) for nbr in nbrs)) +
                        (nbrs[n].get(weight, 1) if n in nbrs else 0))
        return d_iter()

    def clear(self):
        """Remove all nodes and edges from the graph.

        This also removes the name, and all graph, node, and edge attributes.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.clear()
        >>> list(G.nodes())
        []
        >>> list(G.edges())
        []

        """
        self.name = ''
        self.adj.clear()
        self.node.clear()
        self.graph.clear()

    def copy(self):
        """Return a copy of the graph.

        Returns
        -------
        G : Graph
            A copy of the graph.

        See Also
        --------
        to_directed: return a directed copy of the graph.

        Notes
        -----
        This makes a complete copy of the graph including all of the
        node or edge attributes.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> H = G.copy()

        """
        return deepcopy(self)

    def is_multigraph(self):
        """Return True if graph is a multigraph, False otherwise."""
        return False

    def is_directed(self):
        """Return True if graph is directed, False otherwise."""
        return False

    def to_directed(self):
        """Return a directed representation of the graph.

        Returns
        -------
        G : DiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar D=DiGraph(G) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.

        Warning: If you have subclassed Graph to use dict-like objects in the
        data structure, those changes do not transfer to the DiGraph
        created by this method.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> list(H.edges())
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> list(H.edges())
        [(0, 1)]
        """
        from networkx import DiGraph
        G = DiGraph()
        G.name = self.name
        G.add_nodes_from(self)
        G.add_edges_from(((u, v, deepcopy(data))
            for u, nbrs in self.adjacency_iter()
            for v, data in nbrs.items()))
        G.graph = deepcopy(self.graph)
        G.node = deepcopy(self.node)
        return G

    def to_undirected(self):
        """Return an undirected copy of the graph.

        Returns
        -------
        G : Graph/MultiGraph
            A deepcopy of the graph.

        See Also
        --------
        copy, add_edge, add_edges_from

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar G=DiGraph(D) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> list(H.edges())
        [(0, 1), (1, 0)]
        >>> G2 = H.to_undirected()
        >>> list(G2.edges())
        [(0, 1)]
        """
        return deepcopy(self)

    def subgraph(self, nbunch):
        """Return the subgraph induced on nodes in nbunch.

        The induced subgraph of the graph contains the nodes in nbunch
        and the edges between those nodes.

        Parameters
        ----------
        nbunch : list, iterable
            A container of nodes which will be iterated through once.

        Returns
        -------
        G : Graph
            A subgraph of the graph with the same edge attributes.

        Notes
        -----
        The graph, edge or node attributes just point to the original graph.
        So changes to the node or edge structure will not be reflected in
        the original graph while changes to the attributes will.

        To create a subgraph with its own copy of the edge/node attributes use:
        nx.Graph(G.subgraph(nbunch))

        If edge attributes are containers, a deep copy can be obtained using:
        G.subgraph(nbunch).copy()

        For an inplace reduction of a graph to a subgraph you can remove nodes:
        G.remove_nodes_from([ n in G if n not in set(nbunch)])

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> H = G.subgraph([0,1,2])
        >>> list(H.edges())
        [(0, 1), (1, 2)]
        """
        bunch = self.nbunch_iter(nbunch)
        # create new graph and copy subgraph into it
        H = self.__class__()
        # copy node and attribute dictionaries
        for n in bunch:
            H.node[n] = self.node[n]
        # namespace shortcuts for speed
        H_adj = H.adj
        self_adj = self.adj
        # add nodes and edges (undirected method)
        for n in H.node:
            Hnbrs = H.adjlist_dict_factory()
            H_adj[n] = Hnbrs
            for nbr, d in self_adj[n].items():
                if nbr in H_adj:
                    # add both representations of edge: n-nbr and nbr-n
                    Hnbrs[nbr] = d
                    H_adj[nbr][n] = d
        H.graph = self.graph
        return H

    def nodes_with_selfloops(self):
        """Return a list of nodes with self loops.

        A node with a self loop has an edge with both ends adjacent
        to that node.

        Returns
        -------
        nodelist : list
            A list of nodes with self loops.

        See Also
        --------
        selfloop_edges, number_of_selfloops

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edge(1, 1)
        >>> G.add_edge(1, 2)
        >>> list(G.nodes_with_selfloops())
        [1]

        """
        return [n for n, nbrs in self.adj.items() if n in nbrs]

    def selfloop_edges(self, data=False, default=None):
        """Return a list of selfloop edges.

        A selfloop edge has the same node at both ends.

        Parameters
        ----------
        data : string or bool, optional (default=False)
            Return selfloop edges as two tuples (u,v) (data=False)
            or three-tuples (u,v,datadict) (data=True)
            or three-tuples (u,v,datavalue) (data='attrname')
        default : value, optional (default=None)
            Value used for edges that dont have the requested attribute.
            Only relevant if data is not True or False.

        Returns
        -------
        edgelist : list of edge tuples
            A list of all selfloop edges.

        See Also
        --------
        nodes_with_selfloops, number_of_selfloops

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edge(1,1)
        >>> G.add_edge(1,2)
        >>> G.selfloop_edges()
        [(1, 1)]
        >>> G.selfloop_edges(data=True)
        [(1, 1, {})]
        """
        if data is True:
            return [(n, n, nbrs[n])
                    for n, nbrs in self.adj.items() if n in nbrs]
        elif data is not False:
            return [(n, n, nbrs[n].get(data, default))
                    for n, nbrs in self.adj.items() if n in nbrs]
        else:
            return [(n, n)
                    for n, nbrs in self.adj.items() if n in nbrs]

    def number_of_selfloops(self):
        """Return the number of selfloop edges.

