summaryrefslogtreecommitdiff
path: root/networkx/algorithms/simple_paths.py
blob: 6284f9613aacb1ab66ff9ec4784767dbc0647a96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
from heapq import heappop, heappush
from itertools import count

import networkx as nx
from networkx.algorithms.shortest_paths.weighted import _weight_function
from networkx.utils import not_implemented_for, pairwise

__all__ = [
    "all_simple_paths",
    "is_simple_path",
    "shortest_simple_paths",
    "all_simple_edge_paths",
]


@nx.dispatch
def is_simple_path(G, nodes):
    """Returns True if and only if `nodes` form a simple path in `G`.

    A *simple path* in a graph is a nonempty sequence of nodes in which
    no node appears more than once in the sequence, and each adjacent
    pair of nodes in the sequence is adjacent in the graph.

    Parameters
    ----------
    G : graph
        A NetworkX graph.
    nodes : list
        A list of one or more nodes in the graph `G`.

    Returns
    -------
    bool
        Whether the given list of nodes represents a simple path in `G`.

    Notes
    -----
    An empty list of nodes is not a path but a list of one node is a
    path. Here's an explanation why.

    This function operates on *node paths*. One could also consider
    *edge paths*. There is a bijection between node paths and edge
    paths.

    The *length of a path* is the number of edges in the path, so a list
    of nodes of length *n* corresponds to a path of length *n* - 1.
    Thus the smallest edge path would be a list of zero edges, the empty
    path. This corresponds to a list of one node.

    To convert between a node path and an edge path, you can use code
    like the following::

        >>> from networkx.utils import pairwise
        >>> nodes = [0, 1, 2, 3]
        >>> edges = list(pairwise(nodes))
        >>> edges
        [(0, 1), (1, 2), (2, 3)]
        >>> nodes = [edges[0][0]] + [v for u, v in edges]
        >>> nodes
        [0, 1, 2, 3]

    Examples
    --------
    >>> G = nx.cycle_graph(4)
    >>> nx.is_simple_path(G, [2, 3, 0])
    True
    >>> nx.is_simple_path(G, [0, 2])
    False

    """
    # The empty list is not a valid path. Could also return
    # NetworkXPointlessConcept here.
    if len(nodes) == 0:
        return False
    # If the list is a single node, just check that the node is actually
    # in the graph.
    if len(nodes) == 1:
        return nodes[0] in G
    # Test that no node appears more than once, and that each
    # adjacent pair of nodes is adjacent.
    return len(set(nodes)) == len(nodes) and all(v in G[u] for u, v in pairwise(nodes))


def all_simple_paths(G, source, target, cutoff=None):
    """Generate all simple paths in the graph G from source to target.

    A simple path is a path with no repeated nodes.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    target : nodes
       Single node or iterable of nodes at which to end path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    path_generator: generator
       A generator that produces lists of simple paths.  If there are no paths
       between the source and target within the given cutoff the generator
       produces no output. If it is possible to traverse the same sequence of
       nodes in multiple ways, namely through parallel edges, then it will be
       returned multiple times (once for each viable edge combination).

    Examples
    --------
    This iterator generates lists of nodes::

        >>> G = nx.complete_graph(4)
        >>> for path in nx.all_simple_paths(G, source=0, target=3):
        ...     print(path)
        ...
        [0, 1, 2, 3]
        [0, 1, 3]
        [0, 2, 1, 3]
        [0, 2, 3]
        [0, 3]

    You can generate only those paths that are shorter than a certain
    length by using the `cutoff` keyword argument::

        >>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
        >>> print(list(paths))
        [[0, 1, 3], [0, 2, 3], [0, 3]]

    To get each path as the corresponding list of edges, you can use the
    :func:`networkx.utils.pairwise` helper function::

