summaryrefslogtreecommitdiff
path: root/networkx/algorithms/operators/binary.py
blob: a3bbab36ccea6dfb14c9bdfb56313095094b360e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
Operations on graphs including union, intersection, difference.
"""
import networkx as nx

__all__ = [
    "union",
    "compose",
    "disjoint_union",
    "intersection",
    "difference",
    "symmetric_difference",
    "full_join",
]


def union(G, H, rename=(None, None), name=None):
    """Return the union of graphs G and H.

    Graphs G and H must be disjoint after the renaming takes place,
    otherwise an exception is raised.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph

    rename : tuple , default=(None, None)
       Node names of G and H can be changed by specifying the tuple
       rename=('G-','H-') (for example).  Node "u" in G is then renamed
       "G-u" and "v" in H is renamed "H-v".

    name : string
       Specify the name for the union graph

       .. deprecated:: 2.7
           This is deprecated and will be removed in version v3.0.

    Returns
    -------
    U : A union graph with the same type as G.

    Notes
    -----
    To force a disjoint union with node relabeling, use
    disjoint_union(G,H) or convert_node_labels_to integers().

    Graph, edge, and node attributes are propagated from G and H
    to the union graph.  If a graph attribute is present in both
    G and H the value from H is used.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
    >>> H = nx.Graph([(0, 1), (0, 3), (1, 3), (1, 2)])
    >>> U = nx.union(G, H, rename=("G", "H"))
    >>> U.nodes
    NodeView(('G0', 'G1', 'G2', 'H0', 'H1', 'H3', 'H2'))
    >>> U.edges
    EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G1', 'G2'), ('H0', 'H1'), ('H0', 'H3'), ('H1', 'H3'), ('H1', 'H2')])

    See Also
    --------
    disjoint_union
    """
    if name is not None:
        import warnings

        warnings.warn(
            "name parameter is deprecated and will be removed in version 3.0",
            DeprecationWarning,
            stacklevel=2,
        )

    return nx.union_all([G, H], rename)


def disjoint_union(G, H):
    """Return the disjoint union of graphs G and H.

    This algorithm forces distinct integer node labels.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph

    Returns
    -------
    U : A union graph with the same type as G.

    Notes
    -----
    A new graph is created, of the same class as G.  It is recommended
    that G and H be either both directed or both undirected.

    The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
    relabeled len(G) to len(G)+len(H)-1.

    Graph, edge, and node attributes are propagated from G and H
    to the union graph.  If a graph attribute is present in both
    G and H the value from H is used.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
    >>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
    >>> G.nodes[0]["key1"] = 5
    >>> H.nodes[0]["key2"] = 10
    >>> U = nx.disjoint_union(G, H)
    >>> U.nodes(data=True)
    NodeDataView({0: {'key1': 5}, 1: {}, 2: {}, 3: {'key2': 10}, 4: {}, 5: {}, 6: {}})
    >>> U.edges
    EdgeView([(0, 1), (0, 2), (1, 2), (3, 4), (4, 6), (5, 6)])
    """
    return nx.disjoint_union_all([G, H])


def intersection(G, H):
    """Returns a new graph that contains only the nodes and the edges that exist in
    both G and H.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph. G and H can have different node sets but must be both graphs or both multigraphs.

    Raises
    ------
    NetworkXError
        If one is a MultiGraph and the other one is a graph.

    Returns
    -------
    GH : A new graph with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.  If you want a new graph of the intersection of G and H
    with the attributes (including edge data) from G use remove_nodes_from()
    as follows

    >>> G = nx.path_graph(3)
    >>> H = nx.path_graph(5)
    >>> R = G.copy()
    >>> R.remove_nodes_from(n for n in G if n not in H)
    >>> R.remove_edges_from(e for e in G.edges if e not in H.edges)

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
    >>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
    >>> R = nx.intersection(G, H)
    >>> R.nodes
    NodeView((0, 1, 2))
    >>> R.edges
    EdgeView([(1, 2)])
    """
    return nx.intersection_all([G, H])


def difference(G, H):
    """Returns a new graph that contains the edges that exist in G but not in H.

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph. G and H must have the same node sets.

    Returns
    -------
    D : A new graph with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.  If you want a new graph of the difference of G and H with
    the attributes (including edge data) from G use remove_nodes_from()
    as follows:

    >>> G = nx.path_graph(3)
    >>> H = nx.path_graph(5)
    >>> R = G.copy()
    >>> R.remove_nodes_from(n for n in G if n in H)

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
    >>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
    >>> R = nx.difference(G, H)
    >>> R.nodes
    NodeView((0, 1, 2, 3))
    >>> R.edges
    EdgeView([(0, 2), (1, 3)])
    """
    # create new graph
    if not G.is_multigraph() == H.is_multigraph():
        raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
    R = nx.create_empty_copy(G)

    if set(G) != set(H):
        raise nx.NetworkXError("Node sets of graphs not equal")

    if G.is_multigraph():
        edges = G.edges(keys=True)
    else:
        edges = G.edges()
    for e in edges:
        if not H.has_edge(*e):
            R.add_edge(*e)
    return R


def symmetric_difference(G, H):
    """Returns new graph with edges that exist in either G or H but not both.

