summaryrefslogtreecommitdiff
path: root/networkx/algorithms/community/modularity_max.py
blob: cac64eb55c26804da6d29eacf7344920bd7a0997 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# TODO:
#   - Alter equations for weighted case
#   - Write tests for weighted case
"""Functions for detecting communities based on modularity.
"""

from networkx.algorithms.community.quality import modularity

from networkx.utils.mapped_queue import MappedQueue

__all__ = [
    "greedy_modularity_communities",
    "naive_greedy_modularity_communities",
    "_naive_greedy_modularity_communities",
]


def greedy_modularity_communities(G, weight=None, resolution=1):
    """Find communities in G using greedy modularity maximization.

    This function uses Clauset-Newman-Moore greedy modularity maximization [2]_.
    This method currently supports the Graph class and does not
    consider edge weights.

    Greedy modularity maximization begins with each node in its own community
    and joins the pair of communities that most increases modularity until no
    such pair exists.

    This function maximizes the generalized modularity, where `resolution`
    is the resolution parameter, often expressed as $\gamma$.
    See :func:`~networkx.algorithms.community.quality.modularity`.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    list
        A list of sets of nodes, one for each community.
        Sorted by length with largest communities first.

    Examples
    --------
    >>> from networkx.algorithms.community import greedy_modularity_communities
    >>> G = nx.karate_club_graph()
    >>> c = list(greedy_modularity_communities(G))
    >>> sorted(c[0])
    [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]

    See Also
    --------
    modularity

    References
    ----------
    .. [1] M. E. J Newman "Networks: An Introduction", page 224
       Oxford University Press 2011.
    .. [2] Clauset, A., Newman, M. E., & Moore, C.
       "Finding community structure in very large networks."
       Physical Review E 70(6), 2004.
    .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community
       Detection" Phys. Rev. E74, 2006.
    """

    # Count nodes and edges
    N = len(G.nodes())
    m = sum([d.get("weight", 1) for u, v, d in G.edges(data=True)])
    q0 = 1.0 / (2.0 * m)

    # Map node labels to contiguous integers
    label_for_node = {i: v for i, v in enumerate(G.nodes())}
    node_for_label = {label_for_node[i]: i for i in range(N)}

    # Calculate degrees
    k_for_label = G.degree(G.nodes(), weight=weight)
    k = [k_for_label[label_for_node[i]] for i in range(N)]

    # Initialize community and merge lists
    communities = {i: frozenset([i]) for i in range(N)}
    merges = []

    # Initial modularity
    partition = [[label_for_node[x] for x in c] for c in communities.values()]
    q_cnm = modularity(G, partition, resolution=resolution)

    # Initialize data structures
    # CNM Eq 8-9 (Eq 8 was missing a factor of 2 (from A_ij + A_ji)
    # a[i]: fraction of edges within community i
    # dq_dict[i][j]: dQ for merging community i, j
    # dq_heap[i][n] : (-dq, i, j) for communitiy i nth largest dQ
    # H[n]: (-dq, i, j) for community with nth largest max_j(dQ_ij)
    a = [k[i] * q0 for i in range(N)]
    dq_dict = {
        i: {
            j: 2 * q0 - 2 * resolution * k[i] * k[j] * q0 * q0
            for j in [node_for_label[u] for u in G.neighbors(label_for_node[i])]
            if j != i
        }
        for i in range(N)
    }
    dq_heap = [
        MappedQueue([(-dq, i, j) for j, dq in dq_dict[i].items()]) for i in range(N)
    ]
    H = MappedQueue([dq_heap[i].h[0] for i in range(N) if len(dq_heap[i]) > 0])

    # Merge communities until we can't improve modularity
    while len(H) > 1:
        # Find best merge
        # Remove from heap of row maxes
        # Ties will be broken by choosing the pair with lowest min community id
        try:
            dq, i, j = H.pop()
        except IndexError:
            break
        dq = -dq
        # Remove best merge from row i heap
        dq_heap[i].pop()
        # Push new row max onto H
        if len(dq_heap[i]) > 0:
            H.push(dq_heap[i].h[0])
        # If this element was also at the root of row j, we need to remove the
        # duplicate entry from H
        if dq_heap[j].h[0] == (-dq, j, i):
            H.remove((-dq, j, i))
            # Remove best merge from row j heap
            dq_heap[j].remove((-dq, j, i))
            # Push new row max onto H
            if len(dq_heap[j]) > 0:
                H.push(dq_heap[j].h[0])
        else:
            # Duplicate wasn't in H, just remove from row j heap
            dq_heap[j].remove((-dq, j, i))
        # Stop when change is non-positive
        if dq <= 0:
            break

