summaryrefslogtreecommitdiff
path: root/networkx/algorithms/similarity.py
blob: c56eb55eb172ffe163e8a562ef2d57248a66d86d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
""" Functions measuring similarity using graph edit distance.

The graph edit distance is the number of edge/node changes needed
to make two graphs isomorphic.

The default algorithm/implementation is sub-optimal for some graphs.
The problem of finding the exact Graph Edit Distance (GED) is NP-hard
so it is often slow. If the simple interface `graph_edit_distance`
takes too long for your graph, try `optimize_graph_edit_distance`
and/or `optimize_edit_paths`.

At the same time, I encourage capable people to investigate
alternative GED algorithms, in order to improve the choices available.
"""

from functools import reduce
from itertools import product
import math
from operator import mul
import time
import warnings
import networkx as nx

__all__ = [
    "graph_edit_distance",
    "optimal_edit_paths",
    "optimize_graph_edit_distance",
    "optimize_edit_paths",
    "simrank_similarity",
    "simrank_similarity_numpy",
    "panther_similarity",
    "generate_random_paths",
]


def debug_print(*args, **kwargs):
    print(*args, **kwargs)


def graph_edit_distance(
    G1,
    G2,
    node_match=None,
    edge_match=None,
    node_subst_cost=None,
    node_del_cost=None,
    node_ins_cost=None,
    edge_subst_cost=None,
    edge_del_cost=None,
    edge_ins_cost=None,
    roots=None,
    upper_bound=None,
    timeout=None,
):
    """Returns GED (graph edit distance) between graphs G1 and G2.

    Graph edit distance is a graph similarity measure analogous to
    Levenshtein distance for strings.  It is defined as minimum cost
    of edit path (sequence of node and edge edit operations)
    transforming graph G1 to graph isomorphic to G2.

    Parameters
    ----------
    G1, G2: graphs
        The two graphs G1 and G2 must be of the same type.

    node_match : callable
        A function that returns True if node n1 in G1 and n2 in G2
        should be considered equal during matching.

        The function will be called like

           node_match(G1.nodes[n1], G2.nodes[n2]).

        That is, the function will receive the node attribute
        dictionaries for n1 and n2 as inputs.

        Ignored if node_subst_cost is specified.  If neither
        node_match nor node_subst_cost are specified then node
        attributes are not considered.

    edge_match : callable
        A function that returns True if the edge attribute dictionaries
        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
        be considered equal during matching.

        The function will be called like

           edge_match(G1[u1][v1], G2[u2][v2]).

        That is, the function will receive the edge attribute
        dictionaries of the edges under consideration.

        Ignored if edge_subst_cost is specified.  If neither
        edge_match nor edge_subst_cost are specified then edge
        attributes are not considered.

    node_subst_cost, node_del_cost, node_ins_cost : callable
        Functions that return the costs of node substitution, node
        deletion, and node insertion, respectively.

        The functions will be called like

           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
           node_del_cost(G1.nodes[n1]),
           node_ins_cost(G2.nodes[n2]).

        That is, the functions will receive the node attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function node_subst_cost overrides node_match if specified.
        If neither node_match nor node_subst_cost are specified then
        default node substitution cost of 0 is used (node attributes
        are not considered during matching).

        If node_del_cost is not specified then default node deletion
        cost of 1 is used.  If node_ins_cost is not specified then
        default node insertion cost of 1 is used.

    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
        Functions that return the costs of edge substitution, edge
        deletion, and edge insertion, respectively.

        The functions will be called like

           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
           edge_del_cost(G1[u1][v1]),
           edge_ins_cost(G2[u2][v2]).

        That is, the functions will receive the edge attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function edge_subst_cost overrides edge_match if specified.
        If neither edge_match nor edge_subst_cost are specified then
        default edge substitution cost of 0 is used (edge attributes
        are not considered during matching).

        If edge_del_cost is not specified then default edge deletion
        cost of 1 is used.  If edge_ins_cost is not specified then
        default edge insertion cost of 1 is used.

    roots : 2-tuple
        Tuple where first element is a node in G1 and the second
        is a node in G2.
        These nodes are forced to be matched in the comparison to
        allow comparison between rooted graphs.

    upper_bound : numeric
        Maximum edit distance to consider.  Return None if no edit
        distance under or equal to upper_bound exists.

    timeout : numeric
        Maximum number of seconds to execute.
        After timeout is met, the current best GED is returned.

    Examples
    --------
    >>> G1 = nx.cycle_graph(6)
    >>> G2 = nx.wheel_graph(7)
    >>> nx.graph_edit_distance(G1, G2)
    7.0

    >>> G1 = nx.star_graph(5)
    >>> G2 = nx.star_graph(5)
    >>> nx.graph_edit_distance(G1, G2, roots=(0, 0))
    0.0
    >>> nx.graph_edit_distance(G1, G2, roots=(1, 0))
    8.0

    See Also
    --------
    optimal_edit_paths, optimize_graph_edit_distance,

    is_isomorphic: test for graph edit distance of 0

    References
    ----------
    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
       Martineau. An Exact Graph Edit Distance Algorithm for Solving
       Pattern Recognition Problems. 4th International Conference on
       Pattern Recognition Applications and Methods 2015, Jan 2015,
       Lisbon, Portugal. 2015,
       <10.5220/0005209202710278>. <hal-01168816>
       https://hal.archives-ouvertes.fr/hal-01168816

    """
    bestcost = None
    for vertex_path, edge_path, cost in optimize_edit_paths(
        G1,
        G2,
        node_match,
        edge_match,
        node_subst_cost,
        node_del_cost,
        node_ins_cost,
        edge_subst_cost,
        edge_del_cost,
        edge_ins_cost,
        upper_bound,
        True,
        roots,
        timeout,
    ):
        # assert bestcost is None or cost < bestcost
        bestcost = cost
    return bestcost


def optimal_edit_paths(
    G1,
    G2,
    node_match=None,
    edge_match=None,
    node_subst_cost=None,
    node_del_cost=None,
    node_ins_cost=None,
    edge_subst_cost=None,
    edge_del_cost=None,
    edge_ins_cost=None,
    upper_bound=None,
):
    """Returns all minimum-cost edit paths transforming G1 to G2.

    Graph edit path is a sequence of node and edge edit operations
    transforming graph G1 to graph isomorphic to G2.  Edit operations
    include substitutions, deletions, and insertions.