        >>> paths = nx.all_simple_paths(G, source=0, target=3)
        >>> for path in map(nx.utils.pairwise, paths):
        ...     print(list(path))
        [(0, 1), (1, 2), (2, 3)]
        [(0, 1), (1, 3)]
        [(0, 2), (2, 1), (1, 3)]
        [(0, 2), (2, 3)]
        [(0, 3)]

    Pass an iterable of nodes as target to generate all paths ending in any of several nodes::

        >>> G = nx.complete_graph(4)
        >>> for path in nx.all_simple_paths(G, source=0, target=[3, 2]):
        ...     print(path)
        ...
        [0, 1, 2]
        [0, 1, 2, 3]
        [0, 1, 3]
        [0, 1, 3, 2]
        [0, 2]
        [0, 2, 1, 3]
        [0, 2, 3]
        [0, 3]
        [0, 3, 1, 2]
        [0, 3, 2]

    Iterate over each path from the root nodes to the leaf nodes in a
    directed acyclic graph using a functional programming approach::

        >>> from itertools import chain
        >>> from itertools import product
        >>> from itertools import starmap
        >>> from functools import partial
        >>>
        >>> chaini = chain.from_iterable
        >>>
        >>> G = nx.DiGraph([(0, 1), (1, 2), (0, 3), (3, 2)])
        >>> roots = (v for v, d in G.in_degree() if d == 0)
        >>> leaves = (v for v, d in G.out_degree() if d == 0)
        >>> all_paths = partial(nx.all_simple_paths, G)
        >>> list(chaini(starmap(all_paths, product(roots, leaves))))
        [[0, 1, 2], [0, 3, 2]]

    The same list computed using an iterative approach::

        >>> G = nx.DiGraph([(0, 1), (1, 2), (0, 3), (3, 2)])
        >>> roots = (v for v, d in G.in_degree() if d == 0)
        >>> leaves = (v for v, d in G.out_degree() if d == 0)
        >>> all_paths = []
        >>> for root in roots:
        ...     for leaf in leaves:
        ...         paths = nx.all_simple_paths(G, root, leaf)
        ...         all_paths.extend(paths)
        >>> all_paths
        [[0, 1, 2], [0, 3, 2]]

    Iterate over each path from the root nodes to the leaf nodes in a
    directed acyclic graph passing all leaves together to avoid unnecessary
    compute::

        >>> G = nx.DiGraph([(0, 1), (2, 1), (1, 3), (1, 4)])
        >>> roots = (v for v, d in G.in_degree() if d == 0)
        >>> leaves = [v for v, d in G.out_degree() if d == 0]
        >>> all_paths = []
        >>> for root in roots:
        ...     paths = nx.all_simple_paths(G, root, leaves)
        ...     all_paths.extend(paths)
        >>> all_paths
        [[0, 1, 3], [0, 1, 4], [2, 1, 3], [2, 1, 4]]

    If parallel edges offer multiple ways to traverse a given sequence of
    nodes, this sequence of nodes will be returned multiple times:

        >>> G = nx.MultiDiGraph([(0, 1), (0, 1), (1, 2)])
        >>> list(nx.all_simple_paths(G, 0, 2))
        [[0, 1, 2], [0, 1, 2]]

    Notes
    -----
    This algorithm uses a modified depth-first search to generate the
    paths [1]_.  A single path can be found in $O(V+E)$ time but the
    number of simple paths in a graph can be very large, e.g. $O(n!)$ in
    the complete graph of order $n$.

    This function does not check that a path exists between `source` and
    `target`. For large graphs, this may result in very long runtimes.
    Consider using `has_path` to check that a path exists between `source` and
    `target` before calling this function on large graphs.

    References
    ----------
    .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms",
       Addison Wesley Professional, 3rd ed., 2001.

