summaryrefslogtreecommitdiff
path: root/networkx/algorithms/dag.py
blob: f7692d1f8cac86a705503e9e6eeab2def65fbbb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
"""Algorithms for directed acyclic graphs (DAGs).

Note that most of these functions are only guaranteed to work for DAGs.
In general, these functions do not check for acyclic-ness, so it is up
to the user to check for that.
"""

import heapq
from collections import deque
from functools import partial
from itertools import chain, combinations, product, starmap
from math import gcd

import networkx as nx
from networkx.utils import arbitrary_element, not_implemented_for, pairwise

__all__ = [
    "descendants",
    "ancestors",
    "topological_sort",
    "lexicographical_topological_sort",
    "all_topological_sorts",
    "topological_generations",
    "is_directed_acyclic_graph",
    "is_aperiodic",
    "transitive_closure",
    "transitive_closure_dag",
    "transitive_reduction",
    "antichains",
    "dag_longest_path",
    "dag_longest_path_length",
    "dag_to_branching",
    "compute_v_structures",
]

chaini = chain.from_iterable


@nx.dispatch("descendants")
def descendants(G, source):
    """Returns all nodes reachable from `source` in `G`.

    Parameters
    ----------
    G : NetworkX Graph
    source : node in `G`

    Returns
    -------
    set()
        The descendants of `source` in `G`

    Raises
    ------
    NetworkXError
        If node `source` is not in `G`.

    Examples
    --------
    >>> DG = nx.path_graph(5, create_using=nx.DiGraph)
    >>> sorted(nx.descendants(DG, 2))
    [3, 4]

    The `source` node is not a descendant of itself, but can be included manually:

    >>> sorted(nx.descendants(DG, 2) | {2})
    [2, 3, 4]

    See also
    --------
    ancestors
    """
    return {child for parent, child in nx.bfs_edges(G, source)}


@nx.dispatch("ancestors")
def ancestors(G, source):
    """Returns all nodes having a path to `source` in `G`.

    Parameters
    ----------
    G : NetworkX Graph
    source : node in `G`

    Returns
    -------
    set()
        The ancestors of `source` in `G`

    Raises
    ------
    NetworkXError
        If node `source` is not in `G`.

    Examples
    --------
    >>> DG = nx.path_graph(5, create_using=nx.DiGraph)
    >>> sorted(nx.ancestors(DG, 2))
    [0, 1]

    The `source` node is not an ancestor of itself, but can be included manually:

    >>> sorted(nx.ancestors(DG, 2) | {2})
    [0, 1, 2]

    See also
    --------
    descendants
    """
    return {child for parent, child in nx.bfs_edges(G, source, reverse=True)}


def has_cycle(G):
    """Decides whether the directed graph has a cycle."""
    try:
        # Feed the entire iterator into a zero-length deque.
        deque(topological_sort(G), maxlen=0)
    except nx.NetworkXUnfeasible:
        return True
    else:
        return False


def is_directed_acyclic_graph(G):
    """Returns True if the graph `G` is a directed acyclic graph (DAG) or
    False if not.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    bool
        True if `G` is a DAG, False otherwise

    Examples
    --------
    Undirected graph::

        >>> G = nx.Graph([(1, 2), (2, 3)])
        >>> nx.is_directed_acyclic_graph(G)
        False

    Directed graph with cycle::

        >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
        >>> nx.is_directed_acyclic_graph(G)
        False

    Directed acyclic graph::

        >>> G = nx.DiGraph([(1, 2), (2, 3)])
        >>> nx.is_directed_acyclic_graph(G)
        True

    See also
    --------
    topological_sort
    """
    return G.is_directed() and not has_cycle(G)


def topological_generations(G):
    """Stratifies a DAG into generations.

    A topological generation is node collection in which ancestors of a node in each
    generation are guaranteed to be in a previous generation, and any descendants of
    a node are guaranteed to be in a following generation. Nodes are guaranteed to
    be in the earliest possible generation that they can belong to.

    Parameters
    ----------
    G : NetworkX digraph
        A directed acyclic graph (DAG)

    Yields
    ------
    sets of nodes
        Yields sets of nodes representing each generation.

    Raises
    ------
    NetworkXError
        Generations are defined for directed graphs only. If the graph
        `G` is undirected, a :exc:`NetworkXError` is raised.