    Parameters
    ----------
    G1, G2: graphs
        The two graphs G1 and G2 must be of the same type.

    node_match : callable
        A function that returns True if node n1 in G1 and n2 in G2
        should be considered equal during matching.

        The function will be called like

           node_match(G1.nodes[n1], G2.nodes[n2]).

        That is, the function will receive the node attribute
        dictionaries for n1 and n2 as inputs.

        Ignored if node_subst_cost is specified.  If neither
        node_match nor node_subst_cost are specified then node
        attributes are not considered.

    edge_match : callable
        A function that returns True if the edge attribute dictionaries
        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
        be considered equal during matching.

        The function will be called like

           edge_match(G1[u1][v1], G2[u2][v2]).

        That is, the function will receive the edge attribute
        dictionaries of the edges under consideration.

        Ignored if edge_subst_cost is specified.  If neither
        edge_match nor edge_subst_cost are specified then edge
        attributes are not considered.

    node_subst_cost, node_del_cost, node_ins_cost : callable
        Functions that return the costs of node substitution, node
        deletion, and node insertion, respectively.

        The functions will be called like

           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
           node_del_cost(G1.nodes[n1]),
           node_ins_cost(G2.nodes[n2]).

        That is, the functions will receive the node attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function node_subst_cost overrides node_match if specified.
        If neither node_match nor node_subst_cost are specified then
        default node substitution cost of 0 is used (node attributes
        are not considered during matching).

        If node_del_cost is not specified then default node deletion
        cost of 1 is used.  If node_ins_cost is not specified then
        default node insertion cost of 1 is used.

    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
        Functions that return the costs of edge substitution, edge
        deletion, and edge insertion, respectively.

        The functions will be called like

           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
           edge_del_cost(G1[u1][v1]),
           edge_ins_cost(G2[u2][v2]).

        That is, the functions will receive the edge attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function edge_subst_cost overrides edge_match if specified.
        If neither edge_match nor edge_subst_cost are specified then
        default edge substitution cost of 0 is used (edge attributes
        are not considered during matching).

        If edge_del_cost is not specified then default edge deletion
        cost of 1 is used.  If edge_ins_cost is not specified then
        default edge insertion cost of 1 is used.

    upper_bound : numeric
        Maximum edit distance to consider.

    Returns
    -------
    edit_paths : list of tuples (node_edit_path, edge_edit_path)
        node_edit_path : list of tuples (u, v)
        edge_edit_path : list of tuples ((u1, v1), (u2, v2))

    cost : numeric
        Optimal edit path cost (graph edit distance).

    Examples
    --------
    >>> G1 = nx.cycle_graph(4)
    >>> G2 = nx.wheel_graph(5)
    >>> paths, cost = nx.optimal_edit_paths(G1, G2)
    >>> len(paths)
    40
    >>> cost
    5.0

    See Also
    --------
    graph_edit_distance, optimize_edit_paths

    References
    ----------
    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
       Martineau. An Exact Graph Edit Distance Algorithm for Solving
       Pattern Recognition Problems. 4th International Conference on
       Pattern Recognition Applications and Methods 2015, Jan 2015,
       Lisbon, Portugal. 2015,
       <10.5220/0005209202710278>. <hal-01168816>
       https://hal.archives-ouvertes.fr/hal-01168816

    """
    paths = list()
    bestcost = None
    for vertex_path, edge_path, cost in optimize_edit_paths(
        G1,
        G2,
        node_match,
        edge_match,
        node_subst_cost,
        node_del_cost,
        node_ins_cost,
        edge_subst_cost,
        edge_del_cost,
        edge_ins_cost,
        upper_bound,
        False,
    ):
        # assert bestcost is None or cost <= bestcost
        if bestcost is not None and cost < bestcost:
            paths = list()
        paths.append((vertex_path, edge_path))
        bestcost = cost
    return paths, bestcost


def optimize_graph_edit_distance(
    G1,
    G2,
    node_match=None,
    edge_match=None,
    node_subst_cost=None,
    node_del_cost=None,
    node_ins_cost=None,
    edge_subst_cost=None,
    edge_del_cost=None,
    edge_ins_cost=None,
    upper_bound=None,
):
    """Returns consecutive approximations of GED (graph edit distance)
    between graphs G1 and G2.

    Graph edit distance is a graph similarity measure analogous to
    Levenshtein distance for strings.  It is defined as minimum cost
    of edit path (sequence of node and edge edit operations)
    transforming graph G1 to graph isomorphic to G2.

    Parameters
    ----------
    G1, G2: graphs
        The two graphs G1 and G2 must be of the same type.

    node_match : callable
        A function that returns True if node n1 in G1 and n2 in G2
        should be considered equal during matching.

        The function will be called like

           node_match(G1.nodes[n1], G2.nodes[n2]).

        That is, the function will receive the node attribute
        dictionaries for n1 and n2 as inputs.

        Ignored if node_subst_cost is specified.  If neither
        node_match nor node_subst_cost are specified then node
        attributes are not considered.

    edge_match : callable
        A function that returns True if the edge attribute dictionaries
        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
        be considered equal during matching.

        The function will be called like

           edge_match(G1[u1][v1], G2[u2][v2]).

        That is, the function will receive the edge attribute
        dictionaries of the edges under consideration.

        Ignored if edge_subst_cost is specified.  If neither
        edge_match nor edge_subst_cost are specified then edge
        attributes are not considered.

    node_subst_cost, node_del_cost, node_ins_cost : callable
        Functions that return the costs of node substitution, node
        deletion, and node insertion, respectively.

        The functions will be called like

           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
           node_del_cost(G1.nodes[n1]),
           node_ins_cost(G2.nodes[n2]).

        That is, the functions will receive the node attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function node_subst_cost overrides node_match if specified.
        If neither node_match nor node_subst_cost are specified then
        default node substitution cost of 0 is used (node attributes
        are not considered during matching).

        If node_del_cost is not specified then default node deletion
        cost of 1 is used.  If node_ins_cost is not specified then
        default node insertion cost of 1 is used.

    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
        Functions that return the costs of edge substitution, edge
        deletion, and edge insertion, respectively.

        The functions will be called like

           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
           edge_del_cost(G1[u1][v1]),
           edge_ins_cost(G2[u2][v2]).

        That is, the functions will receive the edge attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function edge_subst_cost overrides edge_match if specified.
        If neither edge_match nor edge_subst_cost are specified then
        default edge substitution cost of 0 is used (edge attributes
        are not considered during matching).