    See Also
    --------
    all_shortest_paths, shortest_path, has_path

    """
    if source not in G:
        raise nx.NodeNotFound(f"source node {source} not in graph")
    if target in G:
        targets = {target}
    else:
        try:
            targets = set(target)
        except TypeError as err:
            raise nx.NodeNotFound(f"target node {target} not in graph") from err
    if source in targets:
        return _empty_generator()
    if cutoff is None:
        cutoff = len(G) - 1
    if cutoff < 1:
        return _empty_generator()
    if G.is_multigraph():
        return _all_simple_paths_multigraph(G, source, targets, cutoff)
    else:
        return _all_simple_paths_graph(G, source, targets, cutoff)


def _empty_generator():
    yield from ()


def _all_simple_paths_graph(G, source, targets, cutoff):
    visited = dict.fromkeys([source])
    stack = [iter(G[source])]
    while stack:
        children = stack[-1]
        child = next(children, None)
        if child is None:
            stack.pop()
            visited.popitem()
        elif len(visited) < cutoff:
            if child in visited:
                continue
            if child in targets:
                yield list(visited) + [child]
            visited[child] = None
            if targets - set(visited.keys()):  # expand stack until find all targets
                stack.append(iter(G[child]))
            else:
                visited.popitem()  # maybe other ways to child
        else:  # len(visited) == cutoff:
            for target in (targets & (set(children) | {child})) - set(visited.keys()):
                yield list(visited) + [target]
            stack.pop()
            visited.popitem()


def _all_simple_paths_multigraph(G, source, targets, cutoff):
    visited = dict.fromkeys([source])
    stack = [(v for u, v in G.edges(source))]
    while stack:
        children = stack[-1]
        child = next(children, None)
        if child is None:
            stack.pop()
            visited.popitem()
        elif len(visited) < cutoff:
            if child in visited:
                continue
            if child in targets:
                yield list(visited) + [child]
            visited[child] = None
            if targets - set(visited.keys()):
                stack.append((v for u, v in G.edges(child)))
            else:
                visited.popitem()
        else:  # len(visited) == cutoff:
            for target in targets - set(visited.keys()):
                count = ([child] + list(children)).count(target)
                for i in range(count):
                    yield list(visited) + [target]
            stack.pop()
            visited.popitem()


def all_simple_edge_paths(G, source, target, cutoff=None):
    """Generate lists of edges for all simple paths in G from source to target.

    A simple path is a path with no repeated nodes.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    target : nodes
       Single node or iterable of nodes at which to end path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    path_generator: generator
       A generator that produces lists of simple paths.  If there are no paths
       between the source and target within the given cutoff the generator
       produces no output.
       For multigraphs, the list of edges have elements of the form `(u,v,k)`.
       Where `k` corresponds to the edge key.

    Examples
    --------

    Print the simple path edges of a Graph::

        >>> g = nx.Graph([(1, 2), (2, 4), (1, 3), (3, 4)])
        >>> for path in sorted(nx.all_simple_edge_paths(g, 1, 4)):
        ...     print(path)
        [(1, 2), (2, 4)]
        [(1, 3), (3, 4)]

    Print the simple path edges of a MultiGraph. Returned edges come with
    their associated keys::

        >>> mg = nx.MultiGraph()
        >>> mg.add_edge(1, 2, key="k0")
        'k0'
        >>> mg.add_edge(1, 2, key="k1")
        'k1'
        >>> mg.add_edge(2, 3, key="k0")
        'k0'
        >>> for path in sorted(nx.all_simple_edge_paths(mg, 1, 3)):
        ...     print(path)
        [(1, 2, 'k0'), (2, 3, 'k0')]
        [(1, 2, 'k1'), (2, 3, 'k0')]


    Notes
    -----
    This algorithm uses a modified depth-first search to generate the
    paths [1]_.  A single path can be found in $O(V+E)$ time but the
    number of simple paths in a graph can be very large, e.g. $O(n!)$ in
    the complete graph of order $n$.

    References
    ----------
    .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms",
       Addison Wesley Professional, 3rd ed., 2001.