    NetworkXUnfeasible
        If `G` is not a directed acyclic graph (DAG) no topological generations
        exist and a :exc:`NetworkXUnfeasible` exception is raised.  This can also
        be raised if `G` is changed while the returned iterator is being processed

    RuntimeError
        If `G` is changed while the returned iterator is being processed.

    Examples
    --------
    >>> DG = nx.DiGraph([(2, 1), (3, 1)])
    >>> [sorted(generation) for generation in nx.topological_generations(DG)]
    [[2, 3], [1]]

    Notes
    -----
    The generation in which a node resides can also be determined by taking the
    max-path-distance from the node to the farthest leaf node. That value can
    be obtained with this function using `enumerate(topological_generations(G))`.

    See also
    --------
    topological_sort
    """
    if not G.is_directed():
        raise nx.NetworkXError("Topological sort not defined on undirected graphs.")

    multigraph = G.is_multigraph()
    indegree_map = {v: d for v, d in G.in_degree() if d > 0}
    zero_indegree = [v for v, d in G.in_degree() if d == 0]

    while zero_indegree:
        this_generation = zero_indegree
        zero_indegree = []
        for node in this_generation:
            if node not in G:
                raise RuntimeError("Graph changed during iteration")
            for child in G.neighbors(node):
                try:
                    indegree_map[child] -= len(G[node][child]) if multigraph else 1
                except KeyError as err:
                    raise RuntimeError("Graph changed during iteration") from err
                if indegree_map[child] == 0:
                    zero_indegree.append(child)
                    del indegree_map[child]
        yield this_generation

    if indegree_map:
        raise nx.NetworkXUnfeasible(
            "Graph contains a cycle or graph changed during iteration"
        )


def topological_sort(G):
    """Returns a generator of nodes in topologically sorted order.

    A topological sort is a nonunique permutation of the nodes of a
    directed graph such that an edge from u to v implies that u
    appears before v in the topological sort order. This ordering is
    valid only if the graph has no directed cycles.

    Parameters
    ----------
    G : NetworkX digraph
        A directed acyclic graph (DAG)

    Yields
    ------
    nodes
        Yields the nodes in topological sorted order.

    Raises
    ------
    NetworkXError
        Topological sort is defined for directed graphs only. If the graph `G`
        is undirected, a :exc:`NetworkXError` is raised.

    NetworkXUnfeasible
        If `G` is not a directed acyclic graph (DAG) no topological sort exists
        and a :exc:`NetworkXUnfeasible` exception is raised.  This can also be
        raised if `G` is changed while the returned iterator is being processed

    RuntimeError
        If `G` is changed while the returned iterator is being processed.

    Examples
    --------
    To get the reverse order of the topological sort:

    >>> DG = nx.DiGraph([(1, 2), (2, 3)])
    >>> list(reversed(list(nx.topological_sort(DG))))
    [3, 2, 1]

    If your DiGraph naturally has the edges representing tasks/inputs
    and nodes representing people/processes that initiate tasks, then
    topological_sort is not quite what you need. You will have to change
    the tasks to nodes with dependence reflected by edges. The result is
    a kind of topological sort of the edges. This can be done
    with :func:`networkx.line_graph` as follows:

    >>> list(nx.topological_sort(nx.line_graph(DG)))
    [(1, 2), (2, 3)]

    Notes
    -----
    This algorithm is based on a description and proof in
    "Introduction to Algorithms: A Creative Approach" [1]_ .

    See also
    --------
    is_directed_acyclic_graph, lexicographical_topological_sort

    References
    ----------
    .. [1] Manber, U. (1989).
       *Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
    """
    for generation in nx.topological_generations(G):
        yield from generation


def lexicographical_topological_sort(G, key=None):
    """Generate the nodes in the unique lexicographical topological sort order.

    Generates a unique ordering of nodes by first sorting topologically (for which there are often
    multiple valid orderings) and then additionally by sorting lexicographically.

    A topological sort arranges the nodes of a directed graph so that the
    upstream node of each directed edge precedes the downstream node.
    It is always possible to find a solution for directed graphs that have no cycles.
    There may be more than one valid solution.

    Lexicographical sorting is just sorting alphabetically. It is used here to break ties in the
    topological sort and to determine a single, unique ordering.  This can be useful in comparing
    sort results.

    The lexicographical order can be customized by providing a function to the `key=` parameter.
    The definition of the key function is the same as used in python's built-in `sort()`.
    The function takes a single argument and returns a key to use for sorting purposes.