        If edge_del_cost is not specified then default edge deletion
        cost of 1 is used.  If edge_ins_cost is not specified then
        default edge insertion cost of 1 is used.

    upper_bound : numeric
        Maximum edit distance to consider.

    Returns
    -------
    Generator of consecutive approximations of graph edit distance.

    Examples
    --------
    >>> G1 = nx.cycle_graph(6)
    >>> G2 = nx.wheel_graph(7)
    >>> for v in nx.optimize_graph_edit_distance(G1, G2):
    ...     minv = v
    >>> minv
    7.0

    See Also
    --------
    graph_edit_distance, optimize_edit_paths

    References
    ----------
    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
       Martineau. An Exact Graph Edit Distance Algorithm for Solving
       Pattern Recognition Problems. 4th International Conference on
       Pattern Recognition Applications and Methods 2015, Jan 2015,
       Lisbon, Portugal. 2015,
       <10.5220/0005209202710278>. <hal-01168816>
       https://hal.archives-ouvertes.fr/hal-01168816
    """
    for vertex_path, edge_path, cost in optimize_edit_paths(
        G1,
        G2,
        node_match,
        edge_match,
        node_subst_cost,
        node_del_cost,
        node_ins_cost,
        edge_subst_cost,
        edge_del_cost,
        edge_ins_cost,
        upper_bound,
        True,
    ):
        yield cost


def optimize_edit_paths(
    G1,
    G2,
    node_match=None,
    edge_match=None,
    node_subst_cost=None,
    node_del_cost=None,
    node_ins_cost=None,
    edge_subst_cost=None,
    edge_del_cost=None,
    edge_ins_cost=None,
    upper_bound=None,
    strictly_decreasing=True,
    roots=None,
    timeout=None,
):
    """GED (graph edit distance) calculation: advanced interface.

    Graph edit path is a sequence of node and edge edit operations
    transforming graph G1 to graph isomorphic to G2.  Edit operations
    include substitutions, deletions, and insertions.

    Graph edit distance is defined as minimum cost of edit path.

    Parameters
    ----------
    G1, G2: graphs
        The two graphs G1 and G2 must be of the same type.

    node_match : callable
        A function that returns True if node n1 in G1 and n2 in G2
        should be considered equal during matching.

        The function will be called like

           node_match(G1.nodes[n1], G2.nodes[n2]).

        That is, the function will receive the node attribute
        dictionaries for n1 and n2 as inputs.

        Ignored if node_subst_cost is specified.  If neither
        node_match nor node_subst_cost are specified then node
        attributes are not considered.

    edge_match : callable
        A function that returns True if the edge attribute dictionaries
        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
        be considered equal during matching.

        The function will be called like

           edge_match(G1[u1][v1], G2[u2][v2]).

        That is, the function will receive the edge attribute
        dictionaries of the edges under consideration.

        Ignored if edge_subst_cost is specified.  If neither
        edge_match nor edge_subst_cost are specified then edge
        attributes are not considered.

    node_subst_cost, node_del_cost, node_ins_cost : callable
        Functions that return the costs of node substitution, node
        deletion, and node insertion, respectively.

        The functions will be called like

           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
           node_del_cost(G1.nodes[n1]),
           node_ins_cost(G2.nodes[n2]).

        That is, the functions will receive the node attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function node_subst_cost overrides node_match if specified.
        If neither node_match nor node_subst_cost are specified then
        default node substitution cost of 0 is used (node attributes
        are not considered during matching).

        If node_del_cost is not specified then default node deletion
        cost of 1 is used.  If node_ins_cost is not specified then
        default node insertion cost of 1 is used.

    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
        Functions that return the costs of edge substitution, edge
        deletion, and edge insertion, respectively.

        The functions will be called like

           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
           edge_del_cost(G1[u1][v1]),
           edge_ins_cost(G2[u2][v2]).

        That is, the functions will receive the edge attribute
        dictionaries as inputs.  The functions are expected to return
        positive numeric values.

        Function edge_subst_cost overrides edge_match if specified.
        If neither edge_match nor edge_subst_cost are specified then
        default edge substitution cost of 0 is used (edge attributes
        are not considered during matching).

        If edge_del_cost is not specified then default edge deletion
        cost of 1 is used.  If edge_ins_cost is not specified then
        default edge insertion cost of 1 is used.

    upper_bound : numeric
        Maximum edit distance to consider.

    strictly_decreasing : bool
        If True, return consecutive approximations of strictly
        decreasing cost.  Otherwise, return all edit paths of cost
        less than or equal to the previous minimum cost.

    roots : 2-tuple
        Tuple where first element is a node in G1 and the second
        is a node in G2.
        These nodes are forced to be matched in the comparison to
        allow comparison between rooted graphs.

    timeout : numeric
        Maximum number of seconds to execute.
        After timeout is met, the current best GED is returned.

    Returns
    -------
    Generator of tuples (node_edit_path, edge_edit_path, cost)
        node_edit_path : list of tuples (u, v)
        edge_edit_path : list of tuples ((u1, v1), (u2, v2))
        cost : numeric

    See Also
    --------
    graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths

    References
    ----------
    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
       Martineau. An Exact Graph Edit Distance Algorithm for Solving
       Pattern Recognition Problems. 4th International Conference on
       Pattern Recognition Applications and Methods 2015, Jan 2015,
       Lisbon, Portugal. 2015,
       <10.5220/0005209202710278>. <hal-01168816>
       https://hal.archives-ouvertes.fr/hal-01168816

    """
    # TODO: support DiGraph

    import numpy as np
    import scipy as sp
    import scipy.optimize  # call as sp.optimize

    class CostMatrix:
        def __init__(self, C, lsa_row_ind, lsa_col_ind, ls):
            # assert C.shape[0] == len(lsa_row_ind)
            # assert C.shape[1] == len(lsa_col_ind)
            # assert len(lsa_row_ind) == len(lsa_col_ind)
            # assert set(lsa_row_ind) == set(range(len(lsa_row_ind)))
            # assert set(lsa_col_ind) == set(range(len(lsa_col_ind)))
            # assert ls == C[lsa_row_ind, lsa_col_ind].sum()
            self.C = C
            self.lsa_row_ind = lsa_row_ind
            self.lsa_col_ind = lsa_col_ind
            self.ls = ls

    def make_CostMatrix(C, m, n):
        # assert(C.shape == (m + n, m + n))
        lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C)