        # Perform merge
        communities[j] = frozenset(communities[i] | communities[j])
        del communities[i]
        merges.append((i, j, dq))
        # New modularity
        q_cnm += dq
        # Get list of communities connected to merged communities
        i_set = set(dq_dict[i].keys())
        j_set = set(dq_dict[j].keys())
        all_set = (i_set | j_set) - {i, j}
        both_set = i_set & j_set
        # Merge i into j and update dQ
        for k in all_set:
            # Calculate new dq value
            if k in both_set:
                dq_jk = dq_dict[j][k] + dq_dict[i][k]
            elif k in j_set:
                dq_jk = dq_dict[j][k] - 2.0 * resolution * a[i] * a[k]
            else:
                # k in i_set
                dq_jk = dq_dict[i][k] - 2.0 * resolution * a[j] * a[k]
            # Update rows j and k
            for row, col in [(j, k), (k, j)]:
                # Save old value for finding heap index
                if k in j_set:
                    d_old = (-dq_dict[row][col], row, col)
                else:
                    d_old = None
                # Update dict for j,k only (i is removed below)
                dq_dict[row][col] = dq_jk
                # Save old max of per-row heap
                if len(dq_heap[row]) > 0:
                    d_oldmax = dq_heap[row].h[0]
                else:
                    d_oldmax = None
                # Add/update heaps
                d = (-dq_jk, row, col)
                if d_old is None:
                    # We're creating a new nonzero element, add to heap
                    dq_heap[row].push(d)
                else:
                    # Update existing element in per-row heap
                    dq_heap[row].update(d_old, d)
                # Update heap of row maxes if necessary
                if d_oldmax is None:
                    # No entries previously in this row, push new max
                    H.push(d)
                else:
                    # We've updated an entry in this row, has the max changed?
                    if dq_heap[row].h[0] != d_oldmax:
                        H.update(d_oldmax, dq_heap[row].h[0])

        # Remove row/col i from matrix
        i_neighbors = dq_dict[i].keys()
        for k in i_neighbors:
            # Remove from dict
            dq_old = dq_dict[k][i]
            del dq_dict[k][i]
            # Remove from heaps if we haven't already
            if k != j:
                # Remove both row and column
                for row, col in [(k, i), (i, k)]:
                    # Check if replaced dq is row max
                    d_old = (-dq_old, row, col)
                    if dq_heap[row].h[0] == d_old:
                        # Update per-row heap and heap of row maxes
                        dq_heap[row].remove(d_old)
                        H.remove(d_old)
                        # Update row max
                        if len(dq_heap[row]) > 0:
                            H.push(dq_heap[row].h[0])
                    else:
                        # Only update per-row heap
                        dq_heap[row].remove(d_old)

        del dq_dict[i]
        # Mark row i as deleted, but keep placeholder
        dq_heap[i] = MappedQueue()
        # Merge i into j and update a
        a[j] += a[i]
        a[i] = 0

    communities = [
        frozenset([label_for_node[i] for i in c]) for c in communities.values()
    ]
    return sorted(communities, key=len, reverse=True)


def naive_greedy_modularity_communities(G, resolution=1):
    """Find communities in G using greedy modularity maximization.

    This implementation is O(n^4), much slower than alternatives, but it is
    provided as an easy-to-understand reference implementation.

    Greedy modularity maximization begins with each node in its own community
    and joins the pair of communities that most increases modularity until no
    such pair exists.

    This function maximizes the generalized modularity, where `resolution`
    is the resolution parameter, often expressed as $\gamma$.
    See :func:`~networkx.algorithms.community.quality.modularity`.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    list
        A list of sets of nodes, one for each community.
        Sorted by length with largest communities first.

    Examples
    --------
    >>> from networkx.algorithms.community import greedy_modularity_communities
    >>> G = nx.karate_club_graph()
    >>> c = list(greedy_modularity_communities(G))
    >>> sorted(c[0])
    [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]

    See Also
    --------
    greedy_modularity_communities
    modularity
    """
    # First create one community for each node
    communities = list([frozenset([u]) for u in G.nodes()])
    # Track merges
    merges = []
    # Greedily merge communities until no improvement is possible
    old_modularity = None
    new_modularity = modularity(G, communities, resolution=resolution)
    while old_modularity is None or new_modularity > old_modularity:
        # Save modularity for comparison
        old_modularity = new_modularity
        # Find best pair to merge
        trial_communities = list(communities)
        to_merge = None
        for i, u in enumerate(communities):
            for j, v in enumerate(communities):
                # Skip i==j and empty communities
                if j <= i or len(u) == 0 or len(v) == 0:
                    continue
                # Merge communities u and v
                trial_communities[j] = u | v
                trial_communities[i] = frozenset([])
                trial_modularity = modularity(
                    G, trial_communities, resolution=resolution
                )
                if trial_modularity >= new_modularity:
                    # Check if strictly better or tie
                    if trial_modularity > new_modularity:
                        # Found new best, save modularity and group indexes
                        new_modularity = trial_modularity
                        to_merge = (i, j, new_modularity - old_modularity)
                    elif to_merge and min(i, j) < min(to_merge[0], to_merge[1]):
                        # Break ties by choosing pair with lowest min id
                        new_modularity = trial_modularity
                        to_merge = (i, j, new_modularity - old_modularity)
                # Un-merge
                trial_communities[i] = u
                trial_communities[j] = v
        if to_merge is not None:
            # If the best merge improves modularity, use it
            merges.append(to_merge)
            i, j, dq = to_merge
            u, v = communities[i], communities[j]
            communities[j] = u | v
            communities[i] = frozenset([])
    # Remove empty communities and sort
    return sorted((c for c in communities if len(c) > 0), key=len, reverse=True)


# old name
_naive_greedy_modularity_communities = naive_greedy_modularity_communities