    Lexicographical sorting can fail if the node names are un-sortable. See the example below.
    The solution is to provide a function to the `key=` argument that returns sortable keys.


    Parameters
    ----------
    G : NetworkX digraph
        A directed acyclic graph (DAG)

    key : function, optional
        A function of one argument that converts a node name to a comparison key.
        It defines and resolves ambiguities in the sort order.  Defaults to the identity function.

    Yields
    ------
    nodes
        Yields the nodes of G in lexicographical topological sort order.

    Raises
    ------
    NetworkXError
        Topological sort is defined for directed graphs only. If the graph `G`
        is undirected, a :exc:`NetworkXError` is raised.

    NetworkXUnfeasible
        If `G` is not a directed acyclic graph (DAG) no topological sort exists
        and a :exc:`NetworkXUnfeasible` exception is raised.  This can also be
        raised if `G` is changed while the returned iterator is being processed

    RuntimeError
        If `G` is changed while the returned iterator is being processed.

    TypeError
        Results from un-sortable node names.
        Consider using `key=` parameter to resolve ambiguities in the sort order.

    Examples
    --------
    >>> DG = nx.DiGraph([(2, 1), (2, 5), (1, 3), (1, 4), (5, 4)])
    >>> list(nx.lexicographical_topological_sort(DG))
    [2, 1, 3, 5, 4]
    >>> list(nx.lexicographical_topological_sort(DG, key=lambda x: -x))
    [2, 5, 1, 4, 3]

    The sort will fail for any graph with integer and string nodes. Comparison of integer to strings
    is not defined in python.  Is 3 greater or less than 'red'?

    >>> DG = nx.DiGraph([(1, 'red'), (3, 'red'), (1, 'green'), (2, 'blue')])
    >>> list(nx.lexicographical_topological_sort(DG))
    Traceback (most recent call last):
    ...
    TypeError: '<' not supported between instances of 'str' and 'int'
    ...

    Incomparable nodes can be resolved using a `key` function. This example function
    allows comparison of integers and strings by returning a tuple where the first
    element is True for `str`, False otherwise. The second element is the node name.
    This groups the strings and integers separately so they can be compared only among themselves.

    >>> key = lambda node: (isinstance(node, str), node)
    >>> list(nx.lexicographical_topological_sort(DG, key=key))
    [1, 2, 3, 'blue', 'green', 'red']

    Notes
    -----
    This algorithm is based on a description and proof in
    "Introduction to Algorithms: A Creative Approach" [1]_ .

    See also
    --------
    topological_sort

    References
    ----------
    .. [1] Manber, U. (1989).
       *Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
    """
    if not G.is_directed():
        msg = "Topological sort not defined on undirected graphs."
        raise nx.NetworkXError(msg)

    if key is None:

        def key(node):
            return node

    nodeid_map = {n: i for i, n in enumerate(G)}

    def create_tuple(node):
        return key(node), nodeid_map[node], node

    indegree_map = {v: d for v, d in G.in_degree() if d > 0}
    # These nodes have zero indegree and ready to be returned.
    zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0]
    heapq.heapify(zero_indegree)

    while zero_indegree:
        _, _, node = heapq.heappop(zero_indegree)

        if node not in G:
            raise RuntimeError("Graph changed during iteration")
        for _, child in G.edges(node):
            try:
                indegree_map[child] -= 1
            except KeyError as err:
                raise RuntimeError("Graph changed during iteration") from err
            if indegree_map[child] == 0:
                try:
                    heapq.heappush(zero_indegree, create_tuple(child))
                except TypeError as err:
                    raise TypeError(
                        f"{err}\nConsider using `key=` parameter to resolve ambiguities in the sort order."
                    )
                del indegree_map[child]

        yield node

    if indegree_map:
        msg = "Graph contains a cycle or graph changed during iteration"
        raise nx.NetworkXUnfeasible(msg)


@not_implemented_for("undirected")
def all_topological_sorts(G):
    """Returns a generator of _all_ topological sorts of the directed graph G.

    A topological sort is a nonunique permutation of the nodes such that an
    edge from u to v implies that u appears before v in the topological sort
    order.

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed graph

    Yields
    ------
    topological_sort_order : list
        a list of nodes in `G`, representing one of the topological sort orders

    Raises
    ------
    NetworkXNotImplemented
        If `G` is not directed
    NetworkXUnfeasible
        If `G` is not acyclic

    Examples
    --------
    To enumerate all topological sorts of directed graph:

    >>> DG = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
    >>> list(nx.all_topological_sorts(DG))
    [[1, 2, 4, 3], [1, 2, 3, 4]]

    Notes
    -----
    Implements an iterative version of the algorithm given in [1].