        # Fixup dummy assignments:
        # each substitution i<->j should have dummy assignment m+j<->n+i
        # NOTE: fast reduce of Cv relies on it
        # assert len(lsa_row_ind) == len(lsa_col_ind)
        indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
        subst_ind = list(k for k, i, j in indexes if i < m and j < n)
        indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
        dummy_ind = list(k for k, i, j in indexes if i >= m and j >= n)
        # assert len(subst_ind) == len(dummy_ind)
        lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m
        lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n

        return CostMatrix(
            C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum()
        )

    def extract_C(C, i, j, m, n):
        # assert(C.shape == (m + n, m + n))
        row_ind = [k in i or k - m in j for k in range(m + n)]
        col_ind = [k in j or k - n in i for k in range(m + n)]
        return C[row_ind, :][:, col_ind]

    def reduce_C(C, i, j, m, n):
        # assert(C.shape == (m + n, m + n))
        row_ind = [k not in i and k - m not in j for k in range(m + n)]
        col_ind = [k not in j and k - n not in i for k in range(m + n)]
        return C[row_ind, :][:, col_ind]

    def reduce_ind(ind, i):
        # assert set(ind) == set(range(len(ind)))
        rind = ind[[k not in i for k in ind]]
        for k in set(i):
            rind[rind >= k] -= 1
        return rind

    def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=[]):
        """
        Parameters:
            u, v: matched vertices, u=None or v=None for
               deletion/insertion
            pending_g, pending_h: lists of edges not yet mapped
            Ce: CostMatrix of pending edge mappings
            matched_uv: partial vertex edit path
                list of tuples (u, v) of previously matched vertex
                    mappings u<->v, u=None or v=None for
                    deletion/insertion

        Returns:
            list of (i, j): indices of edge mappings g<->h
            localCe: local CostMatrix of edge mappings
                (basically submatrix of Ce at cross of rows i, cols j)
        """
        M = len(pending_g)
        N = len(pending_h)
        # assert Ce.C.shape == (M + N, M + N)

        g_ind = [
            i
            for i in range(M)
            if pending_g[i][:2] == (u, u)
            or any(pending_g[i][:2] in ((p, u), (u, p)) for p, q in matched_uv)
        ]
        h_ind = [
            j
            for j in range(N)
            if pending_h[j][:2] == (v, v)
            or any(pending_h[j][:2] in ((q, v), (v, q)) for p, q in matched_uv)
        ]
        m = len(g_ind)
        n = len(h_ind)

        if m or n:
            C = extract_C(Ce.C, g_ind, h_ind, M, N)
            # assert C.shape == (m + n, m + n)

            # Forbid structurally invalid matches
            # NOTE: inf remembered from Ce construction
            for k, i in zip(range(m), g_ind):
                g = pending_g[i][:2]
                for l, j in zip(range(n), h_ind):
                    h = pending_h[j][:2]
                    if nx.is_directed(G1) or nx.is_directed(G2):
                        if any(
                            g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q)
                            for p, q in matched_uv
                        ):
                            continue
                    else:
                        if any(
                            g in ((p, u), (u, p)) and h in ((q, v), (v, q))
                            for p, q in matched_uv
                        ):
                            continue
                    if g == (u, u):
                        continue
                    if h == (v, v):
                        continue
                    C[k, l] = inf

            localCe = make_CostMatrix(C, m, n)
            ij = list(
                (
                    g_ind[k] if k < m else M + h_ind[l],
                    h_ind[l] if l < n else N + g_ind[k],
                )
                for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind)
                if k < m or l < n
            )

        else:
            ij = []
            localCe = CostMatrix(np.empty((0, 0)), [], [], 0)

        return ij, localCe

    def reduce_Ce(Ce, ij, m, n):
        if len(ij):
            i, j = zip(*ij)
            m_i = m - sum(1 for t in i if t < m)
            n_j = n - sum(1 for t in j if t < n)
            return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j)
        else:
            return Ce

    def get_edit_ops(
        matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost
    ):
        """
        Parameters:
            matched_uv: partial vertex edit path
                list of tuples (u, v) of vertex mappings u<->v,
                u=None or v=None for deletion/insertion
            pending_u, pending_v: lists of vertices not yet mapped
            Cv: CostMatrix of pending vertex mappings
            pending_g, pending_h: lists of edges not yet mapped
            Ce: CostMatrix of pending edge mappings
            matched_cost: cost of partial edit path

        Returns:
            sequence of
                (i, j): indices of vertex mapping u<->v
                Cv_ij: reduced CostMatrix of pending vertex mappings
                    (basically Cv with row i, col j removed)
                list of (x, y): indices of edge mappings g<->h
                Ce_xy: reduced CostMatrix of pending edge mappings
                    (basically Ce with rows x, cols y removed)
                cost: total cost of edit operation
            NOTE: most promising ops first
        """
        m = len(pending_u)
        n = len(pending_v)
        # assert Cv.C.shape == (m + n, m + n)

        # 1) a vertex mapping from optimal linear sum assignment
        i, j = min(
            (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n
        )
        xy, localCe = match_edges(
            pending_u[i] if i < m else None,
            pending_v[j] if j < n else None,
            pending_g,
            pending_h,
            Ce,
            matched_uv,
        )
        Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
        # assert Ce.ls <= localCe.ls + Ce_xy.ls
        if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls):
            pass
        else:
            # get reduced Cv efficiently
            Cv_ij = CostMatrix(
                reduce_C(Cv.C, (i,), (j,), m, n),
                reduce_ind(Cv.lsa_row_ind, (i, m + j)),
                reduce_ind(Cv.lsa_col_ind, (j, n + i)),
                Cv.ls - Cv.C[i, j],
            )
            yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls

        # 2) other candidates, sorted by lower-bound cost estimate
        other = list()
        fixed_i, fixed_j = i, j
        if m <= n:
            candidates = (
                (t, fixed_j)
                for t in range(m + n)
                if t != fixed_i and (t < m or t == m + fixed_j)
            )
        else:
            candidates = (
                (fixed_i, t)
                for t in range(m + n)
                if t != fixed_j and (t < n or t == n + fixed_i)
            )
        for i, j in candidates:
            if prune(matched_cost + Cv.C[i, j] + Ce.ls):
                continue
            Cv_ij = make_CostMatrix(
                reduce_C(Cv.C, (i,), (j,), m, n),
                m - 1 if i < m else m,
                n - 1 if j < n else n,
            )
            # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls
            if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls):
                continue
            xy, localCe = match_edges(
                pending_u[i] if i < m else None,
                pending_v[j] if j < n else None,
                pending_g,
                pending_h,
                Ce,
                matched_uv,
            )
            if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls):
                continue
            Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
            # assert Ce.ls <= localCe.ls + Ce_xy.ls
            if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls):
                continue
            other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls))

        yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls)

    def get_edit_paths(
        matched_uv,
        pending_u,
        pending_v,
        Cv,
        matched_gh,
        pending_g,
        pending_h,
        Ce,
        matched_cost,
    ):
        """
        Parameters:
            matched_uv: partial vertex edit path
                list of tuples (u, v) of vertex mappings u<->v,
                u=None or v=None for deletion/insertion
            pending_u, pending_v: lists of vertices not yet mapped
            Cv: CostMatrix of pending vertex mappings
            matched_gh: partial edge edit path
                list of tuples (g, h) of edge mappings g<->h,
                g=None or h=None for deletion/insertion
            pending_g, pending_h: lists of edges not yet mapped
            Ce: CostMatrix of pending edge mappings
            matched_cost: cost of partial edit path

        Returns:
            sequence of (vertex_path, edge_path, cost)
                vertex_path: complete vertex edit path
                    list of tuples (u, v) of vertex mappings u<->v,
                    u=None or v=None for deletion/insertion
                edge_path: complete edge edit path
                    list of tuples (g, h) of edge mappings g<->h,
                    g=None or h=None for deletion/insertion
                cost: total cost of edit path
            NOTE: path costs are non-increasing
        """
        # debug_print('matched-uv:', matched_uv)
        # debug_print('matched-gh:', matched_gh)
        # debug_print('matched-cost:', matched_cost)
        # debug_print('pending-u:', pending_u)
        # debug_print('pending-v:', pending_v)
        # debug_print(Cv.C)
        # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u))
        # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v))
        # debug_print('pending-g:', pending_g)
        # debug_print('pending-h:', pending_h)
        # debug_print(Ce.C)
        # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g))
        # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h))
        # debug_print()

        if prune(matched_cost + Cv.ls + Ce.ls):
            return

        if not max(len(pending_u), len(pending_v)):
            # assert not len(pending_g)
            # assert not len(pending_h)
            # path completed!
            # assert matched_cost <= maxcost.value
            maxcost.value = min(maxcost.value, matched_cost)
            yield matched_uv, matched_gh, matched_cost

        else:
            edit_ops = get_edit_ops(
                matched_uv,
                pending_u,
                pending_v,
                Cv,
                pending_g,
                pending_h,
                Ce,
                matched_cost,
            )
            for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops:
                i, j = ij
                # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost
                if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls):
                    continue

                # dive deeper
                u = pending_u.pop(i) if i < len(pending_u) else None
                v = pending_v.pop(j) if j < len(pending_v) else None
                matched_uv.append((u, v))
                for x, y in xy:
                    len_g = len(pending_g)
                    len_h = len(pending_h)
                    matched_gh.append(
                        (
                            pending_g[x] if x < len_g else None,
                            pending_h[y] if y < len_h else None,
                        )
                    )
                sortedx = list(sorted(x for x, y in xy))
                sortedy = list(sorted(y for x, y in xy))
                G = list(
                    (pending_g.pop(x) if x < len(pending_g) else None)
                    for x in reversed(sortedx)
                )
                H = list(
                    (pending_h.pop(y) if y < len(pending_h) else None)
                    for y in reversed(sortedy)
                )

                yield from get_edit_paths(
                    matched_uv,
                    pending_u,
                    pending_v,
                    Cv_ij,
                    matched_gh,
                    pending_g,
                    pending_h,
                    Ce_xy,
                    matched_cost + edit_cost,
                )

                # backtrack
                if u is not None:
                    pending_u.insert(i, u)
                if v is not None:
                    pending_v.insert(j, v)
                matched_uv.pop()
                for x, g in zip(sortedx, reversed(G)):
                    if g is not None:
                        pending_g.insert(x, g)
                for y, h in zip(sortedy, reversed(H)):
                    if h is not None:
                        pending_h.insert(y, h)
                for t in xy:
                    matched_gh.pop()

    # Initialization

    pending_u = list(G1.nodes)
    pending_v = list(G2.nodes)

    initial_cost = 0
    if roots:
        root_u, root_v = roots
        if root_u not in pending_u or root_v not in pending_v:
            raise nx.NodeNotFound("Root node not in graph.")

        # remove roots from pending
        pending_u.remove(root_u)
        pending_v.remove(root_v)

    # cost matrix of vertex mappings
    m = len(pending_u)
    n = len(pending_v)
    C = np.zeros((m + n, m + n))
    if node_subst_cost:
        C[0:m, 0:n] = np.array(
            [
                node_subst_cost(G1.nodes[u], G2.nodes[v])
                for u in pending_u
                for v in pending_v
            ]
        ).reshape(m, n)
        if roots:
            initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v])
    elif node_match:
        C[0:m, 0:n] = np.array(
            [
                1 - int(node_match(G1.nodes[u], G2.nodes[v]))
                for u in pending_u
                for v in pending_v
            ]
        ).reshape(m, n)
        if roots:
            initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v])
    else:
        # all zeroes
        pass
    # assert not min(m, n) or C[0:m, 0:n].min() >= 0
    if node_del_cost:
        del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u]
    else:
        del_costs = [1] * len(pending_u)
    # assert not m or min(del_costs) >= 0
    if node_ins_cost:
        ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v]
    else:
        ins_costs = [1] * len(pending_v)
    # assert not n or min(ins_costs) >= 0
    inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
    C[0:m, n : n + m] = np.array(
        [del_costs[i] if i == j else inf for i in range(m) for j in range(m)]
    ).reshape(m, m)
    C[m : m + n, 0:n] = np.array(
        [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)]
    ).reshape(n, n)
    Cv = make_CostMatrix(C, m, n)
    # debug_print(f"Cv: {m} x {n}")
    # debug_print(Cv.C)

    pending_g = list(G1.edges)
    pending_h = list(G2.edges)