    See Also
    --------
    all_shortest_paths, shortest_path, all_simple_paths

    """
    if source not in G:
        raise nx.NodeNotFound("source node %s not in graph" % source)
    if target in G:
        targets = {target}
    else:
        try:
            targets = set(target)
        except TypeError:
            raise nx.NodeNotFound("target node %s not in graph" % target)
    if source in targets:
        return []
    if cutoff is None:
        cutoff = len(G) - 1
    if cutoff < 1:
        return []
    if G.is_multigraph():
        for simp_path in _all_simple_edge_paths_multigraph(G, source, targets, cutoff):
            yield simp_path
    else:
        for simp_path in _all_simple_paths_graph(G, source, targets, cutoff):
            yield list(zip(simp_path[:-1], simp_path[1:]))


def _all_simple_edge_paths_multigraph(G, source, targets, cutoff):
    if not cutoff or cutoff < 1:
        return []
    visited = [source]
    stack = [iter(G.edges(source, keys=True))]

    while stack:
        children = stack[-1]
        child = next(children, None)
        if child is None:
            stack.pop()
            visited.pop()
        elif len(visited) < cutoff:
            if child[1] in targets:
                yield visited[1:] + [child]
            elif child[1] not in [v[0] for v in visited[1:]]:
                visited.append(child)
                stack.append(iter(G.edges(child[1], keys=True)))
        else:  # len(visited) == cutoff:
            for (u, v, k) in [child] + list(children):
                if v in targets:
                    yield visited[1:] + [(u, v, k)]
            stack.pop()
            visited.pop()


@not_implemented_for("multigraph")
def shortest_simple_paths(G, source, target, weight=None):
    """Generate all simple paths in the graph G from source to target,
       starting from shortest ones.

    A simple path is a path with no repeated nodes.

    If a weighted shortest path search is to be used, no negative weights
    are allowed.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    target : node
       Ending node for path

    weight : string or function
        If it is a string, it is the name of the edge attribute to be
        used as a weight.

        If it is a function, the weight of an edge is the value returned
        by the function. The function must accept exactly three positional
        arguments: the two endpoints of an edge and the dictionary of edge
        attributes for that edge. The function must return a number.

        If None all edges are considered to have unit weight. Default
        value None.

    Returns
    -------
    path_generator: generator
       A generator that produces lists of simple paths, in order from
       shortest to longest.

    Raises
    ------
    NetworkXNoPath
       If no path exists between source and target.

    NetworkXError
       If source or target nodes are not in the input graph.

    NetworkXNotImplemented
       If the input graph is a Multi[Di]Graph.

    Examples
    --------

    >>> G = nx.cycle_graph(7)
    >>> paths = list(nx.shortest_simple_paths(G, 0, 3))
    >>> print(paths)
    [[0, 1, 2, 3], [0, 6, 5, 4, 3]]

    You can use this function to efficiently compute the k shortest/best
    paths between two nodes.

    >>> from itertools import islice
    >>> def k_shortest_paths(G, source, target, k, weight=None):
    ...     return list(
    ...         islice(nx.shortest_simple_paths(G, source, target, weight=weight), k)
    ...     )
    >>> for path in k_shortest_paths(G, 0, 3, 2):
    ...     print(path)
    [0, 1, 2, 3]
    [0, 6, 5, 4, 3]

    Notes
    -----
    This procedure is based on algorithm by Jin Y. Yen [1]_.  Finding
    the first $K$ paths requires $O(KN^3)$ operations.

    See Also
    --------
    all_shortest_paths
    shortest_path
    all_simple_paths

    References
    ----------
    .. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a
       Network", Management Science, Vol. 17, No. 11, Theory Series
       (Jul., 1971), pp. 712-716.