    References
    ----------
    .. [1] Knuth, Donald E., Szwarcfiter, Jayme L. (1974).
       "A Structured Program to Generate All Topological Sorting Arrangements"
       Information Processing Letters, Volume 2, Issue 6, 1974, Pages 153-157,
       ISSN 0020-0190,
       https://doi.org/10.1016/0020-0190(74)90001-5.
       Elsevier (North-Holland), Amsterdam
    """
    if not G.is_directed():
        raise nx.NetworkXError("Topological sort not defined on undirected graphs.")

    # the names of count and D are chosen to match the global variables in [1]
    # number of edges originating in a vertex v
    count = dict(G.in_degree())
    # vertices with indegree 0
    D = deque([v for v, d in G.in_degree() if d == 0])
    # stack of first value chosen at a position k in the topological sort
    bases = []
    current_sort = []

    # do-while construct
    while True:
        assert all([count[v] == 0 for v in D])

        if len(current_sort) == len(G):
            yield list(current_sort)

            # clean-up stack
            while len(current_sort) > 0:
                assert len(bases) == len(current_sort)
                q = current_sort.pop()

                # "restores" all edges (q, x)
                # NOTE: it is important to iterate over edges instead
                # of successors, so count is updated correctly in multigraphs
                for _, j in G.out_edges(q):
                    count[j] += 1
                    assert count[j] >= 0
                # remove entries from D
                while len(D) > 0 and count[D[-1]] > 0:
                    D.pop()

                # corresponds to a circular shift of the values in D
                # if the first value chosen (the base) is in the first
                # position of D again, we are done and need to consider the
                # previous condition
                D.appendleft(q)
                if D[-1] == bases[-1]:
                    # all possible values have been chosen at current position
                    # remove corresponding marker
                    bases.pop()
                else:
                    # there are still elements that have not been fixed
                    # at the current position in the topological sort
                    # stop removing elements, escape inner loop
                    break

        else:
            if len(D) == 0:
                raise nx.NetworkXUnfeasible("Graph contains a cycle.")

            # choose next node
            q = D.pop()
            # "erase" all edges (q, x)
            # NOTE: it is important to iterate over edges instead
            # of successors, so count is updated correctly in multigraphs
            for _, j in G.out_edges(q):
                count[j] -= 1
                assert count[j] >= 0
                if count[j] == 0:
                    D.append(j)
            current_sort.append(q)

            # base for current position might _not_ be fixed yet
            if len(bases) < len(current_sort):
                bases.append(q)

        if len(bases) == 0:
            break


def is_aperiodic(G):
    """Returns True if `G` is aperiodic.

    A directed graph is aperiodic if there is no integer k > 1 that
    divides the length of every cycle in the graph.

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed graph

    Returns
    -------
    bool
        True if the graph is aperiodic False otherwise

    Raises
    ------
    NetworkXError
        If `G` is not directed

    Examples
    --------
    A graph consisting of one cycle, the length of which is 2. Therefore ``k = 2``
    divides the length of every cycle in the graph and thus the graph
    is *not aperiodic*::

        >>> DG = nx.DiGraph([(1, 2), (2, 1)])
        >>> nx.is_aperiodic(DG)
        False

    A graph consisting of two cycles: one of length 2 and the other of length 3.
    The cycle lengths are coprime, so there is no single value of k where ``k > 1``
    that divides each cycle length and therefore the graph is *aperiodic*::

        >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1), (1, 4), (4, 1)])
        >>> nx.is_aperiodic(DG)
        True

    A graph consisting of two cycles: one of length 2 and the other of length 4.
    The lengths of the cycles share a common factor ``k = 2``, and therefore
    the graph is *not aperiodic*::

        >>> DG = nx.DiGraph([(1, 2), (2, 1), (3, 4), (4, 5), (5, 6), (6, 3)])
        >>> nx.is_aperiodic(DG)
        False

    An acyclic graph, therefore the graph is *not aperiodic*::

        >>> DG = nx.DiGraph([(1, 2), (2, 3)])
        >>> nx.is_aperiodic(DG)
        False

    Notes
    -----
    This uses the method outlined in [1]_, which runs in $O(m)$ time
    given $m$ edges in `G`. Note that a graph is not aperiodic if it is
    acyclic as every integer trivial divides length 0 cycles.