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets.

    Returns
    -------
    D : A new graph with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
    >>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
    >>> R = nx.symmetric_difference(G, H)
    >>> R.nodes
    NodeView((0, 1, 2, 3))
    >>> R.edges
    EdgeView([(0, 2), (0, 3), (1, 3)])
    """
    # create new graph
    if not G.is_multigraph() == H.is_multigraph():
        raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
    R = nx.create_empty_copy(G)

    if set(G) != set(H):
        raise nx.NetworkXError("Node sets of graphs not equal")

    gnodes = set(G)  # set of nodes in G
    hnodes = set(H)  # set of nodes in H
    nodes = gnodes.symmetric_difference(hnodes)
    R.add_nodes_from(nodes)

    if G.is_multigraph():
        edges = G.edges(keys=True)
    else:
        edges = G.edges()
    # we could copy the data here but then this function doesn't
    # match intersection and difference
    for e in edges:
        if not H.has_edge(*e):
            R.add_edge(*e)

    if H.is_multigraph():
        edges = H.edges(keys=True)
    else:
        edges = H.edges()
    for e in edges:
        if not G.has_edge(*e):
            R.add_edge(*e)
    return R


def compose(G, H):
    """Returns a new graph of G composed with H.

    Composition is the simple union of the node sets and edge sets.
    The node sets of G and H do not need to be disjoint.

    Parameters
    ----------
    G, H : graph
       A NetworkX graph

    Returns
    -------
    C: A new graph  with the same type as G

    Notes
    -----
    It is recommended that G and H be either both directed or both undirected.
    Attributes from H take precedent over attributes from G.

    For MultiGraphs, the edges are identified by incident nodes AND edge-key.
    This can cause surprises (i.e., edge `(1, 2)` may or may not be the same
    in two graphs) if you use MultiGraph without keeping track of edge keys.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2)])
    >>> H = nx.Graph([(0, 1), (1, 2)])
    >>> R = nx.compose(G, H)
    >>> R.nodes
    NodeView((0, 1, 2))
    >>> R.edges
    EdgeView([(0, 1), (0, 2), (1, 2)])
    """
    return nx.compose_all([G, H])


def full_join(G, H, rename=(None, None)):
    """Returns the full join of graphs G and H.

    Full join is the union of G and H in which all edges between
    G and H are added.
    The node sets of G and H must be disjoint,
    otherwise an exception is raised.

    Parameters
    ----------
    G, H : graph
       A NetworkX graph

    rename : tuple , default=(None, None)
       Node names of G and H can be changed by specifying the tuple
       rename=('G-','H-') (for example).  Node "u" in G is then renamed
       "G-u" and "v" in H is renamed "H-v".

    Returns
    -------
    U : The full join graph with the same type as G.

    Notes
    -----
    It is recommended that G and H be either both directed or both undirected.

    If G is directed, then edges from G to H are added as well as from H to G.

    Note that full_join() does not produce parallel edges for MultiGraphs.

    The full join operation of graphs G and H is the same as getting
    their complement, performing a disjoint union, and finally getting
    the complement of the resulting graph.

    Graph, edge, and node attributes are propagated from G and H
    to the union graph.  If a graph attribute is present in both
    G and H the value from H is used.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2)])
    >>> H = nx.Graph([(3, 4)])
    >>> R = nx.full_join(G, H, rename=("G", "H"))
    >>> R.nodes
    NodeView(('G0', 'G1', 'G2', 'H3', 'H4'))
    >>> R.edges
    EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G0', 'H3'), ('G0', 'H4'), ('G1', 'H3'), ('G1', 'H4'), ('G2', 'H3'), ('G2', 'H4'), ('H3', 'H4')])

    See Also
    --------
    union
    disjoint_union
    """
    R = union(G, H, rename)

    def add_prefix(graph, prefix):
        if prefix is None:
            return graph

        def label(x):
            if isinstance(x, str):
                name = prefix + x
            else:
                name = prefix + repr(x)
            return name

        return nx.relabel_nodes(graph, label)

    G = add_prefix(G, rename[0])
    H = add_prefix(H, rename[1])

    for i in G:
        for j in H:
            R.add_edge(i, j)
    if R.is_directed():
        for i in H:
            for j in G:
                R.add_edge(i, j)

    return R