    """
    if source not in G:
        raise nx.NodeNotFound(f"source node {source} not in graph")

    if target not in G:
        raise nx.NodeNotFound(f"target node {target} not in graph")

    if weight is None:
        length_func = len
        shortest_path_func = _bidirectional_shortest_path
    else:
        wt = _weight_function(G, weight)

        def length_func(path):
            return sum(
                wt(u, v, G.get_edge_data(u, v)) for (u, v) in zip(path, path[1:])
            )

        shortest_path_func = _bidirectional_dijkstra

    listA = list()
    listB = PathBuffer()
    prev_path = None
    while True:
        if not prev_path:
            length, path = shortest_path_func(G, source, target, weight=weight)
            listB.push(length, path)
        else:
            ignore_nodes = set()
            ignore_edges = set()
            for i in range(1, len(prev_path)):
                root = prev_path[:i]
                root_length = length_func(root)
                for path in listA:
                    if path[:i] == root:
                        ignore_edges.add((path[i - 1], path[i]))
                try:
                    length, spur = shortest_path_func(
                        G,
                        root[-1],
                        target,
                        ignore_nodes=ignore_nodes,
                        ignore_edges=ignore_edges,
                        weight=weight,
                    )
                    path = root[:-1] + spur
                    listB.push(root_length + length, path)
                except nx.NetworkXNoPath:
                    pass
                ignore_nodes.add(root[-1])

        if listB:
            path = listB.pop()
            yield path
            listA.append(path)
            prev_path = path
        else:
            break


class PathBuffer:
    def __init__(self):
        self.paths = set()
        self.sortedpaths = list()
        self.counter = count()

    def __len__(self):
        return len(self.sortedpaths)

    def push(self, cost, path):
        hashable_path = tuple(path)
        if hashable_path not in self.paths:
            heappush(self.sortedpaths, (cost, next(self.counter), path))
            self.paths.add(hashable_path)

    def pop(self):
        (cost, num, path) = heappop(self.sortedpaths)
        hashable_path = tuple(path)
        self.paths.remove(hashable_path)
        return path


def _bidirectional_shortest_path(
    G, source, target, ignore_nodes=None, ignore_edges=None, weight=None
):
    """Returns the shortest path between source and target ignoring
       nodes and edges in the containers ignore_nodes and ignore_edges.

    This is a custom modification of the standard bidirectional shortest
    path implementation at networkx.algorithms.unweighted

    Parameters
    ----------
    G : NetworkX graph

    source : node
       starting node for path

    target : node
       ending node for path

    ignore_nodes : container of nodes
       nodes to ignore, optional

    ignore_edges : container of edges
       edges to ignore, optional

    weight : None
       This function accepts a weight argument for convenience of
       shortest_simple_paths function. It will be ignored.

    Returns
    -------
    path: list
       List of nodes in a path from source to target.

    Raises
    ------
    NetworkXNoPath
       If no path exists between source and target.

    See Also
    --------
    shortest_path

    """
    # call helper to do the real work
    results = _bidirectional_pred_succ(G, source, target, ignore_nodes, ignore_edges)
    pred, succ, w = results

    # build path from pred+w+succ
    path = []
    # from w to target
    while w is not None:
        path.append(w)
        w = succ[w]
    # from source to w
    w = pred[path[0]]
    while w is not None:
        path.insert(0, w)
        w = pred[w]

    return len(path), path


def _bidirectional_pred_succ(G, source, target, ignore_nodes=None, ignore_edges=None):
    """Bidirectional shortest path helper.
    Returns (pred,succ,w) where
    pred is a dictionary of predecessors from w to the source, and
    succ is a dictionary of successors from w to the target.
    """
    # does BFS from both source and target and meets in the middle
    if ignore_nodes and (source in ignore_nodes or target in ignore_nodes):
        raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
    if target == source:
        return ({target: None}, {source: None}, source)

    # handle either directed or undirected
    if G.is_directed():
        Gpred = G.predecessors
        Gsucc = G.successors
    else:
        Gpred = G.neighbors
        Gsucc = G.neighbors