    References
    ----------
    .. [1] Jarvis, J. P.; Shier, D. R. (1996),
       "Graph-theoretic analysis of finite Markov chains,"
       in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
       A Multidisciplinary Approach, CRC Press.
    """
    if not G.is_directed():
        raise nx.NetworkXError("is_aperiodic not defined for undirected graphs")

    s = arbitrary_element(G)
    levels = {s: 0}
    this_level = [s]
    g = 0
    lev = 1
    while this_level:
        next_level = []
        for u in this_level:
            for v in G[u]:
                if v in levels:  # Non-Tree Edge
                    g = gcd(g, levels[u] - levels[v] + 1)
                else:  # Tree Edge
                    next_level.append(v)
                    levels[v] = lev
        this_level = next_level
        lev += 1
    if len(levels) == len(G):  # All nodes in tree
        return g == 1
    else:
        return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))


def transitive_closure(G, reflexive=False):
    """Returns transitive closure of a graph

    The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
    for all v, w in V there is an edge (v, w) in E+ if and only if there
    is a path from v to w in G.

    Handling of paths from v to v has some flexibility within this definition.
    A reflexive transitive closure creates a self-loop for the path
    from v to v of length 0. The usual transitive closure creates a
    self-loop only if a cycle exists (a path from v to v with length > 0).
    We also allow an option for no self-loops.

    Parameters
    ----------
    G : NetworkX Graph
        A directed/undirected graph/multigraph.
    reflexive : Bool or None, optional (default: False)
        Determines when cycles create self-loops in the Transitive Closure.
        If True, trivial cycles (length 0) create self-loops. The result
        is a reflexive transitive closure of G.
        If False (the default) non-trivial cycles create self-loops.
        If None, self-loops are not created.

    Returns
    -------
    NetworkX graph
        The transitive closure of `G`

    Raises
    ------
    NetworkXError
        If `reflexive` not in `{None, True, False}`

    Examples
    --------
    The treatment of trivial (i.e. length 0) cycles is controlled by the
    `reflexive` parameter.

    Trivial (i.e. length 0) cycles do not create self-loops when
    ``reflexive=False`` (the default)::

        >>> DG = nx.DiGraph([(1, 2), (2, 3)])
        >>> TC = nx.transitive_closure(DG, reflexive=False)
        >>> TC.edges()
        OutEdgeView([(1, 2), (1, 3), (2, 3)])

    However, nontrivial (i.e. length greater then 0) cycles create self-loops
    when ``reflexive=False`` (the default)::

        >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
        >>> TC = nx.transitive_closure(DG, reflexive=False)
        >>> TC.edges()
        OutEdgeView([(1, 2), (1, 3), (1, 1), (2, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)])

    Trivial cycles (length 0) create self-loops when ``reflexive=True``::

        >>> DG = nx.DiGraph([(1, 2), (2, 3)])
        >>> TC = nx.transitive_closure(DG, reflexive=True)
        >>> TC.edges()
        OutEdgeView([(1, 2), (1, 1), (1, 3), (2, 3), (2, 2), (3, 3)])

    And the third option is not to create self-loops at all when ``reflexive=None``::

        >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
        >>> TC = nx.transitive_closure(DG, reflexive=None)
        >>> TC.edges()
        OutEdgeView([(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)])

    References
    ----------
    .. [1] https://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
    """
    TC = G.copy()

    if reflexive not in {None, True, False}:
        raise nx.NetworkXError("Incorrect value for the parameter `reflexive`")

    for v in G:
        if reflexive is None:
            TC.add_edges_from((v, u) for u in nx.descendants(G, v) if u not in TC[v])
        elif reflexive is True:
            TC.add_edges_from(
                (v, u) for u in nx.descendants(G, v) | {v} if u not in TC[v]
            )
        elif reflexive is False:
            TC.add_edges_from((v, e[1]) for e in nx.edge_bfs(G, v) if e[1] not in TC[v])

    return TC


@not_implemented_for("undirected")
def transitive_closure_dag(G, topo_order=None):
    """Returns the transitive closure of a directed acyclic graph.

    This function is faster than the function `transitive_closure`, but fails
    if the graph has a cycle.

    The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
    for all v, w in V there is an edge (v, w) in E+ if and only if there
    is a non-null path from v to w in G.