    # cost matrix of edge mappings
    m = len(pending_g)
    n = len(pending_h)
    C = np.zeros((m + n, m + n))
    if edge_subst_cost:
        C[0:m, 0:n] = np.array(
            [
                edge_subst_cost(G1.edges[g], G2.edges[h])
                for g in pending_g
                for h in pending_h
            ]
        ).reshape(m, n)
    elif edge_match:
        C[0:m, 0:n] = np.array(
            [
                1 - int(edge_match(G1.edges[g], G2.edges[h]))
                for g in pending_g
                for h in pending_h
            ]
        ).reshape(m, n)
    else:
        # all zeroes
        pass
    # assert not min(m, n) or C[0:m, 0:n].min() >= 0
    if edge_del_cost:
        del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g]
    else:
        del_costs = [1] * len(pending_g)
    # assert not m or min(del_costs) >= 0
    if edge_ins_cost:
        ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h]
    else:
        ins_costs = [1] * len(pending_h)
    # assert not n or min(ins_costs) >= 0
    inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
    C[0:m, n : n + m] = np.array(
        [del_costs[i] if i == j else inf for i in range(m) for j in range(m)]
    ).reshape(m, m)
    C[m : m + n, 0:n] = np.array(
        [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)]
    ).reshape(n, n)
    Ce = make_CostMatrix(C, m, n)
    # debug_print(f'Ce: {m} x {n}')
    # debug_print(Ce.C)
    # debug_print()

    class MaxCost:
        def __init__(self):
            # initial upper-bound estimate
            # NOTE: should work for empty graph
            self.value = Cv.C.sum() + Ce.C.sum() + 1

    maxcost = MaxCost()

    if timeout is not None:
        if timeout <= 0:
            raise nx.NetworkXError("Timeout value must be greater than 0")
        start = time.perf_counter()

    def prune(cost):
        if timeout is not None:
            if time.perf_counter() - start > timeout:
                return True
        if upper_bound is not None:
            if cost > upper_bound:
                return True
        if cost > maxcost.value:
            return True
        elif strictly_decreasing and cost >= maxcost.value:
            return True

    # Now go!

    done_uv = [] if roots is None else [roots]

    for vertex_path, edge_path, cost in get_edit_paths(
        done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost
    ):
        # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None)
        # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None)
        # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None)
        # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None)
        # print(vertex_path, edge_path, cost, file = sys.stderr)
        # assert cost == maxcost.value
        yield list(vertex_path), list(edge_path), cost


def simrank_similarity(
    G,
    source=None,
    target=None,
    importance_factor=0.9,
    max_iterations=1000,
    tolerance=1e-4,
):
    """Returns the SimRank similarity of nodes in the graph ``G``.

    SimRank is a similarity metric that says "two objects are considered
    to be similar if they are referenced by similar objects." [1]_.

    The pseudo-code definition from the paper is::

        def simrank(G, u, v):
            in_neighbors_u = G.predecessors(u)
            in_neighbors_v = G.predecessors(v)
            scale = C / (len(in_neighbors_u) * len(in_neighbors_v))
            return scale * sum(simrank(G, w, x)
                               for w, x in product(in_neighbors_u,
                                                   in_neighbors_v))

    where ``G`` is the graph, ``u`` is the source, ``v`` is the target,
    and ``C`` is a float decay or importance factor between 0 and 1.

    The SimRank algorithm for determining node similarity is defined in
    [2]_.

    Parameters
    ----------
    G : NetworkX graph
        A NetworkX graph

    source : node
        If this is specified, the returned dictionary maps each node
        ``v`` in the graph to the similarity between ``source`` and
        ``v``.

    target : node
        If both ``source`` and ``target`` are specified, the similarity
        value between ``source`` and ``target`` is returned. If
        ``target`` is specified but ``source`` is not, this argument is
        ignored.

    importance_factor : float
        The relative importance of indirect neighbors with respect to
        direct neighbors.

    max_iterations : integer
        Maximum number of iterations.

    tolerance : float
        Error tolerance used to check convergence. When an iteration of
        the algorithm finds that no similarity value changes more than
        this amount, the algorithm halts.

    Returns
    -------
    similarity : dictionary or float
        If ``source`` and ``target`` are both ``None``, this returns a
        dictionary of dictionaries, where keys are node pairs and value
        are similarity of the pair of nodes.

        If ``source`` is not ``None`` but ``target`` is, this returns a
        dictionary mapping node to the similarity of ``source`` and that
        node.

        If neither ``source`` nor ``target`` is ``None``, this returns
        the similarity value for the given pair of nodes.

    Examples
    --------
    >>> G = nx.cycle_graph(2)
    >>> nx.simrank_similarity(G)
    {0: {0: 1.0, 1: 0.0}, 1: {0: 0.0, 1: 1.0}}
    >>> nx.simrank_similarity(G, source=0)
    {0: 1.0, 1: 0.0}
    >>> nx.simrank_similarity(G, source=0, target=0)
    1.0

    The result of this function can be converted to a numpy array
    representing the SimRank matrix by using the node order of the
    graph to determine which row and column represent each node.
    Other ordering of nodes is also possible.

    >>> import numpy as np
    >>> sim = nx.simrank_similarity(G)
    >>> np.array([[sim[u][v] for v in G] for u in G])
    array([[1., 0.],
           [0., 1.]])
    >>> sim_1d = nx.simrank_similarity(G, source=0)
    >>> np.array([sim[0][v] for v in G])
    array([1., 0.])

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/SimRank
    .. [2] G. Jeh and J. Widom.
           "SimRank: a measure of structural-context similarity",
           In KDD'02: Proceedings of the Eighth ACM SIGKDD
           International Conference on Knowledge Discovery and Data Mining,
           pp. 538--543. ACM Press, 2002.
    """
    import numpy as np

    nodelist = list(G)
    s_indx = None if source is None else nodelist.index(source)
    t_indx = None if target is None else nodelist.index(target)

    x = _simrank_similarity_numpy(
        G, s_indx, t_indx, importance_factor, max_iterations, tolerance
    )

    if isinstance(x, np.ndarray):
        if x.ndim == 1:
            return {node: val for node, val in zip(G, x)}
        else:  # x.ndim == 2:
            return {u: dict(zip(G, row)) for u, row in zip(G, x)}
    return x


def _simrank_similarity_python(
    G,
    source=None,
    target=None,
    importance_factor=0.9,
    max_iterations=1000,
    tolerance=1e-4,
):
    """Returns the SimRank similarity of nodes in the graph ``G``.

    This pure Python version is provided for pedagogical purposes.