        A selfloop edge has the same node at both ends.

        Returns
        -------
        nloops : int
            The number of selfloops.

        See Also
        --------
        nodes_with_selfloops, selfloop_edges

        Examples
        --------
        >>> G=nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edge(1,1)
        >>> G.add_edge(1,2)
        >>> G.number_of_selfloops()
        1
        """
        return len(self.selfloop_edges())

    def size(self, weight=None):
        """Return the number of edges.

        Parameters
        ----------
        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.

        Returns
        -------
        nedges : int
            The number of edges or sum of edge weights in the graph.

        See Also
        --------
        number_of_edges

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.size()
        3

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edge('a','b',weight=2)
        >>> G.add_edge('b','c',weight=4)
        >>> G.size()
        2
        >>> G.size(weight='weight')
        6.0
        """
        s = sum(dict(self.degree(weight=weight)).values()) / 2
        if weight is None:
            return int(s)
        else:
            return float(s)

    def number_of_edges(self, u=None, v=None):
        """Return the number of edges between two nodes.

        Parameters
        ----------
        u,v : nodes, optional (default=all edges)
            If u and v are specified, return the number of edges between
            u and v. Otherwise return the total number of all edges.

        Returns
        -------
        nedges : int
            The number of edges in the graph.  If nodes u and v are specified
            return the number of edges between those nodes.

        See Also
        --------
        size

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.number_of_edges()
        3
        >>> G.number_of_edges(0,1)
        1
        >>> e = (0,1)
        >>> G.number_of_edges(*e)
        1
        """
        if u is None: return int(self.size())
        if v in self.adj[u]:
            return 1
        else:
            return 0

    def add_star(self, nodes, **attr):
        """Add a star.

        The first node in nodes is the middle of the star.  It is connected
        to all other nodes.

        Parameters
        ----------
        nodes : iterable container
            A container of nodes.
        attr : keyword arguments, optional (default= no attributes)
            Attributes to add to every edge in star.

        See Also
        --------
        add_path, add_cycle

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_star([0,1,2,3])
        >>> G.add_star([10,11,12],weight=2)

        """
        nlist = list(nodes)
        v = nlist[0]
        edges = ((v, n) for n in nlist[1:])
        self.add_edges_from(edges, **attr)

    def add_path(self, nodes, **attr):
        """Add a path.

        Parameters
        ----------
        nodes : iterable container
            A container of nodes.  A path will be constructed from
            the nodes (in order) and added to the graph.
        attr : keyword arguments, optional (default= no attributes)
            Attributes to add to every edge in path.

        See Also
        --------
        add_star, add_cycle

        Examples
        --------
        >>> G=nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.add_path([10,11,12],weight=7)

        """
        nlist = list(nodes)
        edges = zip(nlist[:-1], nlist[1:])
        self.add_edges_from(edges, **attr)

    def add_cycle(self, nodes, **attr):
        """Add a cycle.

        Parameters
        ----------
        nodes: iterable container
            A container of nodes.  A cycle will be constructed from
            the nodes (in order) and added to the graph.
        attr : keyword arguments, optional (default= no attributes)
            Attributes to add to every edge in cycle.

        See Also
        --------
        add_path, add_star

        Examples
        --------
        >>> G=nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_cycle([0,1,2,3])
        >>> G.add_cycle([10,11,12],weight=7)

        """
        nlist = list(nodes)
        edges = zip(nlist, nlist[1:] + [nlist[0]])
        self.add_edges_from(edges, **attr)

    def nbunch_iter(self, nbunch=None):
        """Return an iterator of nodes contained in nbunch that are
        also in the graph.

        The nodes in nbunch are checked for membership in the graph
        and if not are silently ignored.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        Returns
        -------
        niter : iterator
            An iterator over nodes in nbunch that are also in the graph.
            If nbunch is None, iterate over all nodes in the graph.

        Raises
        ------
        NetworkXError
            If nbunch is not a node or or sequence of nodes.
            If a node in nbunch is not hashable.

        See Also
        --------
        Graph.__iter__

        Notes
        -----
        When nbunch is an iterator, the returned iterator yields values
        directly from nbunch, becoming exhausted when nbunch is exhausted.

        To test whether nbunch is a single node, one can use
        "if nbunch in self:", even after processing with this routine.

        If nbunch is not a node or a (possibly empty) sequence/iterator
        or None, a NetworkXError is raised.  Also, if any object in
        nbunch is not hashable, a NetworkXError is raised.
        """
        if nbunch is None:   # include all nodes via iterator
            bunch = iter(self.adj.keys())
        elif nbunch in self:  # if nbunch is a single node
            bunch = iter([nbunch])
        else:                # if nbunch is a sequence of nodes
            def bunch_iter(nlist, adj):
                try:
                    for n in nlist:
                        if n in adj:
                            yield n
                except TypeError as e:
                    message = e.args[0]
                    # capture error for non-sequence/iterator nbunch.
                    if 'iter' in message:
                        raise NetworkXError(
                            "nbunch is not a node or a sequence of nodes.")
                    # capture error for unhashable node.
                    elif 'hashable' in message:
                        raise NetworkXError(
                            "Node %s in the sequence nbunch is not a valid node."%n)
                    else:
                        raise
            bunch = bunch_iter(nbunch, self.adj)
        return bunch