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed acyclic graph (DAG)

    topo_order: list or tuple, optional
        A topological order for G (if None, the function will compute one)

    Returns
    -------
    NetworkX DiGraph
        The transitive closure of `G`

    Raises
    ------
    NetworkXNotImplemented
        If `G` is not directed
    NetworkXUnfeasible
        If `G` has a cycle

    Examples
    --------
    >>> DG = nx.DiGraph([(1, 2), (2, 3)])
    >>> TC = nx.transitive_closure_dag(DG)
    >>> TC.edges()
    OutEdgeView([(1, 2), (1, 3), (2, 3)])

    Notes
    -----
    This algorithm is probably simple enough to be well-known but I didn't find
    a mention in the literature.
    """
    if topo_order is None:
        topo_order = list(topological_sort(G))

    TC = G.copy()

    # idea: traverse vertices following a reverse topological order, connecting
    # each vertex to its descendants at distance 2 as we go
    for v in reversed(topo_order):
        TC.add_edges_from((v, u) for u in nx.descendants_at_distance(TC, v, 2))

    return TC


@not_implemented_for("undirected")
def transitive_reduction(G):
    """Returns transitive reduction of a directed graph

    The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that
    for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is
    in E and there is no path from v to w in G with length greater than 1.

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed acyclic graph (DAG)

    Returns
    -------
    NetworkX DiGraph
        The transitive reduction of `G`

    Raises
    ------
    NetworkXError
        If `G` is not a directed acyclic graph (DAG) transitive reduction is
        not uniquely defined and a :exc:`NetworkXError` exception is raised.

    Examples
    --------
    To perform transitive reduction on a DiGraph:

    >>> DG = nx.DiGraph([(1, 2), (2, 3), (1, 3)])
    >>> TR = nx.transitive_reduction(DG)
    >>> list(TR.edges)
    [(1, 2), (2, 3)]

    To avoid unnecessary data copies, this implementation does not return a
    DiGraph with node/edge data.
    To perform transitive reduction on a DiGraph and transfer node/edge data:

    >>> DG = nx.DiGraph()
    >>> DG.add_edges_from([(1, 2), (2, 3), (1, 3)], color='red')
    >>> TR = nx.transitive_reduction(DG)
    >>> TR.add_nodes_from(DG.nodes(data=True))
    >>> TR.add_edges_from((u, v, DG.edges[u, v]) for u, v in TR.edges)
    >>> list(TR.edges(data=True))
    [(1, 2, {'color': 'red'}), (2, 3, {'color': 'red'})]

    References
    ----------
    https://en.wikipedia.org/wiki/Transitive_reduction

    """
    if not is_directed_acyclic_graph(G):
        msg = "Directed Acyclic Graph required for transitive_reduction"
        raise nx.NetworkXError(msg)
    TR = nx.DiGraph()
    TR.add_nodes_from(G.nodes())
    descendants = {}
    # count before removing set stored in descendants
    check_count = dict(G.in_degree)
    for u in G:
        u_nbrs = set(G[u])
        for v in G[u]:
            if v in u_nbrs:
                if v not in descendants:
                    descendants[v] = {y for x, y in nx.dfs_edges(G, v)}
                u_nbrs -= descendants[v]
            check_count[v] -= 1
            if check_count[v] == 0:
                del descendants[v]
        TR.add_edges_from((u, v) for v in u_nbrs)
    return TR


@not_implemented_for("undirected")
def antichains(G, topo_order=None):
    """Generates antichains from a directed acyclic graph (DAG).

    An antichain is a subset of a partially ordered set such that any
    two elements in the subset are incomparable.

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed acyclic graph (DAG)

    topo_order: list or tuple, optional
        A topological order for G (if None, the function will compute one)

    Yields
    ------
    antichain : list
        a list of nodes in `G` representing an antichain

    Raises
    ------
    NetworkXNotImplemented
        If `G` is not directed

    NetworkXUnfeasible
        If `G` contains a cycle

    Examples
    --------
    >>> DG = nx.DiGraph([(1, 2), (1, 3)])
    >>> list(nx.antichains(DG))
    [[], [3], [2], [2, 3], [1]]

    Notes
    -----
    This function was originally developed by Peter Jipsen and Franco Saliola
    for the SAGE project. It's included in NetworkX with permission from the
    authors. Original SAGE code at:

    https://github.com/sagemath/sage/blob/master/src/sage/combinat/posets/hasse_diagram.py