    Examples
    --------
    >>> G = nx.cycle_graph(2)
    >>> nx.similarity._simrank_similarity_python(G)
    {0: {0: 1, 1: 0.0}, 1: {0: 0.0, 1: 1}}
    >>> nx.similarity._simrank_similarity_python(G, source=0)
    {0: 1, 1: 0.0}
    >>> nx.similarity._simrank_similarity_python(G, source=0, target=0)
    1
    """
    # build up our similarity adjacency dictionary output
    newsim = {u: {v: 1 if u == v else 0 for v in G} for u in G}

    # These functions compute the update to the similarity value of the nodes
    # `u` and `v` with respect to the previous similarity values.
    def avg_sim(s):
        return sum(newsim[w][x] for (w, x) in s) / len(s) if s else 0.0

    Gadj = G.pred if G.is_directed() else G.adj

    def sim(u, v):
        return importance_factor * avg_sim(list(product(Gadj[u], Gadj[v])))

    for its in range(max_iterations):
        oldsim = newsim
        newsim = {u: {v: sim(u, v) if u is not v else 1 for v in G} for u in G}
        is_close = all(
            all(
                abs(newsim[u][v] - old) <= tolerance * (1 + abs(old))
                for v, old in nbrs.items()
            )
            for u, nbrs in oldsim.items()
        )
        if is_close:
            break

    if its + 1 == max_iterations:
        raise nx.ExceededMaxIterations(
            f"simrank did not converge after {max_iterations} iterations."
        )

    if source is not None and target is not None:
        return newsim[source][target]
    if source is not None:
        return newsim[source]
    return newsim


def _simrank_similarity_numpy(
    G,
    source=None,
    target=None,
    importance_factor=0.9,
    max_iterations=1000,
    tolerance=1e-4,
):
    """Calculate SimRank of nodes in ``G`` using matrices with ``numpy``.

    The SimRank algorithm for determining node similarity is defined in
    [1]_.

    Parameters
    ----------
    G : NetworkX graph
        A NetworkX graph

    source : node
        If this is specified, the returned dictionary maps each node
        ``v`` in the graph to the similarity between ``source`` and
        ``v``.

    target : node
        If both ``source`` and ``target`` are specified, the similarity
        value between ``source`` and ``target`` is returned. If
        ``target`` is specified but ``source`` is not, this argument is
        ignored.

    importance_factor : float
        The relative importance of indirect neighbors with respect to
        direct neighbors.

    max_iterations : integer
        Maximum number of iterations.

    tolerance : float
        Error tolerance used to check convergence. When an iteration of
        the algorithm finds that no similarity value changes more than
        this amount, the algorithm halts.

    Returns
    -------
    similarity : numpy matrix, numpy array or float
        If ``source`` and ``target`` are both ``None``, this returns a
        Matrix containing SimRank scores of the nodes.

        If ``source`` is not ``None`` but ``target`` is, this returns an
        Array containing SimRank scores of ``source`` and that
        node.

        If neither ``source`` nor ``target`` is ``None``, this returns
        the similarity value for the given pair of nodes.

    Examples
    --------
    >>> G = nx.cycle_graph(2)
    >>> nx.similarity._simrank_similarity_numpy(G)
    array([[1., 0.],
           [0., 1.]])
    >>> nx.similarity._simrank_similarity_numpy(G, source=0)
    array([1., 0.])
    >>> nx.similarity._simrank_similarity_numpy(G, source=0, target=0)
    1.0

    References
    ----------
    .. [1] G. Jeh and J. Widom.
           "SimRank: a measure of structural-context similarity",
           In KDD'02: Proceedings of the Eighth ACM SIGKDD
           International Conference on Knowledge Discovery and Data Mining,
           pp. 538--543. ACM Press, 2002.
    """
    # This algorithm follows roughly
    #
    #     S = max{C * (A.T * S * A), I}
    #
    # where C is the importance factor, A is the column normalized
    # adjacency matrix, and I is the identity matrix.
    import numpy as np

    adjacency_matrix = nx.to_numpy_array(G)

    # column-normalize the ``adjacency_matrix``
    s = np.array(adjacency_matrix.sum(axis=0))
    s[s == 0] = 1
    adjacency_matrix /= s  # adjacency_matrix.sum(axis=0)

    newsim = np.eye(len(G), dtype=np.float64)
    for its in range(max_iterations):
        prevsim = newsim.copy()
        newsim = importance_factor * ((adjacency_matrix.T @ prevsim) @ adjacency_matrix)
        np.fill_diagonal(newsim, 1.0)

        if np.allclose(prevsim, newsim, atol=tolerance):
            break

    if its + 1 == max_iterations:
        raise nx.ExceededMaxIterations(
            f"simrank did not converge after {max_iterations} iterations."
        )

    if source is not None and target is not None:
        return newsim[source, target]
    if source is not None:
        return newsim[source]
    return newsim


def simrank_similarity_numpy(
    G,
    source=None,
    target=None,
    importance_factor=0.9,
    max_iterations=100,
    tolerance=1e-4,
):
    """Calculate SimRank of nodes in ``G`` using matrices with ``numpy``.

    .. deprecated:: 2.6
        simrank_similarity_numpy is deprecated and will be removed in networkx 3.0.
        Use simrank_similarity

    """
    warnings.warn(
        (
            "networkx.simrank_similarity_numpy is deprecated and will be removed"
            "in NetworkX 3.0, use networkx.simrank_similarity instead."
        ),
        DeprecationWarning,
        stacklevel=2,
    )
    return _simrank_similarity_numpy(
        G, source, target, importance_factor, max_iterations, tolerance
    )


# TODO replace w/ math.comb(n, k) for Python 3.8+
def _n_choose_k(n, k):
    """Pure Python implementation of the binomial coefficient

    The general equation is n! / (k! * (n - k)!). The below
    implementation is a more efficient version.

    Note: this will be removed in favor of Python 3.8's ``math.comb(n, k)``.

    Parameters
    ----------
    n : int
        Set of ``n`` elements
    k : int
        Unordered chosen subset of length ``k``

    Returns
    -------
    binomial_coeff : int
        The number of ways (disregarding order) that k objects
        can be chosen from among n objects.

    Examples
    --------
    >>> _n_choose_k(5, 2)
    10
    >>> _n_choose_k(5, 4)
    5
    >>> _n_choose_k(100, 100)
    1

    """
    if k > n:
        return 0
    if n == k:
        return 1
    elif k < n - k:
        return reduce(mul, range(n - k + 1, n + 1)) // math.factorial(k)
    else:
        return reduce(mul, range(k + 1, n + 1)) // math.factorial(n - k)


def panther_similarity(G, source, k=5, path_length=5, c=0.5, delta=0.1, eps=None):
    r"""Returns the Panther similarity of nodes in the graph `G` to node ``v``.