    # support optional nodes filter
    if ignore_nodes:

        def filter_iter(nodes):
            def iterate(v):
                for w in nodes(v):
                    if w not in ignore_nodes:
                        yield w

            return iterate

        Gpred = filter_iter(Gpred)
        Gsucc = filter_iter(Gsucc)

    # support optional edges filter
    if ignore_edges:
        if G.is_directed():

            def filter_pred_iter(pred_iter):
                def iterate(v):
                    for w in pred_iter(v):
                        if (w, v) not in ignore_edges:
                            yield w

                return iterate

            def filter_succ_iter(succ_iter):
                def iterate(v):
                    for w in succ_iter(v):
                        if (v, w) not in ignore_edges:
                            yield w

                return iterate

            Gpred = filter_pred_iter(Gpred)
            Gsucc = filter_succ_iter(Gsucc)

        else:

            def filter_iter(nodes):
                def iterate(v):
                    for w in nodes(v):
                        if (v, w) not in ignore_edges and (w, v) not in ignore_edges:
                            yield w

                return iterate

            Gpred = filter_iter(Gpred)
            Gsucc = filter_iter(Gsucc)

    # predecesssor and successors in search
    pred = {source: None}
    succ = {target: None}

    # initialize fringes, start with forward
    forward_fringe = [source]
    reverse_fringe = [target]

    while forward_fringe and reverse_fringe:
        if len(forward_fringe) <= len(reverse_fringe):
            this_level = forward_fringe
            forward_fringe = []
            for v in this_level:
                for w in Gsucc(v):
                    if w not in pred:
                        forward_fringe.append(w)
                        pred[w] = v
                    if w in succ:
                        # found path
                        return pred, succ, w
        else:
            this_level = reverse_fringe
            reverse_fringe = []
            for v in this_level:
                for w in Gpred(v):
                    if w not in succ:
                        succ[w] = v
                        reverse_fringe.append(w)
                    if w in pred:
                        # found path
                        return pred, succ, w

    raise nx.NetworkXNoPath(f"No path between {source} and {target}.")


def _bidirectional_dijkstra(
    G, source, target, weight="weight", ignore_nodes=None, ignore_edges=None
):
    """Dijkstra's algorithm for shortest paths using bidirectional search.

    This function returns the shortest path between source and target
    ignoring nodes and edges in the containers ignore_nodes and
    ignore_edges.

    This is a custom modification of the standard Dijkstra bidirectional
    shortest path implementation at networkx.algorithms.weighted

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node.

    target : node
       Ending node.

    weight: string, function, optional (default='weight')
       Edge data key or weight function corresponding to the edge weight

    ignore_nodes : container of nodes
       nodes to ignore, optional

    ignore_edges : container of edges
       edges to ignore, optional

    Returns
    -------
    length : number
        Shortest path length.

    Returns a tuple of two dictionaries keyed by node.
    The first dictionary stores distance from the source.
    The second stores the path from the source to that node.

    Raises
    ------
    NetworkXNoPath
        If no path exists between source and target.

    Notes
    -----
    Edge weight attributes must be numerical.
    Distances are calculated as sums of weighted edges traversed.

    In practice  bidirectional Dijkstra is much more than twice as fast as
    ordinary Dijkstra.

    Ordinary Dijkstra expands nodes in a sphere-like manner from the
    source. The radius of this sphere will eventually be the length
    of the shortest path. Bidirectional Dijkstra will expand nodes
    from both the source and the target, making two spheres of half
    this radius. Volume of the first sphere is pi*r*r while the
    others are 2*pi*r/2*r/2, making up half the volume.

    This algorithm is not guaranteed to work if edge weights
    are negative or are floating point numbers
    (overflows and roundoff errors can cause problems).