    References
    ----------
    .. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
       AMS, Vol 42, 1995, p. 226.
    """
    if topo_order is None:
        topo_order = list(nx.topological_sort(G))

    TC = nx.transitive_closure_dag(G, topo_order)
    antichains_stacks = [([], list(reversed(topo_order)))]

    while antichains_stacks:
        (antichain, stack) = antichains_stacks.pop()
        # Invariant:
        #  - the elements of antichain are independent
        #  - the elements of stack are independent from those of antichain
        yield antichain
        while stack:
            x = stack.pop()
            new_antichain = antichain + [x]
            new_stack = [t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
            antichains_stacks.append((new_antichain, new_stack))


@not_implemented_for("undirected")
def dag_longest_path(G, weight="weight", default_weight=1, topo_order=None):
    """Returns the longest path in a directed acyclic graph (DAG).

    If `G` has edges with `weight` attribute the edge data are used as
    weight values.

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed acyclic graph (DAG)

    weight : str, optional
        Edge data key to use for weight

    default_weight : int, optional
        The weight of edges that do not have a weight attribute

    topo_order: list or tuple, optional
        A topological order for `G` (if None, the function will compute one)

    Returns
    -------
    list
        Longest path

    Raises
    ------
    NetworkXNotImplemented
        If `G` is not directed

    Examples
    --------
    >>> DG = nx.DiGraph([(0, 1, {'cost':1}), (1, 2, {'cost':1}), (0, 2, {'cost':42})])
    >>> list(nx.all_simple_paths(DG, 0, 2))
    [[0, 1, 2], [0, 2]]
    >>> nx.dag_longest_path(DG)
    [0, 1, 2]
    >>> nx.dag_longest_path(DG, weight="cost")
    [0, 2]

    In the case where multiple valid topological orderings exist, `topo_order`
    can be used to specify a specific ordering:

    >>> DG = nx.DiGraph([(0, 1), (0, 2)])
    >>> sorted(nx.all_topological_sorts(DG))  # Valid topological orderings
    [[0, 1, 2], [0, 2, 1]]
    >>> nx.dag_longest_path(DG, topo_order=[0, 1, 2])
    [0, 1]
    >>> nx.dag_longest_path(DG, topo_order=[0, 2, 1])
    [0, 2]

    See also
    --------
    dag_longest_path_length

    """
    if not G:
        return []

    if topo_order is None:
        topo_order = nx.topological_sort(G)

    dist = {}  # stores {v : (length, u)}
    for v in topo_order:
        us = [
            (dist[u][0] + data.get(weight, default_weight), u)
            for u, data in G.pred[v].items()
        ]

        # Use the best predecessor if there is one and its distance is
        # non-negative, otherwise terminate.
        maxu = max(us, key=lambda x: x[0]) if us else (0, v)
        dist[v] = maxu if maxu[0] >= 0 else (0, v)

    u = None
    v = max(dist, key=lambda x: dist[x][0])
    path = []
    while u != v:
        path.append(v)
        u = v
        v = dist[v][1]

    path.reverse()
    return path


@not_implemented_for("undirected")
def dag_longest_path_length(G, weight="weight", default_weight=1):
    """Returns the longest path length in a DAG

    Parameters
    ----------
    G : NetworkX DiGraph
        A directed acyclic graph (DAG)

    weight : string, optional
        Edge data key to use for weight

    default_weight : int, optional
        The weight of edges that do not have a weight attribute

    Returns
    -------
    int
        Longest path length

    Raises
    ------
    NetworkXNotImplemented
        If `G` is not directed

    Examples
    --------
    >>> DG = nx.DiGraph([(0, 1, {'cost':1}), (1, 2, {'cost':1}), (0, 2, {'cost':42})])
    >>> list(nx.all_simple_paths(DG, 0, 2))
    [[0, 1, 2], [0, 2]]
    >>> nx.dag_longest_path_length(DG)
    2
    >>> nx.dag_longest_path_length(DG, weight="cost")
    42

    See also
    --------
    dag_longest_path
    """
    path = nx.dag_longest_path(G, weight, default_weight)
    path_length = 0
    for (u, v) in pairwise(path):
        path_length += G[u][v].get(weight, default_weight)

    return path_length


def root_to_leaf_paths(G):
    """Yields root-to-leaf paths in a directed acyclic graph.