    Panther is a similarity metric that says "two objects are considered
    to be similar if they frequently appear on the same paths." [1]_.

    Parameters
    ----------
    G : NetworkX graph
        A NetworkX graph
    source : node
        Source node for which to find the top `k` similar other nodes
    k : int (default = 5)
        The number of most similar nodes to return
    path_length : int (default = 5)
        How long the randomly generated paths should be (``T`` in [1]_)
    c : float (default = 0.5)
        A universal positive constant used to scale the number
        of sample random paths to generate.
    delta : float (default = 0.1)
        The probability that the similarity $S$ is not an epsilon-approximation to (R, phi),
        where $R$ is the number of random paths and $\phi$ is the probability
        that an element sampled from a set $A \subseteq D$, where $D$ is the domain.
    eps : float or None (default = None)
        The error bound. Per [1]_, a good value is ``sqrt(1/|E|)``. Therefore,
        if no value is provided, the recommended computed value will be used.

    Returns
    -------
    similarity : dictionary
        Dictionary of nodes to similarity scores (as floats). Note:
        the self-similarity (i.e., ``v``) will not be included in
        the returned dictionary.

    Examples
    --------
    >>> G = nx.star_graph(10)
    >>> sim = nx.panther_similarity(G, 0)

    References
    ----------
    .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J.
           Panther: Fast top-k similarity search on large networks.
           In Proceedings of the ACM SIGKDD International Conference
           on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454).
           Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
    """
    import numpy as np

    num_nodes = G.number_of_nodes()
    if num_nodes < k:
        warnings.warn(
            f"Number of nodes is {num_nodes}, but requested k is {k}. "
            "Setting k to number of nodes."
        )
        k = num_nodes
    # According to [1], they empirically determined
    # a good value for ``eps`` to be sqrt( 1 / |E| )
    if eps is None:
        eps = np.sqrt(1.0 / G.number_of_edges())

    inv_node_map = {name: index for index, name in enumerate(G.nodes)}
    node_map = np.array(G)

    # Calculate the sample size ``R`` for how many paths
    # to randomly generate
    t_choose_2 = _n_choose_k(path_length, 2)
    sample_size = int((c / eps ** 2) * (np.log2(t_choose_2) + 1 + np.log(1 / delta)))
    index_map = {}
    _ = list(
        generate_random_paths(
            G, sample_size, path_length=path_length, index_map=index_map
        )
    )
    S = np.zeros(num_nodes)

    inv_sample_size = 1 / sample_size

    source_paths = set(index_map[source])

    # Calculate the path similarities
    # between ``source`` (v) and ``node`` (v_j)
    # using our inverted index mapping of
    # vertices to paths
    for node, paths in index_map.items():
        # Only consider paths where both
        # ``node`` and ``source`` are present
        common_paths = source_paths.intersection(paths)
        S[inv_node_map[node]] = len(common_paths) * inv_sample_size

    # Retrieve top ``k`` similar
    # Note: the below performed anywhere from 4-10x faster
    # (depending on input sizes) vs the equivalent ``np.argsort(S)[::-1]``
    top_k_unsorted = np.argpartition(S, -k)[-k:]
    top_k_sorted = top_k_unsorted[np.argsort(S[top_k_unsorted])][::-1]

    # Add back the similarity scores
    top_k_sorted_names = map(lambda n: node_map[n], top_k_sorted)
    top_k_with_val = dict(zip(top_k_sorted_names, S[top_k_sorted]))

    # Remove the self-similarity
    top_k_with_val.pop(source, None)
    return top_k_with_val


def generate_random_paths(G, sample_size, path_length=5, index_map=None):
    """Randomly generate `sample_size` paths of length `path_length`.

    Parameters
    ----------
    G : NetworkX graph
        A NetworkX graph
    sample_size : integer
        The number of paths to generate. This is ``R`` in [1]_.
    path_length : integer (default = 5)
        The maximum size of the path to randomly generate.
        This is ``T`` in [1]_. According to the paper, ``T >= 5`` is
        recommended.
    index_map : dictionary, optional
        If provided, this will be populated with the inverted
        index of nodes mapped to the set of generated random path
        indices within ``paths``.

    Returns
    -------
    paths : generator of lists
        Generator of `sample_size` paths each with length `path_length`.

    Examples
    --------
    Note that the return value is the list of paths:

    >>> G = nx.star_graph(3)
    >>> random_path = nx.generate_random_paths(G, 2)

    By passing a dictionary into `index_map`, it will build an
    inverted index mapping of nodes to the paths in which that node is present:

    >>> G = nx.star_graph(3)
    >>> index_map = {}
    >>> random_path = nx.generate_random_paths(G, 3, index_map=index_map)
    >>> paths_containing_node_0 = [random_path[path_idx] for path_idx in index_map.get(0, [])]

    References
    ----------
    .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J.
           Panther: Fast top-k similarity search on large networks.
           In Proceedings of the ACM SIGKDD International Conference
           on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454).
           Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
    """
    import numpy as np

    # Calculate transition probabilities between
    # every pair of vertices according to Eq. (3)
    adj_mat = nx.to_numpy_array(G)
    inv_row_sums = np.reciprocal(adj_mat.sum(axis=1)).reshape(-1, 1)
    transition_probabilities = adj_mat * inv_row_sums

    node_map = np.array(G)
    num_nodes = G.number_of_nodes()

    for path_index in range(sample_size):
        # Sample current vertex v = v_i uniformly at random
        node_index = np.random.randint(0, high=num_nodes)
        node = node_map[node_index]

        # Add v into p_r and add p_r into the path set
        # of v, i.e., P_v
        path = [node]

        # Build the inverted index (P_v) of vertices to paths
        if index_map is not None:
            if node in index_map:
                index_map[node].add(path_index)
            else:
                index_map[node] = {path_index}

        starting_index = node_index
        for _ in range(path_length):
            # Randomly sample a neighbor (v_j) according
            # to transition probabilities from ``node`` (v) to its neighbors
            neighbor_index = np.random.choice(
                num_nodes, p=transition_probabilities[starting_index]
            )

            # Set current vertex (v = v_j)
            starting_index = neighbor_index

            # Add v into p_r
            neighbor_node = node_map[neighbor_index]
            path.append(neighbor_node)

            # Add p_r into P_v
            if index_map is not None:
                if neighbor_node in index_map:
                    index_map[neighbor_node].add(path_index)
                else:
                    index_map[neighbor_node] = {path_index}

        yield path