    See Also
    --------
    shortest_path
    shortest_path_length
    """
    if ignore_nodes and (source in ignore_nodes or target in ignore_nodes):
        raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
    if source == target:
        if source not in G:
            raise nx.NodeNotFound(f"Node {source} not in graph")
        return (0, [source])

    # handle either directed or undirected
    if G.is_directed():
        Gpred = G.predecessors
        Gsucc = G.successors
    else:
        Gpred = G.neighbors
        Gsucc = G.neighbors

    # support optional nodes filter
    if ignore_nodes:

        def filter_iter(nodes):
            def iterate(v):
                for w in nodes(v):
                    if w not in ignore_nodes:
                        yield w

            return iterate

        Gpred = filter_iter(Gpred)
        Gsucc = filter_iter(Gsucc)

    # support optional edges filter
    if ignore_edges:
        if G.is_directed():

            def filter_pred_iter(pred_iter):
                def iterate(v):
                    for w in pred_iter(v):
                        if (w, v) not in ignore_edges:
                            yield w

                return iterate

            def filter_succ_iter(succ_iter):
                def iterate(v):
                    for w in succ_iter(v):
                        if (v, w) not in ignore_edges:
                            yield w

                return iterate

            Gpred = filter_pred_iter(Gpred)
            Gsucc = filter_succ_iter(Gsucc)

        else:

            def filter_iter(nodes):
                def iterate(v):
                    for w in nodes(v):
                        if (v, w) not in ignore_edges and (w, v) not in ignore_edges:
                            yield w

                return iterate

            Gpred = filter_iter(Gpred)
            Gsucc = filter_iter(Gsucc)

    push = heappush
    pop = heappop
    # Init:   Forward             Backward
    dists = [{}, {}]  # dictionary of final distances
    paths = [{source: [source]}, {target: [target]}]  # dictionary of paths
    fringe = [[], []]  # heap of (distance, node) tuples for
    # extracting next node to expand
    seen = [{source: 0}, {target: 0}]  # dictionary of distances to
    # nodes seen
    c = count()
    # initialize fringe heap
    push(fringe[0], (0, next(c), source))
    push(fringe[1], (0, next(c), target))
    # neighs for extracting correct neighbor information
    neighs = [Gsucc, Gpred]
    # variables to hold shortest discovered path
    # finaldist = 1e30000
    finalpath = []
    dir = 1
    while fringe[0] and fringe[1]:
        # choose direction
        # dir == 0 is forward direction and dir == 1 is back
        dir = 1 - dir
        # extract closest to expand
        (dist, _, v) = pop(fringe[dir])
        if v in dists[dir]:
            # Shortest path to v has already been found
            continue
        # update distance
        dists[dir][v] = dist  # equal to seen[dir][v]
        if v in dists[1 - dir]:
            # if we have scanned v in both directions we are done
            # we have now discovered the shortest path
            return (finaldist, finalpath)

        wt = _weight_function(G, weight)
        for w in neighs[dir](v):
            if dir == 0:  # forward
                minweight = wt(v, w, G.get_edge_data(v, w))
                vwLength = dists[dir][v] + minweight
            else:  # back, must remember to change v,w->w,v
                minweight = wt(w, v, G.get_edge_data(w, v))
                vwLength = dists[dir][v] + minweight

            if w in dists[dir]:
                if vwLength < dists[dir][w]:
                    raise ValueError("Contradictory paths found: negative weights?")
            elif w not in seen[dir] or vwLength < seen[dir][w]:
                # relaxing
                seen[dir][w] = vwLength
                push(fringe[dir], (vwLength, next(c), w))
                paths[dir][w] = paths[dir][v] + [w]
                if w in seen[0] and w in seen[1]:
                    # see if this path is better than the already
                    # discovered shortest path
                    totaldist = seen[0][w] + seen[1][w]
                    if finalpath == [] or finaldist > totaldist:
                        finaldist = totaldist
                        revpath = paths[1][w][:]
                        revpath.reverse()
                        finalpath = paths[0][w] + revpath[1:]
    raise nx.NetworkXNoPath(f"No path between {source} and {target}.")