    `G` must be a directed acyclic graph. If not, the behavior of this
    function is undefined. A "root" in this graph is a node of in-degree
    zero and a "leaf" a node of out-degree zero.

    When invoked, this function iterates over each path from any root to
    any leaf. A path is a list of nodes.

    """
    roots = (v for v, d in G.in_degree() if d == 0)
    leaves = (v for v, d in G.out_degree() if d == 0)
    all_paths = partial(nx.all_simple_paths, G)
    # TODO In Python 3, this would be better as `yield from ...`.
    return chaini(starmap(all_paths, product(roots, leaves)))


@not_implemented_for("multigraph")
@not_implemented_for("undirected")
def dag_to_branching(G):
    """Returns a branching representing all (overlapping) paths from
    root nodes to leaf nodes in the given directed acyclic graph.

    As described in :mod:`networkx.algorithms.tree.recognition`, a
    *branching* is a directed forest in which each node has at most one
    parent. In other words, a branching is a disjoint union of
    *arborescences*. For this function, each node of in-degree zero in
    `G` becomes a root of one of the arborescences, and there will be
    one leaf node for each distinct path from that root to a leaf node
    in `G`.

    Each node `v` in `G` with *k* parents becomes *k* distinct nodes in
    the returned branching, one for each parent, and the sub-DAG rooted
    at `v` is duplicated for each copy. The algorithm then recurses on
    the children of each copy of `v`.

    Parameters
    ----------
    G : NetworkX graph
        A directed acyclic graph.

    Returns
    -------
    DiGraph
        The branching in which there is a bijection between root-to-leaf
        paths in `G` (in which multiple paths may share the same leaf)
        and root-to-leaf paths in the branching (in which there is a
        unique path from a root to a leaf).

        Each node has an attribute 'source' whose value is the original
        node to which this node corresponds. No other graph, node, or
        edge attributes are copied into this new graph.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is not directed, or if `G` is a multigraph.

    HasACycle
        If `G` is not acyclic.

    Examples
    --------
    To examine which nodes in the returned branching were produced by
    which original node in the directed acyclic graph, we can collect
    the mapping from source node to new nodes into a dictionary. For
    example, consider the directed diamond graph::

        >>> from collections import defaultdict
        >>> from operator import itemgetter
        >>>
        >>> G = nx.DiGraph(nx.utils.pairwise("abd"))
        >>> G.add_edges_from(nx.utils.pairwise("acd"))
        >>> B = nx.dag_to_branching(G)
        >>>
        >>> sources = defaultdict(set)
        >>> for v, source in B.nodes(data="source"):
        ...     sources[source].add(v)
        >>> len(sources["a"])
        1
        >>> len(sources["d"])
        2

    To copy node attributes from the original graph to the new graph,
    you can use a dictionary like the one constructed in the above
    example::

        >>> for source, nodes in sources.items():
        ...     for v in nodes:
        ...         B.nodes[v].update(G.nodes[source])

    Notes
    -----
    This function is not idempotent in the sense that the node labels in
    the returned branching may be uniquely generated each time the
    function is invoked. In fact, the node labels may not be integers;
    in order to relabel the nodes to be more readable, you can use the
    :func:`networkx.convert_node_labels_to_integers` function.

    The current implementation of this function uses
    :func:`networkx.prefix_tree`, so it is subject to the limitations of
    that function.

    """
    if has_cycle(G):
        msg = "dag_to_branching is only defined for acyclic graphs"
        raise nx.HasACycle(msg)
    paths = root_to_leaf_paths(G)
    B = nx.prefix_tree(paths)
    # Remove the synthetic `root`(0) and `NIL`(-1) nodes from the tree
    B.remove_node(0)
    B.remove_node(-1)
    return B


@not_implemented_for("undirected")
def compute_v_structures(G):
    """Iterate through the graph to compute all v-structures.

    V-structures are triples in the directed graph where
    two parent nodes point to the same child and the two parent nodes
    are not adjacent.

    Parameters
    ----------
    G : graph
        A networkx DiGraph.

    Returns
    -------
    vstructs : iterator of tuples
        The v structures within the graph. Each v structure is a 3-tuple with the
        parent, collider, and other parent.

    Notes
    -----
    https://en.wikipedia.org/wiki/Collider_(statistics)
    """
    for collider, preds in G.pred.items():
        for common_parents in combinations(preds, r=2):
            # ensure that the colliders are the same
            common_parents = sorted(common_parents)
            yield (common_parents[0], collider, common_parents[1])